沉默Id-1基因对腺样囊性癌生物学行为影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     1.建立能够实时监测、连续动态观察肿瘤生长、转移等生物学行为的裸鼠在体绿色荧光腺样囊性癌ACCM肿瘤模型。
     2.探讨裸鼠舌体移植腺样囊性癌瘤体内注射小干扰RNA慢病毒载体进行RNA干扰的有效性和可行性以及应用慢病毒载体的可能性。
     3.探讨RNA干扰技术沉默Id-1基因在体内和体外实验中对腺样囊性癌ACCM的抑制作用。
     4.探讨Id-1基因的表达在腺样囊性癌ACCM的细胞增殖、侵袭、凋亡等生物学行为中的作用,探讨其作为ACCM新的靶向治疗的重要分子的可能性。
     研究方法:
     1. ACCM细胞用含-10%胎牛血清、青霉素100mg/ml和链霉素100mg/ml的DMEM培养基,在37℃,5%CO2培养箱培养。逆转录病毒颗粒pLEGFP-N1(病毒滴度为108 Cfu/L)用0.45μm的滤膜过滤,再加入终浓度为8μg/ml的Polybrene组成感染液。用0.25%胰蛋白酶消化收集ACCM细胞,按1×105个/孔接种于6孔板中,常规培养12-16h后,加入上述感染液,培养24 h后更换新鲜培养基,继续培养48h,经G418 (800μg/ml)筛选出阳性克隆。应用有限稀释法进行单细胞克隆筛选,并进行扩大培养,最终获得单细胞克隆细胞株(ACCM-GFP)。
     2.胰蛋白酶消化收集处于对数生长期的逆转录病毒载体pLEGFP-N1感染的ACCM细胞(ACCM-GFP),用含有胎牛血清的4℃预冷的DMEM清洗3遍,最终稀释成密度为2×106个/ml,收集后40min内完成细胞注射,注射前可置于冰上暂时保存。注射部位为裸鼠舌背中线处前2/3与后1/3交界处粘膜下,注射剂量为0.1ml/只。裸鼠为6周龄,体重20-25g。
     3. ACCM-GFP肿瘤细胞接种7天后,在不同的时间点,用99.9%的乙醚进行吸入麻醉,并用实体荧光成像系统进行摄像分析。以465nm蓝光激发,观察裸鼠原发灶及淋巴结等部位GFP表达情况。同时,对获得的ACCM-GFP细胞进行绿色荧光观测,并与ACCM细胞在细胞形态学、细胞增殖能力、侵袭能力以及组织学等方面进行分析比较。体外进行细胞培养,提取ACCM-GFP细胞和ACCM细胞的总RNA和总蛋白,进行RT-PCR和Western Blot检测细胞内Id-1 mRNA表达水平和蛋白表达水平,并进行分析比较。
     4. ACCM-GFP细胞注射2周后,以瘤体内多角度注射慢病毒载体对ACCM-GFP肿瘤进行RNAi,隔日注射1次,连续注射3次。Id-1-siRNA-Lentivirus和NC-siRNA-Lentivirus注射量为100μl (Id-1病毒滴度为5×108TU/ml; NC病毒滴度为1×109TU/ml,应用时稀释成5×108TU/ml);复感染指数(MOI)为1:50。
     5.自注射慢病毒载体后隔日测量肿瘤体积大小以观测RNAi后肿瘤生长的变化;在肿瘤RNAi后的第3、4、5、6、7、10、14天分别处死实验组(感染Id-1-siRNA-Lentivirus组)、阴性组(感染NC-siRNA-Lentivirus组)和对照组(空白对照组:未感染慢病毒载体组)裸鼠并切取组织标本,同时观测RNAi后的肿瘤在实体荧光成像系统下的图像;对切取标本进行组织总RNA提取和组织总蛋白提取,分别进行实时定量RT-PCR和Western Blot检测肿瘤组织内Id-1 mRNA表达水平和蛋白表达水平;对肿瘤RNAi后第7天的组织切取标本制备肿瘤标本蜡块,进行增殖细胞核抗原标记物Ki-67的表达检测。
     6.体外以Id-1-siRNA-Lentivirus感染ACCM细胞(MOI为1:50),感染24h、48h、72h后以流式细胞仪检测慢病毒感染效率(激发波长488nm,发射波长675nm),同时在荧光倒置相差显微镜下观测被Id-1-siRNA-Lentivirus感染的ACCM-GFP细胞,判断慢病毒感染效率;6孔板内每孔种入2×104ACCM细胞,过夜,使汇合率达到50%-80%,按照MOI为1:50加入Id-1-siRNA-Lentivirus和NC-siRNA-Lentivirus;感染4天后进行Hoechst法凋亡检测,研究RNAi Id-1基因对肿瘤细胞凋亡的影响;将ACCM细胞96孔板种板,每孔200μl,103个/孔,置37℃; 5%CO2温箱培养,待细胞贴壁,培养24小时后按照MOI为1:50加入Id-1-siRNA-Lentivirus和NC-siRNA-Lentivirus,感染1、2、3、4、5、6、7、8天分别以MTT法进行细胞活力检测,研究RNAi沉默Id-1基因对肿瘤细胞增殖活性的影响;在6孔板中用Id-1-siRNA-Lentivirus感染ACCM细胞后第5天,应用Transwell侵袭小室检测肿瘤细胞侵袭能力的变化(瑞氏染色法)。
     研究结果:
     1.经高浓度G418筛选培养并通过有限稀释法后获得的稳定表达GFP的单克隆ACCM细胞株(ACCM-GFP),在去除G418筛选压力后继续培养2个月以及冻存6个月复苏后,细胞仍能稳定表达GFP,仍可观测到强烈的绿色荧光信号,GFP分布于整个ACCM-GFP细胞质中。
     2.组织形态学及组织病理学观测ACCM细胞与ACCM-GFP细胞无显著差异,倒置相差显微镜下观察为圆形、椭圆形或多角形上皮样细胞,大小较为一致,细胞单层贴壁生长,界限清楚。胞浆少,可见透亮度深浅不等的颗粒,核大,类圆形或不规则形,核浆比例高,核仁2-3个,清晰可见,并可见巨大融合细胞。细胞分裂相多见,并有多级核分裂,排列紧密时细胞互相镶嵌成铺路石样,密度再增高时可重叠生长,表现为接触抑制消失;ACCM-GFP细胞与ACCM细胞相比,其增殖能力无显著差异;体外培养发现其侵袭能力无显著差异;其Id-1基因的mRNA和蛋白水平表达无显著差异。
     3.裸鼠舌体种植ACCM-GFP细胞成瘤率为100%;体外检测Id-1-siRNA-Lentivirus慢病毒感染效率,感染24h时,病毒的感染效率为24.89%;48h时感染效率为68.45%;72h时可高达83.5%;同时分别以以绿色和红色荧光观察被Id-1-siRNA-Lentivirus感染的ACCM-GFP细胞,通过细胞计数判断慢病毒的感染效率可高达80%。
     4.活体荧光成像系统下观察ACCM-GFP裸鼠肿瘤模型,瘤体的绿色荧光信号强烈,肿瘤实性质地,呈分叶或结节状,边界呈波浪状,瘤体内可见囊腔;3周时,可以观测到颌下淋巴结转移灶,转移波及区域范围较小,但是荧光信号强烈;3周时未见肺转移及其它远处转移病灶。进行RNAi的ACCM-GFP肿瘤在465nm波长光线下激发出较弱强度的绿色荧光,在560nm波长光线下激发出高强度的红色荧光。
     5.RNAi后阴性对照组与空白对照组的肿瘤生长趋势及生长速度较为一致,肿瘤体积大小无显著差异,实验组在RNAi后12d之前与阴性对照组及空白对照组比较无显著差异,第14天后肿瘤的体积虽然仍为增长上升趋势,但与阴性对照组及空白对照组比较差异非常显著(P<0.01), RNAi对肿瘤生长的抑制率可达26.14%-39.17%。RNAi后增殖细胞核抗原标记物Ki-67在实验组的表达明显降低,与空白对照组与阴性对照组两两比较P<0.01,差异有非常显著的统计学意义;而阴性对照组与空白对照组相比则无显著差异(P>0.05)。
     6.进行Id-1 RNAi的ACCM-GFP肿瘤组织Id-1 mRNA自RNAi第4天起出现表达水平下调,与阴性对照组及空白对照组比较差异有非常显著的统计学意义(P<0.01), Id-1-siRNA对Id-1 mRNA的表达抑制率可达42.76%; RNAi后第4天至第14天之间的裸鼠肿瘤mRNA表达水平下调后保持相对稳定水平;RNAi第4天开始,Id-1蛋白表达水平与阴性对照组和空白对照组比较显著下降(P<0.01),并且到达第6天时,蛋白表达下降至相对稳定水平。
     7.相关体外实验研究中,感染Id-1-siRNA-Lentivirus的ACCM细胞体积缩小,膜皱缩,细胞核皱缩呈致密浓染、核凝聚变小,染色较深;染色质破裂成大小不等的碎片,或呈块状,并有边集现象,核染色强度变淡,呈现典型的细胞凋亡表现。计数相同视野内发生细胞凋亡的细胞数目,实验组与空白对照组及阴性对照组之间的差异有显著统计学意义(p<0.01). Transwell侵袭小室检测细胞侵袭能力,实验组中感染Id-1-siRNA-Lentivirus的ACCM细胞穿过微孔膜的细胞数与空白对照组和阴性对照组比较显著降低(P<0.01)。MTT法检测细胞增殖能力,接受Id-1-siRNAi的ACCM细胞第5天起生长速度明显减慢,实验组对细胞抑制率大约为40%-50%。
     结论:
     1.同一ACCM细胞可以相继接受2次以上的逆转录病毒感染,其基因组可以多次嵌入外源病毒基因而本身的基因表达和生物学特性不受影响。Id-1基因的mRNA表达和蛋白表达在ACCM细胞和ACCM-GFP细胞中基本一致。
     2. ACCM-GFP荧光肿瘤模型可以长期稳定地表达GFP,有利于长期无创、实时和动态地观测肿瘤的生长变化、浸润、侵袭、远处转移以及治疗效果等,同时也为早期肿瘤变化的观测提供了可能,可以及时捕捉到早于临床症状出现的变化。是研究腺样囊性癌的最佳肿瘤模型之一。
     3.本实验应用的慢病毒载体具有高感染效率、表达稳定和较高的生物安全性等特点。
     4.特异性Id-1-siRNA可以显著降低Id-1基因在腺样囊性癌ACCM肿瘤组织中的mRNA和蛋白表达;对肿瘤的生长和细胞的增殖有明显的抑制作用;可以显著抑制肿瘤细胞的侵袭能力;并且可以促进肿瘤细胞的凋亡。
     5.Id-1基因在腺样囊性癌肿瘤中与细胞的增殖能力、侵袭能力等生物学行为呈正相关;Id-1基因是治疗腺样囊性癌的理想的靶基因。
     6.慢病毒载体介导的RNAi具有稳定、高效、给药方式接近临床等优势,是一种有效的肿瘤基因治疗技术,在腺样囊性癌的基因治疗中具有非常好的应用前景。
Objective:
     1. To establish a novel green fluorescent protein (GFP)-expressing nude mice orthotopic model which can be visualized in real time with fluorescence imaging and detected in a noninvasive and continuous way for tumor's development, invasion and metastasis.
