基于三级恒温沼气生产的热电联供系统性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际化石能源的日益枯竭,节能减排、保护环境的呼声日益高涨,国际社会普遍开始重视生物质能,各国纷纷采取有效措施鼓励生物质能产业的发展,生物质能的有效开发和利用已成为国际能源领域投资发展的焦点之一。生物质沼气热电联供可给用户提供电力、采暖(卫生热水)和制冷,将一次能源“梯级利用”和“吃光用尽”,因此可以大幅度的提高能源利用率。这些分布式能源系统可以就近建设,省却了大规模线路建设,减小了输配电损失。因此,生物质沼气发电工程得到了各国政府的大力支持。
     基于“温度对口,能量梯级利用”的原则,本文设计了新型的三级恒温沼气热电联供系统,其中包括三级恒温沼气生产子系统、沼气净化子系统、内燃机发电机组子系统、双效溴化锂吸收式热泵机组子系统和内燃机发电机组余热利用子系统。从热力学第一定律和第二定律两个层面初步揭示了新系统中的能量转换过程,并分析研究了新系统的总体性能,获得如下结论:
     1分析结果表明,新系统具有优良的热力特性。新系统能量利用率达到85.67%,系统火用效率为47.39%,均已达到较高的性能指标。
     2在新型的三级恒温沼气热电联供系统中,遵循了能的梯级利用原理,难以利用的低品位废热的再利用,内燃机发电机组余热为生物质的高效厌氧发酵提供稳定的运行环境。
     3生物质能利用转化有多种,本文基于层次分析法建立了生物质能利用技术的集总加权评价模型,对本系统进行了评价。通过对本系统采用动态经济性分析方法得出本装置的财务净现值NPV(i=10%)为82.3万元,内部收益率FIRR为28.9%,益本比为2.5,投资回收期为2.8年。结果表明本系统的推广具有良好的财务和国民经济效益,具有很好的发展前景。
     在文章的最后一部分,笔者展望了三级恒温沼气热电联供系统的未来,并提出五点可行性建议,希望这些建议能够被该领域学者以及政府相关部门参考并采纳,从而促进我国沼气发电事业快速发展,以及系统相关技术达到国际先进水平。另外,本课题设计出的三级恒温沼气热电联供系统对沼气热电联供系统的发展有一定的借鉴作用。
With the fluctuations in international oil prices, energy-saving emission reduction,environmental protection, increasing the voice of the international community in general is beginning to take biogas, countries have to take effective measures to encourage the development of biogas energy industry, biogas energy development and the effective International Energy use is increasingly becoming the focus of investment in the development of the field. However, biogas power generation of cool,heat and electricity can save the energy extremely by synthesis providing these energies to user. The advantage of small cogeneration is fossil fuel can be used in grades and be used up.The benefit of small generation comes from invest saving of electricity line construction and declining the loss of electricity transport as they can be constructed near the user. Therefore,biogas power generation gets a lot of countries support strongly.
     An energy supply system basing on three-staged thermostatic biogas is establishing depending on a principle of "parallel temperature and gradient energy utilization",disclosuring energy transformation.The research contents and achievements as follow:
     1 Energy supply system basing on three-staged thermostatic biogas has high thermodynamic property.The system has high efficiency of energy and exergy utilization.The energy utilization efficiency is 85.67%,and exergy utilization efficiency is 47.39%,the new system not only had high energy utilization efficiency, but also had improved the exergy utilization efficiency. So, on this point of view, the system of basing on three-staged thermostatic biogas is feasible.
     2 The new Energy supply system basing on three-staged thermostatic biogas,exhaust-heat of internal combustion engine generator set offer a steady environment for the biomass anaerobic digestion efficient,which making the low grade,unsteady bioenergy transit to the high grade methane chemical energy successfully. From the energy-utilization's point of view, it shows the Integrated Cascaded Utilization of Chemical and Physical Energy Principle sufficiently.
     3 Using the method of dynamic economic to appraise the entire system.The results showed that the net present value is 823 million yuan,the financial internal ratio of return is 28.9%,the benefit-cost ratio is 2.5,the time of capital return is 2.8 year.The promotion of this set of devices can generate good value for money and national economicbenefit,with good good prospect of application and extension.
     In the last section, we make the expectation of the development of the energy supply by three classes constant temperature biogas systems,and put forward five feasible advices for other scholars in this area and lawmakers.To keep pace with the developed countries,we should accelerate development of the energy supply system basing on three-staged thermostatic biogas industry and relevant equipments to make our country enter into the biogas power generation system era as soon as possible.On the other hand,the energy system supply basing on three-staged thermostatic biogas has the effect of the biogas power generation system era.
引文
[1]赵庆波,单葆国.世界能源需求现状及展望[J].中国能源,2002,(02):34-36.
