5-脂氧合酶抑制剂对黑色素瘤细胞a375转移的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑色素瘤是起源于皮肤色素细胞的一种恶性肿瘤,易发生转移,目前尚无特异有效药物治疗其扩散性病变。流行病学研究表明,饮食中多不饱和脂肪酸含量与黑色素瘤的发生密切相关。花生四烯酸是多不饱和脂肪酸的主要成分,其脂氧合酶代谢产物在黑色素瘤的转移过程中起重要作用。本研究通过考察5-脂氧合酶抑制剂对黑色素瘤细胞a375转移过程中相关因素的影响,阐明5-脂氧合酶抑制剂影响黑色素瘤转移的作用机制,为研制开发抗黑色素瘤转移药物提供思路。
     实验采用光密度法测定黑色素瘤细胞a375与细胞外基质蛋白的粘附率:以流式细胞仪测定a375细胞表面整合素的表达;以酶联免疫吸附法、流式细胞仪、蛋白质印迹分析测定a375细胞ICAM-1的表达,以Northern blot测定a375细胞ICAM-1的mRNA的表达水平;以双抗体夹心法检测a375细胞NF-κB的活化水平。
     以滤膜涂布Matrigel基质的Transwell Chamber测定a375细胞的侵袭能力;以明胶酶谱法测定a375细胞分泌MMP-2和MMP-9的酶活性;以蛋白质印迹分析测定a375细胞产生MMP-2、MMP-9和TIMP-1的蛋白量;以Northern blot测定a375细胞中MMP-2、MMP-9和TIMP-1的mRNA表达水平。
     实验结果表明:作为对照的环氧合酶抑制剂吲哚美辛作用后,对黑色素瘤细胞a375与细胞外基质的粘附率没有影响。在5-20μM浓度范围内,非选择性脂氧合酶抑制剂NDGA、5-脂氧合酶抑制剂AA861和5-脂氧合酶激动蛋白抑制剂MK886剂量依赖性地抑制a375细胞对Ⅳ型胶原的粘附,对细胞粘附至纤维粘连蛋白及层粘连蛋白没有影响。抑制剂对a375细胞粘附的抑制作用能被5-脂氧合酶代谢产物5-HETE所逆转,白三烯类对a375细胞粘附性改变无明显作用。
     作用浓度为20μM时,NDGA、AA861及MK886能明显抑制细胞内[Ca~(2+)]升高导致的a375细胞对Ⅳ型胶原粘附率的增加,对a375细胞PKC活化导致对Ⅳ型胶原粘附增加只有部分抑制作用。
     相同浓度的NDGA、AA861及MK886作用后,明显降低a375细胞表面的整合素β_1表达,对细胞整合素α_(Ⅱb)β_3的表达基本没有影响。
     吲哚美辛对a375细胞ICAM-1表达没有明显影响,在5~20μM浓度范围内,NDGA、AA861及MK886剂量依赖性地降低a375细胞ICAM-1蛋白表达量及mRNA
    
    表达水平。NDGA、AA861及MK886作用后,剂量依赖性地抑制a375细胞NF a
    B活化。
     叼噪美辛对a375细胞侵袭重组基底膜能力没有明显影响,NDGA、AA861 和
    MK886剂量依赖性地抑制a375细胞对Matytael膜的侵袭。这种抑制作用能被5-HETE
    逆转,白三烯类对0乃细胞的侵袭性改变没有明显影响。
     作用浓度为20 p M时,NDGA、AA861及MK886显著抑制a375细胞产生MMP-2
    和 MMP-9蛋白量及其InRNA表达水平,对a375细胞产生 TIMPI的蛋白量及mRNA
    表达水平没有明显影响。
     这些结果表明,5.脂氧合酶代谢产物的其中一种,5-HETE,在黑色素瘤转移过
    程中起重要的作用。证实5-脂氧合酶抑制剂通过抑制a375细胞核转录因子活化,在
    基因转录水平抑制a3 75细胞粘附分子的表达,进而抑制a375细胞对细胞外基质的
    粘附。5-脂氧合酶抑制剂通过抑制 a375细胞产生、分泌IV型胶原酶,降低 a375细
    胞对重组基底膜的侵袭性。
     本研究结果提示5.脂氧合酶抑制剂作为可能的抗黑色素瘤转移药物,值得深入
    研究。
Melanoma is a kind of malignant tumor originating from pigment cells of skin and
    prone to metastasis. So far no specific drug has been aPplied to control the diffused
    pathological process. Epidemiological studies show that the content of polyunsaturated
    fatty acids in diet were closely associated with incidence of malignant melanoma.
    Arachidonic acid is the main ingredients of polyunsaturated fatty acids and its
    lipoxygenase metabolites play a key role in the metastasis process of melanoma cancer
    cells. We conducted experiments trying to stlldy the effects and mechanism of 5-
    lipoxygenase inhibitors on metastasis of human melanoma cell a375 and to obtain the
    clue of 5-lipoxygenase inhibitor as poteniial anti-metastatic agents for melanoma.