     2. To demonstrate the effectiveness and feasibility of RNAi in the tongue of orthotopic mice model which is mediated by lentivirus injection into the tumor.
     3. To investigate the inhibition of silencing Id-1 gene by RNAi on adenoid cystic carcinoma (ACCM) in vivo and in vitro.
     4. To research the effect of Id-1 expression on cell proliferation, invasion, apoptosis, and so on in ACCM and to explore the possibility of Id-1 being a new therapeutic target for ACCM treatment.
     Methods:
     1. ACCM cells were cultured in DMEM supplemented with 10%fetal bovine serum (FBS) and antibiotics (100 U/ml penicillin,100 U/ml streptomycin) at 37℃, 5%CO2. After collecting viral supernatant through a 0.45μm celluslose acetate filter, viral titer was determined as 108 cfu/L finally.1×105 ACCM cells in a 6-well plate, cultured for about 12-16h, were exposed to viral supernatant at a multiplicity of infection, in the presence of 8μg/ml polybrene for 24h. Subsequently, the viral supernatant was replaced with fresh medium. ACCM-GFP cells were acquired with 800μg/ml G418 selection for 2 weeks and then were collected, counted. Split one cell per well in 96-well plate. Colonies were grown in DMEM containing FBS and antibiotics at 37℃,5%CO2.
     2. ACCM-GFP cells were harvested with trypsin and washed with prechilling DMEM for 3 times.2×105 ACCM-GFP cells in 0.1 ml medium were injected submucosally into lingual central part at the cross-point of forward 2/3 and backward 1/3 in 60 BALB/c nu/nu male mice. Injection should be finished in 40 minutes and the medium containing cells can be placed on the ice temporarily. The mice were six weeks old, with a body weight of 20-25g.
     3.7 days after ACCM-GFP cells injection, mice were imaged at various time points using a cooled CCD camera. To acquire better images, mice were anesthetized, and the tongue was pulled out of the oral cavity. Next, anesthetized mice were pictured by the whole-body optical imaging system. Green fluorescence images were also collected using 60s exposure time with 465nm excitation/535nm emission filters but no binning. The comparison between ACCM-GFP and ACCM cells in morphology, capability of cell growth and invasion, and histology was analyzed. RNA and protein were extracted from ACCM-GFP and ACCM cells in vitro. mRNA and protein expression of Id-1 were evaluated with RT-PCR and Western Blot.
     4.2 weeks after ACCM-GFP injection,5×107TU in 100μl of Id-1-siRNA-Lentivirus and NC-siRNA-Lentivirus were injected in a multiple intratumoral direction respectively every other day and for 3 times continuously. The multiplicity of infection (MOI) is 50.
     5. Each tumor was measured every other day by using a caliper. Graphs were plotted to illustrate tumor growth in each group. Mice were photographed for fluorescent images by KODAK Image Station. The mice were scanned with fluorescence with excitation maximum 465nm and 560nm for GFP and RFP respectively. Mice were sacrificed at day 3,4,5,6,7,10 and 14 after RNAi. Total RNA and protein were isolated from the tissue and Id-1 expression in mRNA and protein level were detected by qRT-PCR and Western Blot. Immunohistochemistry analysis of Ki-67 expression was conducted 7 days after RNAi.
     6. Infection of ACCM cells by Id-1-siRNA-Lentivirus in vitro was applied to analyze the transduction efficiency. At different time points (24h,48h, and 72h), cells were harvested for FACS analysis to confirm the transduction efficiency (465nm excitation/535nm emission). Meanwhile, ACCM-GFP cells infected with Id-1-siRNA-Lentivirus were observed under the green/red fluorescence to determine the transduction efficiency.2 X 104 ACCM cells were seeded in each well of a 6-well plate. The cells were infected in DMEM containing 10%FBS and 5μg/ml polybrene when the confluence was about 50%-80%and Id-1-siRNA-Lentivirus was introduced at a multiplicity of infection (MOI) of 50 for 24h.4 days later, apoptosis was measured using Hoechst 33258 staining. Cells at a concentration of 103 per well were seeded in the 96-well plate and incubated for 24h and then infected with lentivirus particles at a MOI of 50. MTT assay was performed for each day after RNAi to study the effect of Id-1 siRNA on cell proliferation. Cell invasion was assayed using a Boyden chamber cell with culture-chamber-insert system. On the 5th day of RNAi, ACCM cells infected by Id-1-siRNA-Lentivirus in 6-well plate were collected for cell invasion analysis (Wright's stain).
     Results:
     1. ACCM-GFP cells isolated by G418 screening were able to express GFP stably after 2 months'culture and thawed after 6 months'freezing-storage when G418 was already removed. The GFP sign was completely strong. GFP was distributed in the cytoplasm.
     2. From the viewpoint of histology, there was no significant difference between ACCM and ACCM-GFP cells. Histopathologically, most ACCM-GFP tumors presented solid form. It was composed of solid epithelial islands with central areas of necrosis; the cells were small, basophilic and hyperchromatic with a densely granulated nucleus and easily visualized mitotic figures. The epithelial island was composed of cubic cells with scarce cytoplasm, oval nuclei with eosinophilic content, surrounded by a band of dense muscular fibrous tissue, well vascularized, and moderate diffuse chronic inflammatory infiltration. ACCM-GFP cells showed no significant difference from ACCM cells in morphology, Id-1 protein expression, cell proliferation, and invasion ability.
     3. ACCM-GFP tumor incidence measured by GFP expression and histological analysis was 100%for all mice in the control and test groups. Transduction efficiency in vitro was evaluated by flow cytometry. With the stable expression of RFP, the high transduction efficiency of 83.5%,68.45%and 24.89%could be detected 72h,48h and 24h after lentiviral infection respectively. Meanwhile, ACCM-GFP cells infected with Id-1-siRNA-Lentivirus were observed with green and red fluorescence respectively and the transduction efficiency of lentivirus was as high as about 80%.
     4. Detected with green fluorescence, some features of original ACCM tumor, such as notches along the tumor border, cystic cavities inside the tumor, etc. can present in ACCM-GFP tumors. Meanwhile, a metastic lymphatic node invaded by ACCM-GFP cells can be detected by GFP 3 weeks after ACCM-GFP cell injection, although it is not palpable. The fluorescence sign was strong in spite of the limited areas involved by metastasis. However, we did not find metastasis in lung and other tissues. ACCM-GFP tumors treated with RNAi presented weak green fluorescence with excitation of 465nm, while strong red fluorescence with excitation of 560nm.