    [2]刘冬生,孙友宏,庄迎春.增强地源热泵竖直埋管地下换热器换热性能的研究[J].吉林大学学报(地球科学版),2004,34(04):648-652.
    [3]Liu D,Sun Y,Gao K,etal.Research on Ground Heat Exchanger of Ground Source Heat Pump Technique[C].196-199.
    [4]刘冬生,孙友宏.浅层地能利用新技术一地源热泵技术[J].岩土工程技术,2003,(1):57-59.
    [5]刘冬生,庄迎春,肖西卫.竖直U型埋管地源热泵技术的应用[J].能源工程,2003,(1):4-6.
    [6]刘冬生,孙友宏.竖直埋管地源热泵技术[J].世界地质,2002,21(4):406-410.
    [7]中华人民共和国国务院新闻办公室.中国的能源状况与政策[J].中国政府白皮书,2007.
    [8]孙孝政,夏吉庆,田晓峰.厌氧发酵技术工厂化生产沼气的现状及展望[J].东北农业大学学报,2005,(1):12-14.
    [9]Montserrat Zamorano,Jorge Ignacio Perez Perez,Ignacio Aguilar Paves,Angel Ramos Ridao.Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain [J].Renewable and Sustainable Energy Reviews.2007,11(5):909-922.
    [10]Bestamin Ozkaya,Ahmet Demir,M.Sinan Bilgili.Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors[J].Environmental Modelling & Software.2007,22(6):815-822.
    [11]吴相淦.农村能源.第一版.北京:农业出版社,1988:130-165.
    [12]周梦津,张榕林,蔺金印.沼气实用技术.北京:化学工业出版社,2005:34-39.
    [13]K.J.Chae,Am Jang,S.K.Yim,et al.The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure[J].Bioresource Technology.2008,99(1):1-6.
    [14]Hamed M.El-Mashad,Grietje Zeeman,Wilko K. P. van Loon,et al.Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure[J].Bioresource Technology.2004,95(2):191-201.
    [15]唐森本.污染源监测[M].北京:中国环境科学出版社,1993.
    [16]Jenbaher Company. Jenbacher Technical Description of Genset-containner.1996.
    [17]李辉.燃气内燃机热电冷联产系统的应用实践研究[D].北京.清华大学,2006.
    [18]朱成章.关于发展天然气电厂的讨论.中国能源,2002,2:22-24.
    [19]中国华电集团新能源发展有限公司.湖北省龙感湖农场沼气发电厂可行性研究报告[R].北京:中国华电集团新能源发展有限公司,2008.
    [20]John Cuttica,Mark Hall,Ricardo Amon.Animal Waste to Biogas Can This Be a Significant Energy Resource Jim Bodensteiner[J].ACEEE Forum on Energy Efficiency in Agriculture,February 21,2008.
    [21]王淑宝,张国栋,曹曼.欧洲大型沼气工程技术国产化方法探讨[J].中国沼气,2009,27(2):42-44.
    [22]邓良伟,颜丽等人.“蒙牛澳亚示范牧场大型沼气发电综合利用工程”可行性研究报告[R].2006.
    [23]李倩,蔡磊,蔡昌达.3 MW集中式热电肥联产沼气工程设计与建设[J].可再生能源,2009,27(1):97-100.
    [24]蓝天,蔡磊,蔡昌达.大型蛋鸡场2MW沼气发电工程[J].中国沼气,2009,27(3):31-33.
    [25]Mavi Climent,Ivet Ferrer,Ma del Mar Baeza,et al.Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions[J].Chemical Engineering Journal.2007,133(1-3):335-342.
    [26]杨敏林,杨晓西,金红光.分布式能源系统集成方案研究[J].东莞理工学院学报,2006,13(4):113-116.
    [27]刘志红,刘守华.沼气发酵能量的转换效率的研究[J].辽宁师报,2002,4(3):84-87.
    [28]唐受印,戴友芝,汪大翠等.废水处理工程.北京:化学工业出版社,2002,8.
    [29]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.
    [30]李业发,张有为.热网管道的保温厚度与工质温度、保温材料导热系数的关系计算[J].节能技术,2006.5,24(3):195-211.
    [31]杨士铭,陶文铨.传热学.第三版.北京:高等教育出版社.1998:314-314.
    [32]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.
    [33]DB37/T150-2007.《沼气发酵池设计规范》[S].
    [34]邓良伟.规模化猪场粪污处理模式[J].中国沼气,2001,19(1):29-33.
    [35]Prasad Kaparaju,Inmaculada Buendia,Lars Ellegaard,et al.Effects of mixing on methane production during thermophilic anaerobic digestion of manure Lab-scale and pilot scale studies[J].Bioresource Technology,2008,99(11) 4919-4928.
    [36]A. Lehtomaki,S.Huttunen,J.A.Rintala.Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production Effect of crop to manure ratio[J].Resources,Conservation and Recycling 2007,51(3):591-609.