    Adhesion of a375 cell to extracellular matrix was determined by optical density
    assay. The expression of integrins on cancer cell surface was determined by fiow
    cytometry ELlSA, flow cytometry and Western blot was used to detect the production of
    lCAM-l in a375 cell. Northern blot was used to measure the expressing level of ICAM-1
    mRNA in a375 cell. The 1evels of NF- K B in a375 cell was measured by sandwich
    ELISA.
    Invasiveness of a375 cells was assayed by using Transwell chamber wth filter
    membrane coated with Matrigel. The secretion of active matrix metalloproteinases
    (MMP-2 and MMP-9) was measured by gelatin zymogram. Western blot was used to
    detect the production of MMP-2, MMP-9 and tissues inhibitors of metalloproteinase
    (TIMP-l) and the expressing leveI of MMP-2, MMP-9 and TIMP-l mKNA was
    measured by Northern blot.
    The results showed that in control grouP treated with indomethacin, a
    cyclooxygenase inhibitors, adhesion of a375 cells to extracellular matrix was not altered.
    In the range from 5~20 ll M, lipoxygenase inhibitors nordihydroguaiaretic acid (NDGA),
    5-lipoxygenase inhibitors AA861 and specific 5-lipoxygenase-activating-prote inhibitor
    MK886 could all inhibit adhesion of a375 cell to collagen IVin a dose-dependent manner
    and had no effect on adhesion to fibronectin or vitronectin. 5-lipoxygenase metabolites
    (5-HETE) reversed the adhesion behavior of inhibitor-treat cancer cell and leukotrienes
    
    
    had no effect.
    Pretreated with 20 ll M of NDGA, AA861 and MK886 remarkably inhibited the
    A23l87-induced enhancement of a375 cell adhesion to collagen IV respectively and
    only partly inhibited the TPA-induced enhancement.
    A375 cells tfeated with NDGA, AA861 and MK886 in the same concentfation
    exhibited reduction of the expression of integrin 6 l on the surface of melanoma cell, but
    not of integrin Q lIb fl 3'
    Indomechacin had no effect on the production of ICAM-l protein in a375 cell.
    NDGA, AA861 and MK886 could reduce the production of ICAM-l protein and its
    mRNA of a375 cell and suPpress NF- K B activation in a dose-dependeni manner in the
    range from 5~20 ll M.
    No significant inhibition of invasiveness to recombinant basement membrane was
    seen when a375 ceIls were treated with indomethacin. In the range from 5~20ll M
    NDGA, AA861 and MK886 significantly inhibited invasiveness of a375 cell through
    Matrigel membrane. 5-HETE could reverse this inhibitory effect and leukotrienes had no
    effect.
    NDGA, AA86l and MK886 could significantly inhibit production of MMP-2 and
    MMP-9 proteins as well as their mRNA expression level. The inhibition of 5-
    lipoxygenase activity with the shese inhibitors had no significant effect on production of
    TIMP-l protein and mRNA level in a375 ceII.
    These results suggest that one of the 5-lipoxygenase metabolites, 5-HETE, plays an
    important role in the metastatic progress of melanoma. 5-lipoxygenase inhibitors can
    inhibit the process by suPpressing the expression of adhesion molecule through inhibiting
    the nuclear factor activation of a375 cell so as to inhibit a375 cell adhesion to
    extracel1u1ar matrix and by suPPressing the production of MMP-2 and MMP-9 in a375
    cell so as to decrease the invasiveness to through recombinant basement membrane.