     5.12 days after the infection with RNAi-containing lentivirus particles, tumor growth began to decrease. Although the tumor size was still increasing after 12 days of RNAi, the difference of test and controls group was significant. However, the negative controls showed the same tumor growth speed as the blank controls. Tumor growth inhibition efficiency could be 26.14%-39.17%. Immunohisto-chemical staining showed Ki-67 positive cells in tumors treated with NC-siRNA-Lentivirus were similar in quantity to ACCM-GFP tumors, however, cellular proliferation indices of tumors derived from Id-1-siRNA-Lentivirus-treated mice differed significantly from others.
     6. Until the 3rd day after injection, Id-1-siRNA-Lentivirus-treated tumors, NC- siRNA-Lentivirus-treated tumors and ACCM-GFP tumors showed no reduction in the levels of Id-1; whereas those infected with Id-1-siRNA-Lentivirus for more than 3 days showed significantly reduced levels of mRNA. mRNA level decreased to a relative stable state from the 4th to the 14th day. The expression was markedly downregulated in tumors from the 4th day of infection with Id-1-siRNA-Lentivirus (p<0.01), while it remained similar in blank control, NC-siRNA and Id-1-siRNA group infected for no more than 3 days. Protein level decreased to a relative stable state from the 6th day.
     7. Cells in culture after 4 days of infection with Id-1-siRNA exhibited lots of apoptosis, which was characterized by pyknotic and fragmented nuclei. Condensed bright apoptotic nuclei were readily observed amidst the transducted cells. In control cultures, round and large nuclei appeared with regular contours and cells with smaller nuclei and condensed chromatin were rarely seen. Repression of Id-1 expression in ACCM-GFP was found to inhibit invasion in vitro. Cells passed PET membrane in test group were significantly less than control groups (p<0.01). MTT assays showed that Id-1-siRNA-Lentivirus-treated tumor cells grew significantly more slowly than others (p<0.01) frome the 5th day after RNAi. Inhibition efficiency in test group was around 40%-50%. No significant difference was detected in cells treated with NC-siRNA-Lentivirus compared with untreated cells.
     Conclusion:
     1. ACCM cells can be infected 2 times successively by retrovirus. The insertion of retroviral genome into ACCM's had no influence on the physiological behavior in our study. ACCM-GFP cells displayed the same characteristics as ACCM cells in cell proliferation, invasion ability, Id-1 mRNA and protein expression.
     2. Our established GFP-expressing ACCM tumor model should be useful for the evaluation of novel treatment strategies for ACCs including neoadjuvant chemotherapy or gene therapy. It is also an important new tool to help us to understand the key events of cancer development and metastasis especially interaction of the metastatic tumor with a wide array of normal organs and tissues. It is one of the best tumor models of adenoid cystic carcinoma.
     3. Lentiviral vector shows high transfection efficiency, stable expression and reliable safety in this research.
     4. Specific Id-1-siRNA can downregulate significantly Id-1 gene expression in mRNA and protein level. It can also inhibit tumor development, cell proliferation and cell invasiveness as well. Cell apoptosis can be induced at the same time.
     5. Id-1 has a positive relationship with cell proliferation, invasiveness and so on in adenoid cystic carcinoma. It is an ideal target gene for adenoid cystic carcinoma treatment.
     6. Lentivirus-mediated RNAi presents advantage of stability, high efficiency and similar administration to clinic. This effective technique proves to be promising for genetic therapy of adenoid cystic carcinoma.
引文
1. Lee DA, Campbell RJ, Waller RR, Ilstrup DM. A clinicopathologic study of primary adenoid cystic carcinoma of the lacrimal gland. Ophthalmology 92(1):128-134,1985.
    2.顾玲,步荣发,袁晔,等.31例上颌窦腺样囊性癌临床分析[J].口腔医学研究,22(4)437-439,2006.
    3. Henderson JW. Orbital Tumors.2nd ed. New York:Decker; 414-418,1980.
    4. de Kerviler E, Bely N, Laccourreye O, Clement O, Halimi P, Frija G. The aryepiglottic fold as a rare location of adenoid cystic carcinoma. Am J Neuroradio 16(6):1375-1377,1995.
    5. Ellis GL, Auclair PL. Tumors of the salivary glands. Atlas of tumor pathology.3rd edition. Armed Forces Institute of Pathology, Bethesda(MD) 203-216,1996.
    6.王新军,周正炎,季振威.涎腺腺样囊性癌转移的研究进展.同济大学学报(医学版),24(3):246-248,2003.
    7. Fire A. Trends Genet 15(9):358-363,1999.
    8. Benezre R, Davis RL. Lockshon D, Turner DL, Weintraub H. The protein Id:a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1):49-59,1990.
    9. Maruyama H, Kleeff J, Wildi S, Friess H, Buchler MW, Israel MA, Korc M. Id-1 and Id-2 are overexpressed in pancreatic cancer and in dysplastic lesions in chronic pancreatitis. Am J Pathol 155(3):815-822,1999.
    10. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R. Id-1 and Id-3 are required for neurogenesis, angiogenesis and vascularisation of tumour xenografts. Nature 401(6754):670-677,1999.
    11. Schoppmann SF, Schindl M, Bayer 1, Aumayr K, Dienes J, Horvat R, Rudas M, Gnant M, Jakesz R, BirnerP. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 104(6):677-682, 2003.
    12. Nishimine M, Nakamura M, Mishima K, Kishi M, Kirita T, Suqimura M, Konishi N. Id proteins are overexpressed in human oral squmous cell carcinomas. J Oral Pathol Med 32(6):350-357,2003.
    13. Langlands K, Down GA, Kealey T. Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. Cancer Rse 60(21):5929-5933,2000.
    14. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-elix roteins in cell growth and differentiation. Trends Cell Biol 8(2):58-65,1998.
    15. Ruzinova MB, Schoer RA. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. J Allergy Cancer Cell 4(10):277-289,2003.
    16. Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY. A role for Id-1 in the aggressive phenotype and stero Id hormone response of human breast cancer cells. Cancer Res 60(5):1332-1340,2000.
    1.顾玲,步荣发,袁哗,等.31例上颌窦腺样囊性癌临床分析[J].口腔医学研究,22(4)437-439,2006.
    2. Huang MX, Ma DQ, Sun KH, Yu GY, Guo CB, Gao F. Factors influencing survival rate in adenoid cystic carcinoma of the salivary glands. I nt J Oral Maxillofac Surg 26(6):435-439,1997.
    3.马大权,俞光岩.腺样囊性癌诊断和治疗的探讨.中华口腔医学杂志,22:319-322,1987.
    4. Ellis GL, Auclair PL. Tumors of the salivary glands. Atlas of tumor pathology.3rd edition. Armed Forces Institute of Pathology, Betesda (MD),203-216,1996.
    5. Umeda M, Komatsubara H, Nishimatsu N, Oku N, Shibuya Y, Yokoo S, Komori T. Establishment and characterization of a human adenoid cystic carcinoma line of the salivary gland which is serially transplantable and spontaneously metastasizes to the lung in nude mice. Oral Oncol 38(1):30-34,2002.
    6. Hashitani S, Noguchi K, Manno Y, Moridera K, Takaoka K, Nishimura N, Kishimoto H, Sakrai K, Urade M. Changes of histological and biological features by serial passages in a human adenoid cystic carcinoma line transplantable in nude mice. Oncol Rep 13(4):607-612,2005.
    7. Komatsubara H, Umeda M, Oku N, Komori T. Establishment of in vivo metastasis model of human adenoid cystic carcinoma:detection of metastasis by PCR with human P-Globin gene. Kobe J Med Sci 48(5):145-152,2002.
    8. Hashitani S, Urade M, Zushi Y, Segawa E, Okui S, Sakurai K. Establishment of nude mouse transplantable model of a human adenoid cystic carcinoma of the oral floor showing metastasis to the lymph node and lung. Oncol Rep 17(1):67-72, 2007.
    9. Chalfic M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science 263(5148):802-805,1994.
    10. Naylor LH. Report gene technology:the future looks bright. Biochem Pharmacol 58(5):749-757,1999.
    11.萨姆布鲁克,拉塞尔.分子克隆实验指南[M].第3版.北京:科学出版社,27-99,2002.
    12. Langley RR, Fidler IJ. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28(3):297,2007.
    13. Myers JN, Holsinger FC, Jasser SA, Bekele BN, Fidler IJ. An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clinical Cancer Res 8(1):293-298,2002.
    14. Shah, JP, Candela FC, Poddar AK. The patterns of cervical lymph node metastases from squamous carcinoma of the oral cavity. Cancer (Phila.) 66(1):109-113,1990.
    15. Byers RM, Weber RS, Andrews T, McGill D, Kare R, Wolf P. Frequency and therapeutic implications of "skip metastases" in the neck from squamous carcinoma of the oral tongue. Head Neck 19(1):14-19,1997.