    [37]Marek C.Building load profiles and optimal CHP systems.ASHRAE Transaction.2002:682-690.
    [38]Tsay M,Lin W,Lee J.Application of evolutionary programming for economic dispatch of cogeneration systems under emission constraints.Electrical Power and Energy Systems.2001,23:805-812.
    [39]Tsay M.Applying the multi-objective approach for operation strategy of cogeneration systems under environmental constraints.Electrical Power and Energy Systems.2003,25:219-226.
    [40]Tsay M,Lin W.Application of evolutionary programming to optimal operational strategy cogeneration system under time-of-use rates.Electrical Power and Energy Systems.2000,22:367-373.
    [41]Lahdelma R,Hakonen H.An efficient linear programming algorithm for combined heat heat and power production.European Journal of Operational Research.2003,148:141-151.
    [42]Wong K P,Algie C.Evolutionary programming approach for combined heat and power dispatch.Electric Power Systems Research.2002,61:227-232.
    [43]姜周署,胡亚才,屠传经等.应用溴化锂吸收式制冷技术提高燃气轮机电站发电效率的研究[D].动力工程,1999,19(4):300-304.
    [44]付林.热电冷联产系统电力调峰运行研究[D].北京:清华大学建筑技术科学系,2000.
    [45]李永红.蓄能模式下楼宇热电冷联产系统优化运行和设计分析[D].北京:清华大学建筑技术科学系,2005.
    [46]Wojcieh K,Janusz S.Thermodynamic and economic analysis of heat storage application in co-generation systems.Internal Journal of Energy Research.2004,12:177-188.
    [47]张世钢,付林,李辉.BCHP系统中吸收式热泵性能模拟[J].太阳能学报,2007,28(1):1-6.
    [48]Hwang Y.Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller, International Journal of Refrigeration.2004,27:816-829.
    [49]Matthew C,Xiaohong L,Radermacher R.Performance comparison of waste heat-driven desiccant systems.ASHRAE Transaction.2003,5(3):572-879.
    [50]Popovic P,Marantan A,Radermacher R,etal.Integration of microturbine with single-effect exhaust-driven absorption chiller and solid wheel desiccant system.ASHRAE Transaction.2002,5(3):660-669.
    [51]Marantan A,Popovic P,Radermacher R.The potencial of CHP technology in commercial buildings-characterizing the CHP demonstration building.ASHRAE Transaction.2002,18(1):1025-1031.
    [52]Labionv S D,Zaltash A,Rizy D T,etal.Predictive algorithms for microturbine performance for BCHP systems.ASHRAE Transaction.2002,5(4):670-681.
    [53]Petrov A Y,Zaltash A,Labinov S D,etal.Dynamic performance of a 30-kW microturbine-based CHP system.ASHRAE Transaction.2005,9(3):802-809.
    [54]崔永章,钱中贤.翘片换热器中天然气烟气的冷凝传热[J].山东建筑工程学报,2000,115(2):41-45.
    [55]伍成波.高温换热器烟气侧传热特性的研究[J].工业炉,1997,3:15-20.
    [56]曹彦斌,艾效逸,郭权等.伴随有水蒸气凝结的烟气对流换热的实验研究[J].工程热物理学报,2000,21(6):729-733.
    [57]张世钢,付林,李辉,杨巍巍,江亿.BCHP系统中吸收式热泵性能模拟[J].太阳能学报,2007,28(1):1-6.
    [58]赵宗昌,周方伟,李淞平.双吸收式热变换器热力性能分析[J].大连理工大学学报,2003,43(5):604-608.
    [59]魏璠,肖云汉,张士杰.结合吸收式热泵的HAT循环系统综合设计与性能分析[J].工程热物理学报,2007,28(1):17-20.
    [60]付林,田贯三,隋军,江亿.吸收式热泵在燃气采暖冷凝热回收中的应用[J].太阳能学报,2003,24(5):620-624.
    [61]兰州石油机械研究所.换热器.北京:烃加工出版社.1988,12:293-323.
    [62]史美中,王中铮.热交换器原理与设计.南京:东南大学出版社.1996:136-154.
    [63]李海涛.分布式能源系统的热力学分析与优化[D].保定:华北电力大学,2005.
    [64]董树屏,李天铎.热能转换及利用[M].北京:机械工业出版社,1985.
    [65]郭年东,阳作峰.农村家用沼气池建造[J].农村百事通,2000,(20):41-42.
    [66]涂国平,贾仁安.以沼气工程为纽带的农业科技园系统反馈结构分析[J].中国沼气,2004,22(1):25-27.
    [67]雷仲敏.技术经济分析评价[M].北京:中国标准出版社,2004.
    [68]肖波,周英彪,李建芬.生物质能循环经济技术[M].北京:化学工业出版,2006.
    [69]张承龙.农业废弃物资源化技术现状及其前景[J].环境保护,2002,(1):22-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700