    16. Yuen AP, Wei WI, Wong YM, Tang KC. Elective neck dissection versus observation in the treatment of early oral tongue carcinoma. Head Neck 19(7):583-588,1997.
    17. Byers RM, El-Naggar AK, Lee YY, Rao B, Fornage B, Terry NH, Sample D, Hankins P, Smith TL, Wolf PI. Can we detect or predict the presence of occult nodal metastases in patients with squamous carcinoma of the oral tongue? Head Neck 20(2):138-144,1998.
    18. Beenken SW, Krontiras H, Maddox WA, Peters GE, Soong S, Urist MM. T1 and T2 squamous cell carcinoma of the oral tongue:prognostic factors and the role of elective lymph node dissection. Head Neck 21(2):124-130,1999.
    19. Johnson JT, Barnes EL, Myers EN, Schramm VL, Borochovitz D, Sigler BA. The extracapsular spread of tumors in cervical node metastasis. Arch Otolaryngol 107(12):725-729,1981.
    20. Decroix Y and Ghossein NA. Experience of the Curie Institute in treatment of cancer of the mobile tongue:Ⅱ. Management of the neck nodes. Cancer (Phila.) 47(3):503-508,1981.
    21. Lu SL, Herington H, Wang XJ. Mouse models for human head and neck squamous cell carcinomas. Head Neck 28(10):945-54,2006.
    22. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. Understanding, improving and using green fluorescent protein. Trends Biochem Sci 20(11):448-455,1995.
    23. Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acan Sci USA 91(26):12501-12504,1994.
    24. Cheng LZ, Fu J, Tsukamoto A, Hawley RG Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14(5):606-609,1996.
    25. Misteli T, Spector DL. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechno 15(10):961-964,1997.
    26.伍志坚,吴小兵,曹晖,牛东滨,王宏,侯云德.表达绿色荧光蛋白的重组腺病毒伴随病毒的产生.中华实验和临床病毒学杂志15:300-301,2001.
    27. Le LP, Everts M, Dmitriev IP. Davydova JG, Yamamoto M, Curiel DT. Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 3(2):105-116,2004.
    28. Magness ST, Jijon H, Van Houten Fisher N, Sharpless NE, Brenner DA, Jobin C. In vivo pattern of lipopolysaccharide and anti-CD3-induced NF-kappa B activation using a novel gene-targeted enhanced GFP reporter gene mouse. J Immunol 173(3):1561-1570,2004.
    29. Chambers AF, Macdonald IC, Schmidt EE, Koop S, Morris VL, Khokha R, Groom AC. Steps in tumor metastasis:new concepts from intravital videomicro-scopy. Cancer Metastasis Rev 14(4):279-301,1995.
    30. Bouvet M, Wang J, Nardin SR, Nassirpour R, Yang M, Baranov E, Jiang P, Moossa AR, Hoffman RM. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62(5):1534-1540,2002.
    31. Yang M, Baranov E, Wang JW, Jiang P, Wang X, Sun FX, Bouvet M, Moossa AR, Penman S, Hoffman RM. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99(6):3824-3829,2002.
    32. Tanigawa N, Lu C, Mitsui T, Miura S. Quantitation of sinusoid-like vessel in hepatocellular carcinoma:its clinical and prognostic significance. Hepatology 26(5):1216-1223,1997.
    33. Anna M, Edgrado M, Simonova M, Weissleder R, Bogdanov A Jr. Novel gliosarcoma cell line expressing green fluorescent protein:a model for quantitative assessment of angiogenesis. Microvascular Res 56(3):145-153,1998.
    34. Yang M, Baranov E, Li XM, Wang JW, Jiang P, Li L, Moossa AR, Penman S, Hoffman RM. Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 98(5):2616-2621,2001.
    35. Varghese H, Davidson MTM, MacDonald IC, Wilson SM, Nadkami KV, Groom AC, Chambers AF. Activated ras regulates the proliferation/apoptosis balance and early survival of developing micrometastases. Cancer 62(3):887-891,2002.
    36.何荣根,张晓珊,周晓健.Acc-2和Acc-3细胞系的建立及其形态学观察.[J].华西口腔医学杂志,6(1):1-5,1988.
    37.关晓峰,邱蔚六,何荣根,林国础,周晓健.肺高转移性涎腺腺样囊性癌细胞株的筛选[J].中华口腔医学杂志,31(2):74-77,1996.
    38.唐镇生.分子外科与基因治疗.上海医科大学出版社.1999.
    39. Isomura H, Tsurumi T, Stinsik MF. Role of the proximal enhancer of the major immediate-early promoter in human cytomegalovirus replication. J Virol 78(23):12788-12799,2004.
    40. Pantelouris EM. Absence of thymus in a mouse mutant. Nature 217(5126):370-371,1968.
    41.黄敏娴,马大权,孙开华, 俞光岩,郭传滨,高峰.涎腺腺样囊性癌预后因素的探讨.[J].中华口腔医学杂志,35(6):034-334,2000.
    42. Farina KL, Wyckoff JB, Rivera J, Lee H, Segall JE, Condeelis JS, Jones JG. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res 58(2):2528-2532,1998.
    43. Chishima T, Miyagi Y, Wang X, Tan Y, Shimada H, Moossa A, Hoffman RM. Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res 17(4A):2377-2384,1997.
    44. Yang M, Li L, Jiang P, Moossa AR, Penman S, Hoffman RM. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100(24):14259-14262,2003.
    45. Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 100(17):9958-9961,2003.
    46. Anderson FW. Human gene therapy. Nature 392(6697Suppl):25-30,1998.
    47. Qi J, Link CJ, Wang S. Direct obsevation of GFP gene expression transduced with HSV-1/EBV amplicon vector in unfixed tumor tissue. Biotechniques 28(2):206-208,2000.
    48. Folkman J. Tumor angiogenesis and tissue factor. Nat Med 2(2):167-168,1996.
    49. Rak JW, St Croix BD, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer drugs 6(1):3-18,1995.
    50. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, AI-Tuwaijri M, Chrishima T, Shimada H, Moossa AR, Penman S, Hoffman RM. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97(3):1206-1211,2000.
    51. Alfano RR, Demos SQ Galland P, Gayen SK, Guo, Ho PP, Liang X, Liu F, Wang L, Wang QZ, Wang WB. Time-resolved and nonlinear optical imaging for medical applications. Ann NY Acad Sci 838:14-28,1998.
    1. Lee DA, Campbell RJ, Waller RR, Ilstrup DM. A clinicopathologic study of primary adenoid cystic carcinoma of the lacrimal gland. Ophthalmology 92(1):128-134,1985.
    2.顾玲,步荣发,袁晔,等.31例上颌窦腺样囊性癌临床分析[J].口腔医学研究,22(4)437-439,2006.
    3. Henderson JW. Orbital Tumors.2nd ed. New York:Decker; 414-418,1980.
    4. de Kerviler E, Bely N, Laccourreye O, Clement O, Halimi P, Frija G. The aryepiglottic fold as a rare location of adenoid cystic carcinoma. Am J Neuroradio 16(6):1375-1377,1995.
    5. Ellis GL, Auclair PL. Tumors of the salivary glands. Atlas of tumor pathology. 3rd edition. Armed Forces Institute of Pathology, Bethesda(MD) 203-216,1996.
    6.王新军,周正炎,季振威.涎腺腺样囊性癌转移的研究进展.同济大学学报(医学版),24(3):246-248,2003.
    7.何荣根,张晓珊,周晓健等.涎腺腺样囊性癌Acc-2和Ace-3细胞系的建立及其形态学观察.华西口腔医学杂志,6(1):1-4,1988.
    8.关晓峰、邱蔚六、何荣根、林国础、周晓健.肺高转移性涎腺腺样囊性癌细胞株的筛选.中华口腔医学杂志31(2):47-77,1996.
    9. Klosek SK, Nakashiro K, Hara S, Shintani S, Hasegawa H, Hamakawa H. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Bioc Biop Res Comm 336(2):408-416,2005.
    10. Huang D, Chen W, He R, Yu F, Zhang Z, Qiu W. Different cDNA microarray patterns of gene expression reflecting changes during metastatic progression in adenoid cystic carcinoma. World J Sur Oncol 1(1):28-34,2003.
    11. Benezre R, Davis RL. Lockshon D, Turner DL, Weintraub H. The protein Id:a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1):49-59,1990.
    12. Schindl M, Oberhuber G, Obermair A, Schoppmann SF, Karner B, Birner P. Overexpression of Id-1 protein as a marker for unfavorable prognosis in
    early-stage cervical cancer. Cancer Res 61(15):5703-5706,2001
    13. Liu P, Liu S, Qi H, Li Y, He H, Wei F. Effects of silencing Id-1 in cell culture of human adenoid cystic carcinoma. Oral Oncol 45(9):783-788,2009.
    14. Lee TK, Man K, Ling MT, Wang XH, Wong YC, Lo CM, Poon RT, Ng 10, Fan ST. Overexpression of Id-1 induces cell proliferation in hepatocellular carcinoma though inactivation of p16INK4a. RB pathway. Carcinogenesis 24(11):1729-1736,2003.
    15. Wang Q, Tsao SW, Fu S, Xue W, Meng X, Feng H, Wong YC, Wang X. Overexpression of Id-1 in gastric adenocarcinoma:implication for a novel diagnostic marker. Anticancer Res 24(2B):881-886,2004.
    16. Ouyang XS, Wang X, Lee DT, Tsao SW, Wong YC. Over expression of ID-1 in prostate cancer. J Urol 167(6):2598-2602,2002.
    17. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R. Id-1 and Id-3 are required for neurogenesis, angiogenesis and vascularisation of tumour xenografts. Nature 401(6754):670-677,1999.
    18. Ruzinova MB, Schoer RA. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. J Allergy Cancer Cell 4(10):277-289,2003.
    19. Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY. A role for Id-1 in the aggressive phenotype and stero Id hormone response of human breast cancer cells. Cancer Res 60(5):1332-1340,2000.
    20. Hannon GJ. RNA interference. Nature 418(6894):244-251,2002.
    21. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 431(7006):371-378,2004.
    22. Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE. Systemic siRNA-mediated gene silencing:a new approach to targeted therapy of cancer. Ann Surg 240(4):667-676,2004.
    23. Fordice J, Kershaw C, EI-Naggar A, Goepfert H. Adenoid cystic carcinoma of head and neck:predicts of morbidity and mortality. Arch Otolaryngnol Head Neck Surg 125 (2):149-152,1999.
    24. Huang M, Ma D, Sun K, Yu G, Guo C, Gao F. Factors influencing survival rate in adenoid cystic carcinoma of the salivary glands. Int J Oral Maxillofac Surg 26(6):435-439,1997.
    25. Masiero M, Nardo G, Indraccolo S, Favaro E. RNA interference:implications for cancer treatment. Mol Aspects Med 28(1):143-166,2007.
    26. Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J, Okayama H, Oda K. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem 269(3):2139-2145,1994.
    27. Yokota Y, Mori S. Role of Id family proteins in growth control. J Cell Physiol 190(1):21-28,2002.
    28. Alani RM, Young AZ, Shifflett CB. Id-1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci USA 98(14):7812-7816,2001.
    29. Shoji W, Yamamoto T, Obinata M. The helix-loop-helix protein Id inhibits differentiation of murine erythroleukemia cells. J Biol Chem 269(7):5078-5084,1994.
    30. Lister J, Forrester WC, Baron MH. Inhibition of an erythroid differentiation switch by the helix-loop-helix protein Idl. J Biol Chem 270(30):17939-17946,1995.
    31. Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program:in vivo association of Id with E2A proteins. Genes Dev 6(8):1466-1479,1992.
    32. Katagirl T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Idl, the gene for inhibition of myogenesis. Genes Cells 7(9):949-960,2002.
    33. Kebebew E, Peng M, Treseler PA, Clark OH, Duh QY, Ginzinger D, Miner R. Idl gene expression is up-regulated in hyperplastic and neoplastic thyroid
    tissue and regulates growth and differentiation in thyroid cancer cells. J Clin Endocrinol Metab 89(12):6105-6111,2004.
    34. Miyoshi K, Meyer B, Gruss P, Cui Y, Renou JP, Morgan FV, Smith GH, Reichenstein M, Shani M, Hennighausen, Robinson GW. Mammary epithelial cells are not able to undergo pregnance-dependent differentiation in the absence of the helix-loop-helix inhibitor Id2. Mol Endocrinol 16(12):2892-2901,2002.
    35. Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC. Id-1 expression promotes cell survival through activation of NF-kappaB signalling patway in prostate cancer cells. Oncogene 22(29):4498-4508,2003.
    36. Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA. The helix-loop-helix protein Id2 enhances cell proliferation and binds to the Retinoblastoma protein. Genes Dev 3(11):1270-1284,1994.
    37. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407(6804):592-598,2000.
    38. Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6(10):1915-1922,1991.
    39. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69(1):119-128,1992.
    40. Schoppmann SF, Schindl M, Bayer G, Aumayr K, Dienes J, Horvat R, Rudas M, Gnant M, Jakesz R, BirnerP. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 104(6):677-682,2003.
    41. Ouyang XS, Wang X, Ling MT, Wong HL, Tsao SW, Wong YC. Id-1 stimulates serum independent prostate cancer cell proliferation through inactivation of p16(INK4a)/pRB pathway. Carcinogenesis 23(5):721-725, 2002.
    42. Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY. A role of for Id-1 in the aggressive phenotype and stero Id hormone response of human breast cancer cells. Cancer Res 60(5):1332-1340,2000.
    43. Maruyama H, Kleeff J, Wildi S, Friess H, Buchler MW, Israel MA, Korc M. Id-1 and Id-2 are overexpressed in pancreatic cancer and in dysplastic lesions in chronic pancreatitis. Am J Pathol 155(3):815-822,1999.
    44. Nishimine M, Nakamura M, Mishima K, Kishi M, Kirita T, Suqimura M, Konishi N. Id proteins are overexpressed in human oral squmous cell carcinomas. J Oral Pathol Med 32(6):350-357,2003.
    45. Langlands K, Down GA, Kealey T. Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. Cancer Rse 60(21):5929-5933,2000.
    46. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-elix roteins in cell growth and differentiation. Trends Cell Biol 8(2):58-65,1998.
    47.龚仁国.Id-1和TSP-1在唾液腺腺样囊性癌中的表达及意义.四川大学口腔临床医学专业硕士论文.2007.
    48. Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kinqsman SM, Mazarakis ND. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 17(1):1-9,2005.
    49. Kordower JH, Emborq ME, Bloch J, Ma SY, Chu Y, Leventhal L, Mcbride J,Chen EY, Palfi S, Roitberq BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deqlon N, Aebischer P. Neurodegeneration prevented by Ientiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290(5492):767-773,2000.
    50. Martin-Rendon E, Azzouz M, Mazarakis ND. Lentiviral vectors for the treatment of neurodegenerative diseases. Curr Opin Mol Ther 3(5):476-481,2001.
    51.黄敏娴,马大权,孙开华, 俞光岩,郭传滨,高峰.涎腺腺样囊性癌预
    后因素的探讨.[J].中华口腔医学杂志,35(6):034-334,2000.
    52. Ding Y, Wang G, Ling MT, Wong YC, Li X, Na Y, Zhang X, Chua CW, Wang X, Xin D. Significance of Id-1 up-regulation and its association with EGFR in bladder cancer cell invasion. Int J Oncol 28(4):847-854,2006.
    53. Zhang X, Ling MT, Wang X, Wong YC. Inactivation of Id-1 in prostate cancer cells:A potential therapeutic target in inducing chemosensitization to taxol through activation of JNK pathway. Int J Cancer 118(8):2072-2081,2006.
    54. Bian XC, Liu YQ, Gu B, Feng HL. Effect of inhibitor of differentiation-1 on murine dendritic cell sarcoma cells. Zhonghua Bing Li Xue Za Zhi 37(5):316-322,2008.
    55. Zhang L, Procuik M, Fang T, Kung SK. Functional analysis of the quantitative expression of a costimulatory molecule on denderitic cells using lentiviral vetor-mediated RNA interference. J Immno Methods 344(2):87-97,2009.
    56. Robbins MA, Rossi JJ. Sensing the danger in RNA. Nat Med 11:250-251,2005.
    57. Inden MD, Torres FX, Kubus J, Zarbo RJ. Clinical application of morphologic and immunocytochemical assessment of cell pro-liferation. Am J Clin Pathol 97(Suppl1):4-13,1992.
    58.陈晓星,倪金良,郝波,张国新,施瑞华,王学浩.胰腺癌组织Survivin与Ki-67的表达及其意义.[J].世界华人消化杂志,13(22):2650-2653,2005.
    59. Cheuk W. Chan JK. Advances I salivary gland pathology. Histopatology 51(1):1-20,2007.
    60. J-N Zheng, D-S Pei, L-J Mao, Liu XY, Mei DD, Zhang BF, Shi Z, Wen RM, Sun XQ. Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther 16(1):20-32,2009.
    61. Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, Alani RM. Idl regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2(6):473-483,2002.
    62. Cheung HW, Ling MT, Tsao SW. Wong YC, Wang W. Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis 25(6):881-887,2004.
    1. Axelson H, Fredlund E, Ovenberger M, Landberg G, Pahlman S. Hypoxia-induced dedifferentiation of tumor cells-A mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16(4-5):555-563,2005.
    2. Du C, Li D, Lin Y, Wu M. Differentiation of human nasopharyngeal carcinoma xenografts and repression of telomerase activity induced by arsenic trioxide. Natl Med J India 17(2):67-70,2004.
    3. Hoehner JC, Prabhakaran K. Induced differentiation affords neuroblastoma cells protection from hyoxic injury. J Pediatr Surg 38(7):1069-1074,2003.
    4. Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96(7):3951-3956,1999.
    5. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id:a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1):49-59,1990.
    6. Littlewood TD, Evan GI. Transcription factors 2:helix-loop-helix. Protein Profile 2(6):621-702,1995.
    7. Massari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in eukaryotic organisms. Mol Cell Biol 20(2):429-440,2000.
    8. Ruzinova Mb, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol 13(8):410-418,2003.
    9. Norton JD. Id helix-loop-helix proteins in cell growth, differentiation and tumorgenesis. J Cell Sci 113(22):3897-3905,2000.
    10. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 8(2):58-65,1998.
    11. Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA. The helix-loop-helix protein Id2 enhances cell proliferation and binds to the Retinoblastoma protein. Genes Dev 8(11):1270-1284,1994.
    12. Lasorella A, Iavarone A, Israel MA. Id2 specifically alters regulation of the cell cycle by tumour suppressor proteins. Mol Cell Biol 16(6):2570-2578,1996.
    13. Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF-ETS domain transcription factors. EMBO J 18(4):968-976,1999.
    14. Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD. Id Helix-Loop-Helix Proteins Antagonize Pax Transcription Factor Activity by Inhibiting DNA Binding. Mol Cell Biol 21(2):524-533,2001.
    15. Moldes M, Boizard M, Liepvre XL, Feve B, Dugail I, Pairault J. Functional antagonism between inhibitor of DNA binding (Id) and adipocyte determination and differentiation factor1/sterol regulatory element-binding protein-lc (ADD1/SREBP-1c) trans-factors for the regulation of fatty acid synthase promoter in adipocytes. Biochem J 344(Pt 3):873-880,1999.
    16. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R. Idl and Id3 are required for neurogenesis, angiogenesis and vascularisation of tumour xenografts. Nature 401(6754):670-677, 1999.
    17. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor, Id2. Nature 397(6721):702-706,1999.
    18. Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, Alani RM. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2(6):473-483,2002.
    19. Cheung HW, Ling MT, Tsao SW, Wong YC, Wang W. Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasoparyngeal carcinoma cells. Carcinogenesis 25(6):881-887,2004.
    20. Wagsater D, Sirsjo A, Dimberg J. Down-regulation of ID2 by all-trans retinoic acid in monocytic leukemia cells (THP-1). J Exp Clin Cancer Res 22(3):471-475,2003.
    21. Parrinello S, Lin CQ, Murata K, Itahana Y, Singh J, Krtolica A, Campisi J,
    Desprez PY. Id-1, ITF-2, AND Id-2 comprise a network of Helix-Loop-Helix proteins that regulate mammary epithelial cell proliferation, differentiation, and apoptosis. J Biol Chem 276(42):39213-39219,2004.
    22. Lofstedt T, Jogi A, Sigvardsson M, Gradin K, Poellinger L, Pahlman S, Axelson H. Induction of ID2 expression by hypoxia-inducible factor-1:a role in dediffe-rentiation of hypoxic neuroblastoma cells. J Biol Chem 279(38):39223-39231,2004.
    23. Navarro M, Valentinis B, Belletti B, Romana G, Reiss K, Baserga R. Regulation of Id2 gene expression by the type 1 IGF receptor and the insulin receptor substrate-1. Endocrinology 142(12):5149-5157,2001
    24. Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J. Okayama H, Oda K. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem,269(3):2139-2145,1994.
    25. Alani RM, Young AZ, Shifflett CB. Id-1 regulation of cellular senescence through transcriptional repression of pl6ink4a Proc. Natl Acad Sci USA 98(14):7812-7816,2001.
    26. Yokota Y, Mori S. Role of Id family proteins in growth control. J Cell Physiol 190(1):21-28,2002.
    27. Shoji W, Yamamoto T, Obinata M. The helix-loop-helix protein Id inhibits differentiation of murine erytroleukemia cells. J Biol Chem 269(7):5078-5084,1994.
    28. Lister J, Forrester WC, Baron MH. Inhibition of an erythroid differentiation switch by the helix-loop-helix protein Idl. J Biol Chem 270(30):17939-17946,1995.
    29. Jen Y, Weintraub H, Benezra R. Overexpressio of Id protein inhibits the muscle differentiation program:in vivo association of Id with E2A proteins. Genes Dev 6(8):1466-1479,1992.
    30. Karagirl T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells 7(9):949-960,2002.
    31. Ling MT, Wang X, Tsao SW, Wong YC. Down-regulation of Id-1 expression is associated with TGF beta 1-induced growth arrest in prostate epithelial cells. Bilchim Biophys Acta 1570(3):145-152,2002.
    32. Kebebew E, Peng M, Treseler PA, Clark OH, Duh QY, Ginzinger D, Miner R. Idl gene expression is up-regulated in hyperplastic and neoplastic thyroid tissue and regulates growth and differentiation in thyroid cancer cells. J Clin Endocrinol Metab 89(12):6105-6111,2004.
    33. Miyoshi K, Meyer B, Gruss P, Cui Y, Renou JP, Morgan FV, Smith GH, Reichenstein M, Shani M, Hennighausen, Robinson GW. Mammary epithelial cells are not able to undergo pregnance-dependent differentiation in the absence of the helix-loop-helix inhibitor Id2. Mol Endocrinol 16(12):2892-2901,2002.
    34. Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC. Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene 22(29):4498-4508,2003.
    35. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407(6804):592-598,2000.
    36. Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6(10):1915-1922,1991.
    37. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69(1):119-128,1992.
    38. Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL, Israel MA. Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol 18(9):5435-5444,1998.
    39. Ouyang XS, Wang X, Lee DT, Tsao SW, Wong YC. Overexpression of Id-1 in prostate cancer. J Urol 167(6):2598-2605,2002.
    40. Lee KT, Lee YW, Lee JK, Choi SH, Rhee JC, Paik SS, Kong G. Overexpression of Id-1 is significantly associated with tumor angiogenesis in human pancreas cancers. Br J Cancer 90(6):1198-1203,2004.
    41. Lee TK, Man K, Ling MT, Tsao SW, Wang X, Wong YC, Cheung AL. Overe-xpression of Id-1 induces cell proliferation in hepatocellular carcinoma through inactivation of p14IHK4a.RB pathway. Carcinogenesis 24(11):1729-1736,2003.
    42. Wang Q, Tsao SW, Fu S, Xue W, Meng X, Feng H, Wong YC, Wang X. Over-expression of Id-1 in gastric adeno-carcinoma:implication for a novel diagostic marker. Anticancer Res 24(2B):881-886,2004.
    43. Schoppmann SF, Schindl M, Bayer G, Aumayr K, Dienes J, Horvat R, Rudas M, Gnant M, Jakesz R, Birner P. Overexpressio of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 104(6):677-682,2003.
    44. Ouyang XS, Wang X, Ling MT, Wong HL, Tsao SW, Wong YC. Id-1 stimulates serum independent prostate cancer cell proliferation through inactivation of p16(INK4a)/pRB pathway. Carcinogenesis 23(5):721-725,2002.
    45. Ruzinova MB, Schoer RA. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. J Allergy Cancer Cell 4(10):277-289,2003.
    46. Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY. A role of for Id-1 in the aggressive phenotype and stero Id hormone response of human breast cancer cells. Cancer Res 60(5):1332-1340,2000.
    47. Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, Richards PC, Bennington JL, Lee NM, Debs RJ, Desprez PY. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci USA 100(23):13543-13548,2003.
    48. Ling MT, Lau TC, Zhou C, Chua CW, Kwok WK, Wang Q, Wang X, Wong YC. Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis 26(10):1668-1676,2005.
    49. Tsuchiya T, Okaji Y, Tsuno NH, Sakurai D, Tsuchiya N, Kawai K, Yazawa K, Asakage M, Yamada J, Yoneyama S, Kitayama J, Osada T, Watanabe T, Tokunaga K, Takahashi K, Nagawa H. Targeting Id-1 and Id-3 inhibits peritoneal metastasis of gastric cancer. Cancer Science 96(11):784-790,2005.
    50. Schindl M, Schoppmann SF, Strobel T, Heinzl H, Leisser C, Horvat R, Birner P. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin Cancer Res 9(2):779-785,2003.
    51. Nishimine M, Nakamura M, Mishima K, Kishi M, Kirita T, Sugimura M, Konishi N. Id proteins are overexpressed in human oral squamous cell carcinomas J Oral Pathol Med 32(6):350-357,2003.
    52. Langlands K, Down GA, Kealey T. Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. Cancer Res 60(21):5929-5933,2000.
    53. Maruyama H, Kleeff J, Wildi S, Friess H, Buchler MW, Israel MA, Korc M. Id-1 and Id-2 are overexpressed in pancreatic cancer and in dysplastic lesions in chronic pancreatitis. Am J Pathol 155(3):815-822,1999.
    54.龚仁国.Id-1和TSP-1在唾液腺腺样囊性癌中的表达及意义.四川大学口腔临床医学专业硕士论文.2007.
    55. Liu P, Liu S, Qi H, Li Y, He H, Wei F. Effects of silencing Id-1 in cell culture of human adenoid cystic carcinoma. Oral Oncol 45(9):783-788,2009.
    56. Strait KA, Dabbas B, Hammond EH, Warnick CT, Iistrup SJ, Ford CD. Cell cycle blockade and differentiation of ovarian cancer cells by the histone deacetylase inhibitor trichostatin A are associated with changes in p21, Rb, and Id proteins. Mol Cancer Ther 1(13):1181-1190,2002.
    1. Hotte SJ, Winquist EW, Lamont E, MacKenzie M, Vokes E, Chen EX, Brown S, Pond GF, Murgo A, Siu LL. Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit:a Princess Margaret Hospital phase II consortium study. J Cline Oncol 2005:23(3):585-590.
    2. Chummun S, McLean NR, Kelly CG, Dawes PJ, Meikle D, Fellows S, Soames JV. Adenoid cystic carcinoma of the head and neck. Br J Plast Surg 2001:54(6): 476-480.
    3. Sessions RB, Harrison LB, Forastiere A. Principles and practice of oncology.2nd ed. Philadelphia (PA):Lippincott-Raven Publishers; 2000.
    4. Khafif A, Anavi Y, Aviv J, Fienmesser R, Calderon S, Marshak G Adenoid cystic carcinoma of the salivary glands:a 20-year review with long term follow-up. Ear Nose Throat J 2005:84(10):662,664-667.
    5. Spiro RH, Huvos AG, Strong EW. Adenoid cystic carcinoma of salivary origin. A clinicopathologic study of 242 cases. Am J Surg 1974:128(4):512-520.
    6. da Cruz Perez DE, de Abreu Alves F, Nobuko Nishimoto I, de Almeida OP, Kowalski LP. Prognostic factors in head and neck adenoid cystic carcinoma. Oral Oncol 2006:42(2):139-146.
    7. Andersen LJ, Therkildsen MH, Ockelmann HH, Bentzen JD, Schiodt T, Hansen HS. Malignant epithelial tumor in the minor salivary glands, the submandibular gland, and the sublingual gland. Prognosis factors and treatment results. Cancer 1991:68(11):2431-2437.
    8. Guan X, Qiu W, He R. The selection of highly lung metastatic salivary adenoid cystic carcinoma clone. Zhonghua Kou Qiang Yi Xue Za Zhi 1996:31 (2):74-77.
    9. Nong XL, Wang DZ, Meng M, Zhou N, Meng N, Li JQ, Zhang H. Combing of TNP-470 and 5-Fu in inhibition of adenoid cystic carcinoma in nude mice model. Hua Xi Kou Qiang Yi Xue Za Zhi 2004:22(4):267-270.
    10. Guan XF, Yang JL, Zhu NS, Wang YM, Li RW, Zheng ZX. Gene expression differences between high and low metastatic cells of adenoid cystic carcinoma. Zhonghua Kou Qiang Yi Xue Za Zhi 2004:39(2):118-121.
    11. Sun JY, Guo W, An Q, Yuan J, Zhao FK. Analysis of differentially expressed lung metastasis-associated proteins in adenoid cystic carcinoma cell lines. Zhonghua Kou Qiang Yi Xue Za Zhi 2004:39(2):114-117.
    12. Zhu N, Yang J, Wang Y, Guan X. Study of the difference of high and low metastasis cell line's gene expression map and metastasis-related genes of adenoid cystic carcinoma. Exp Mol Med 2003:35(4):243-248.
    13. Harish K, Gouri MS. Adenoid cystic carcinoma of the parotid metastasizing to liver:Case report. BMC Cancer 2004:4(1):41.
    14. Lee WJ, Kapadia SB, Stack BC. Sinonasal adenoid cystic carcinoma with widespread symtomatic bony metastasis. Ear Nose Throat J 2004:83(4):271-273.
    15. Doganay L, Bilgi S, Aygit C, Altaner S. Primary cutaneous adenoid cystic carcinoma with lung and lymph node metastases. J Eur Acad Dermatol Venereol 2004;18(3):383-385.
    16. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997:276(5321):2037-2039.
    17. Taubes, G Play of light opens a new window into the body. Science 1997:276 (5321):1991-1993.
    18. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001:219(2):316-333.
    19. Weissleder R. Scaling down imaging:Molecular mapping of cancer in mice. Nat Rev Cancer 2002:2(1):11-18.
    20. Tanaka M, Gee JR, De la Cerda J, Rosser CJ, Zhou JH, Benedict WF, Grossman HB. Noninvasive detection of bladder cancer in an orthotopic murine model with green fluorescence protein cytology. J Urol 2003:170(3):975-978.
    21.Caceres G, Zhu XY, Jiao JA, Zankina R, Aller A, Andreotti P. Imaging of luciferase and GFP-transfected human tumours in nude mice. Luminescence 2003:18(4):218-223.
    22. Budinger TF, Benaron DA, Koretsky AP. Imaging transgenic animals. Annu Rev Biomed Eng 1999:01:611-648.
    23. Flotte TR, Beck SE, Chesnut K, Potter M, Poirier A, Zolotukhin S. A fluorescence video-endoscopy technique for detection of gene transfer and expression. Gene Ther 1998:5(2):166-173.
    24. Fu XY, Besterman JM, Monosov A, Hoffman RM. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci, USA 1991:88(20):9345-9349.
    25. Sun FX, Sasson AR, Jiang P, An Z, Gamagami R, Li L, Moossa AR, Hoffman RM. An ultra-metastatic model of human colon cancer in nude mice. Clin Exp Metastasis 1999:17(1):41-48.
    26. Duan XJ, Yang L, Zhou Y, Tang KL, Wang DW. Influence of fluorescent protein expression on the proliferation of NIH3T3 cells in vitro. Zhonghua Shao Shang Za Zhi 2005:21(5):374-377.
    27. Duan XJ, Yang L, Zhou Y, Xin Y, Li Q. Application of enhanced green fluorescent protein labeling technology to monitoring marrow mesenchymal stem cells migration after bone fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2006:20(2):102-106.
    28. Hashitani S, Noguchi K, Manno Y, Mooridera K, Takaoka K, Nishimura N, Kishimoto H, Sakurai K, Urade M. Changes of histological and biological features by serial passages in a human adenoid cystic carcinoma line transplantable in nude mice. Oncol Rep 2005:13(4):607-612.
    29. De Velasco MA, Tanaka M, Anai S, Tomioka A, Nishio K, Uemura H. GFP image analysis in the mouse orthotopic bladder cancer model. Oncology Reports 2008:20(3):543-547.
    30. Gunther JH, Frambach M, Deinert I Brandau S, Jocham D, Bohle A. Effects of acetylic salicylic acid and pentoxifylline on the efficacy of intravesical BCG therapy in orthotopic murine bladder cancer (MB49). J Urol 1999:161(5): 1702-1706.
    31. Wu Q, Esuvaranathan K, Mahendran R. Monitoring the response of orthotopic bladder tumors to granulocyte macrophage colony-stimulating factor therapy using the prostate-specific antigen gene as a reporter. Clin Cancer Res 2004:10 (20):6977-6984.
    32. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, Ivanova a, Ageyeva L, Tourkova V, Balatoni J, Bornmann W, Blasberg R, Gelovani Tjuvajev J. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 2004:31(5):740-751.
    33. Yanagihara K, Takigahira M, Takeshita F, Komatsu T, Nishio K, Hasegawa F, Ochiya T. A photon counting technique for quantitatively evaluating progression of peritoneal tumor dissemination. Cancer Res 2006:66(15):7532-7539.
    34. BaumRP, Brummendorf TH. Radioimmunolocalization of primary and metastatic breast cancer. Q J Nucl Med 1998:42(1):33-42.
    35. Teates CD, Parekh JS. New radiopharmaceuticals and new applications in medicine. Curr Probl Diagn Radiol 1993:22(6):229-266.
    36. Dessureault S. Pre-operative assessment of axillary lymph node status in patients with breast adenocarcinoma using intravenous 99mtechnetium mAb-170H.82 (Tru-Scint AD). Breast Cancer Res Treat 1997:45(1):29-37.
    37. Pasqualini R, Koivunen E, Ruoslahti R. Alpha v intergrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997:15(6):542-546.
    38. Neri D, Carnelmolla B, Nissim A, Leprini A, Querze G, Balza E, Pini A, Tarli L, Halin C, Neri P, Zardi L, Winter G. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 1997:15(12):1271-1275.
    39. Chambers AF, MacDonald IC, Schmidt EE, Koop S, Morris VL, Khokha R, Groom AC. Steps in tumor metastasis:new concepts from intravital videomicroscopy. Cancer Metastasis Rev 1995:14(4):279-301.
    40. Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao YA, Negrin RS, Contag CH. Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 1999:96(21):12044-12049.
    41. Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Jr. Nat Biotechnol
    1999:17(4):375-378.
    42. Morin JG, Hastins JW. Energy transfer in a bioluminescent system. J Cell Physiol 1971:77(3):313-318.
    43. Ward WW, Cody CW, Hart RC, Cormier MJ. Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem Photobiol 1980:3(2):611-615.
    44. Haseloff J, Siemering KR, Prasher DC, Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 1997:94(6): 2122-2127.
    45. Siemering KR, Golbik R, Sever R, Haseloff J. Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 1996:6(12):1653-1663.
    46. Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluoescent protein (GFP). Gene 1996:173(1 Spec No):33-38.
    47. Bremer C, Tung CH, Weisslder R. In vivo molecular target assessment of matrix metalloproteinase inibition. Nature Med 2001:7(6):743-748.
    1. Fordice J, Kershaw C, El-Naggar A, et al. Adenoid cystic carcinoma of the head and neck. Predictors of morbidity and mortality. Arch Otolaryngol Head Neck Surg 1999:125:149-152.
    2. Umeda M, Nishimastsu N, Masago H, et al. Tumor-doubling time and onset of pulmonary netastasis from adenoid cystic carcinoma of the salivary gland. Oral Surg Oral Med Oral Pathol 1999:88:473-478.
    3. de Kerviler E, Bely N, Laccourreye O, et al. The aryepiglottic fold as a rare location of adenoid cystic carcinoma. Am J Neuroradio 1995:116:1375-1377.
    4. Dan H, Wangtao C, Ronggen H, et al. Different cDNA microarray patterns of gene expression reflecting changes during metastatic progression in adenoid cystic carcinoma. World J Sur One 2003:1:28-34.
    5. Klosek SK, Nakashiro K, Hara S, et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun 2005:336:408-416.
    6. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat.Rev.Cancer.2005:5:603-614.
    7. Duxbury MS, Matros E, Ito H, et al. Systemic siRNA-mediated gene silencing:a new approach to targeted therapy of cancer. Ann Surg 2004:240:667-676.
    8. Han S, Gou C, Hong L, et al. Expression and significances of Idl helix-loop-helix protein overexpression in gastric cancer. Cancer Lett 2004:216:63-71.
    9. Schoppmann SF, Schindl M, Bayer G, et al. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 2003:104:677-682.
    10. Ouyang XS, Wang X, Lee DT, et al. Overexpression of ID-1 in prostate cancer. J Urol 2002:167:2598-2602.
    11. Schindl M, Schoppmann SF, Strobel T, et al. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin Cancer Res
    2003:9:779-785.
    12. Tsuchiya T, Okaji Y, Tsuno NH, et al. Targeting Id1 and Id3 inhibits peritoneal metastasis of gastric cancer. Cancer Sci 2005:96:784-790.
    13. Pei L, Shaohua L, Hongshun Q, et al. Effects of silencing Id-1 in cell culture of human adenoid cystic carcinoma. Oral Oncol 2009:45:783-788.
    14. Xie W, Li X, Guoxin R, et al. Expression and importance of inhibitor of DNA binding helix-loop-helix protein in salivary adenoid cystic carcinoma. Br J Oral Maxillofac Surg 2009:9:doi:10.1016/j.bjoms.2009.08.008
    15. Schindl M, Oberhuber G, Obermair A, et al. Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer. Cancer Res 2001:61:5703-5706.
    16. Li J, Jia H, Xie L, et al. Correlation of inhibitor of differentiation 1 expression to tumor progression, poor differentiation and aggressive behaviors in cervical carcinoma. Gynecol Oncol 2009:114:89-93.
    17. Coppe JP, Smith AP, Desprez PY. Id proteins in epithelial cells. Exp.Cell Res 2003:285:131-145.
    18. Sikder HA, Devlin MK, Dunlap S, et al. Id proteins in cell growth and tumorigenesis. Cancer Cell 2003:3:525-530.
    19. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998:391:806-811.
    20. Hshitani S, Urade M, Zushi Y, et al. Establishment of nude mouse transplantable model of a human adenoid cystic carcinoma of the oral floor showing metastasis to the lymph node and lung. Oncol Rep 2007:17:67-72.
    21. Li J, Piao YF, Jiang Z, et al. Silencing of signal transducer and activator of transcription 3 expression by RNA interference suppresses growth of human hepatocellular carcinoma in tumor-bearing nude mice. World J Gastroenterol 2009:21:2602-2608.
    22. Singh A, Boldin-Adamsky S, Thimmulappa RK, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008:68:7975-7984.
    23. Wang QZ, Xu W, Habib N, et al. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 2009:9:572-594.
    24. Selkirk SM. Gene therapy in clinical medicine. Postgrad Med J 2004:80:560-570.
    25. Duan XJ, Yang L, Zhou Y, et al. Influence of fluorescent protein expression on the proliferation of NIH3T3 cells in vitro. Zhonghua Shao Shang Za Zhi 2005:21: 374-377.
    26. Duan XJ, Yang L, Zhou Y, et al. Application of enhanced green fluorescent protein labeling technology to monitoring marrow mesenchymal stem cells migration after bone fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2006:20: 102-106.
    27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 2001:25:402-408.
    28. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998:279:377-380.
    29. Kumar A. RNA interference:a multifaceted innate antiviral defense. Retro-virology 2008:5:17.
    30. Nishimine M, Nakamura M, Mishima K, et al. Id proteins are overexpressed in human oral squamous cell carcinomas. J Oral Pathol Med 2003:32:350-357.
    31. Darby S, Cross SS, Brown NJ, et al. BMP-6 over-expression in prostate cancer is associated with increased Id-1 protein and a more invasive phenotype. J Pathol 2008:214:394-404.
    32. McAllister SD, Christian RT, Horowitz MP, et al. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol Cancer Ther 2007:6: 2921-2927.
    33. Zhang L, Procuik M, Fang T, et al. Functional analysis of the quantitative expression of a costimulatory molecule on dendritic cells using lentiviral vector-mediated RNA interference. J Immno Methods 2009:344:87-97.
    34. Robbins MA, Rossi JJ. Sensing the danger in RNA. Nat Med 2005:11:250-251.
    35. J-N Zheng, D-S Pei, L-J Mao, et al. Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther 2009:16:20-32.
    36. Cheuk W, Chan JK. Advances in salivary gland pathology. Histopathology 2007:51:1-20.
    37. Prabhu S, Ignatova A, Park ST, et al. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol 1996:17: 5888-5896.
    38. Sellers WR, Fisher DE. Apoptosis and cancer drug targeting. J Clin Invest 1999:104:1655-1661.
    39. Ouyang XS, Wang X, Ling MT, et al. Id-1 stimulates serum independent prostate cancer cell proliferation through inactivation of p16(INK4a)/pRB pathway. Carcinogenesis 2002:23:721-725.
    40. Lee TK, Man K, Ling MT, et al. Over-expression of Id-1 induces cell proliferatio in hepatocellular carcinoma through inactivation of p16(INK4a)/pRB pathway. Carcinogenesis 2003:24:1729-1736.
    41. Ling MT, Wang X, Ouyang XS, et al. Activatio of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene 2002:21:8498-8505.
    42. Ling MT, Wang X, Ouyang XS, et al. Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene 2003:22:4498-4508.
    43. Lyden D, Young AZ, Zagzag D, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999:401:670-677.
    44. Ling MT, Lau TC, Zhou C, et al. Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis 2005:26:1668-1676.
    45. Maruya SI, Myers JN, Weber RS, et al. ICAM-5(telencephalin) gene expression in head and neck squamous carcinoma tumorigenesis and perineural invasion. Oral Oncol 2005:41:580-588.
    46. Li B, Cheung PY, Wang X, et al. Id-1 activation of P13K/Akt/NFkapaB signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis 2007:28:2313-2320.
    47. Bader AG, Kang S, Zhao L, et al. Oncogenic P13K deregulates transcription and translation. Nat Rev Cancer 2005:5:921-929.
    48. Martin K, Trouche D, Haqemeier C, et al. Stimulation of E2F1/DP1 trans-criptional activity by MDM2 oncoprotein. Nature 1995:375:691-694.
    49. Zhang X, Ling MT, Wang X, et al. Inactivation of Id-1 in prostate cancer cells:a potential theraeutic target i inducing chemosensitization to Taxol through activation of JNK pathway. Int J Cancer 2006:118:2072-2081.
    50. Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer:from innocent bystander to major culprit. Nat Rev Cancer 2002:2:301-310.
    51. Wang Y, Yuan F. Delivery of viral vectors to tumor cells:extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 2006:34:114-127.
    52. Pan D, Gunther R, Duan W, et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 2002:6:19-29.
    53. Wong YC, Wang X, Ling MT. Id-1 expressio and cell survival. Apotosis 2004:9:279-89.
    54. Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006:441:111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700