    That
引文
1.高进主编.肿瘤学基础与研究方法.北京:人民卫生出版社,1999.301-359
    2. Rouslahti E. Control of cell motility and tumor invasion by extracellular matrix interactions. Br. J. Cancer, 1992, 66:239-247
    3. Akiyama SK, Nagata, K, Yamada, KM. Cell surface receptors for extracellular matrix components. Biochem Biophys Acta., 1990, 1031:91-110
    4. Lance A, Patricla S, William G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 1991, 64(2):327-336
    5. Honn KV, Tang DG. Adhesion molecules and tumor-cell interaction with endothelium and sub-endothelium matrix. Cancer Metastasis Rev., 1992, 11:353-361
    6. Lester BR, McCarthy JB. Tumor cell adhesion to the extracellular matrix and signal transduction mechanisms implicated in tumor cell motility, invasion and metastasis. Cancer Metastasis Rev., 1992,11:31-44
    7. Tonn JC, Wunderlich S, KerKau S, et al. Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns. Anticancer Res., 1998, 18(4A):2599-2605
    8. Goldbrunner RH, Haugland HK, Klein CE, et al. ECM dependent and integrin mediated tumor cell migration of human glimo and melanoma cell lines under serum free condition. Anticancer Res., 1996, 16(6B):3679-3687
    9. Miele ME, Bennett CF, Miller BE, et al. Enhance metastatic ability of TNF-α-Treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 antisense oligonucleotides. Exp. Cell Res., 1994, 214:231-241
    10. Huang YW, James AR, Ellen SV. AntiCD54 (ICAM-1) has antitumor activity in SCID mice with human. Cancer Res., 1995, 55(3):610-616
    11. Chen WT. Membrane proteinases: roles in tissue remodeling and tumor invasion. Curr. Opin. Cell Biol., 1992, 4(2):802-809
    12. Mauch C, Krieg T, Bauer EA, et al. Role of the extracellular matrix in the degration of connective tissue. Arch. Dermatol Res., 1994, 287(3): 107-114
    
    
    13. McClay E, McClay M. Systemic chemotherapy for the treatment of metastatic melanoma. Semin Oncol., 1996, 23(6):744-753
    14. Serraino D, Fratino L, Gianni W, et al. Epidemiological aspects of cutaneous malignant melanoma. Oncol Rep., 1998, 5(4):905-909
    15. Wu SJ, Lambert DR. Melanoma in children and adolescents. Pediatr. Dermatol, 1997, 14(2):87-92
    16. Veierod MB, Thelle DS, Laake P. Diet and risk of cutaneous malignant melanoma: a prospective study of 50,757 Norwegian men and women. Int. J. Cancer, 1997, 71(4):600-604
    17. Mackie BS, Mackie LE, Curtin LD, et al. Melanoma and dietary lipids. Nutr. Cancer, 1987, 9(4):219-226
    18. Rice RL, Tang DG, Haddad M, et al. 12(S)-hydroxyeicosatetraenoic acid increases the actin microfilament content in B16a melanoma cells: a protein kinasedependent process. Int. J. Cancer, 1998, 77(2):271-278
    19. Onoda JM, Kantak SS, Piechocki MP, et al. Inhibition of radiation-enhanced expression of integrin and metastatic potential in B16 melanoma cells by a lipoxygenase inhibitor. Radiat Res., 1994, 140(3):410-418
    20. Silletti S, Timar J, Honn KV, et al. Autocrine motility factor induces differential 12-lipoxygenase expression and activity in high- and low-metastatic K1735 melanoma cell variants. Cancer Res., 1994, 54(22):5752-5756
    21. Timar J, Silletti S, Bazaz R, et al. Regulation of melanoma-cell motility by the lipoxygenase metabolite 12-(S)-HETE. Int. J. Cancer, 1993, 55(6): 1003-1010
    22. Honn KV, Timar J, Rozhin J, et al. A lipoxygenase metabolite, 12-(S)-HETE, stimulates protein kinase C-mediated release of cathepsin B from malignant cells. Exp. Cell Res., 1994, 214(1):120-130
    23. Liu B, Marnett LJ, Chaudhary A, et al. Biosynthesis of 12-(S)-hydroxyeicosatetraenoic acid by B16 amelanotic melanoma cells is a determinant of their metastatic potential. Lab. Invest, 1994, 70(3):314-323
    24. Chen YQ, Duniec ZM, Liu B, et al. Endogenous 12-(S)-HETE production by tumor cells and its role in metastasis. Cancer Res., 1994, 54(6): 1574-1579
    
    
    25. Tang DG, Diglio CA, Honn KV. Activation of microvascular endothelium by eicosanoid 12(S)-hydroxyeicosatetraenoic acid leads to enhanced tumor cell adhesion via up-regulation of surface expression of alpha v beta 3 integrin: a posttranscriptional, protein kinase C- and cytoskeleton-dependent process. Cancer Res., 1994, 54(4):1119-1129
    26. Timar J, Chen YQ, Liu B, et al. The lipoxygenase metabolite 12(S)-HETE promotes alpha Ⅱb beta 3 integrin-mediated tumor-cell spreading on fibronectin. Int. J. Cancer, 1992, 52(4):594-603
    27. Miele ME, Bennett CF, Miller BE, et al. Enhanced metastatic ability of TNF-alpha-treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp. Cell Res., 1994, 214(1):231-241
    28. Reuven R, George R. Martin. Identification of arachidonic acid pathways required for the invasive and metastatic activity of malignant tumor cells. Prostaglandins, 1996, 51:1-17
    29. Hamberg, M, Svensson, t, Wakabayashi, T, et al. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc. Natl. Acad. Sci. USA, 1974, 71:345-349
    30. Borgeat, P, Samuelsson, B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes, formation of a neutral dihydroxyeicosatetraenoic acid. J. Biol. Chem., 1979, 254:2643-2648
    31. Albrechtsen R, Wewer UM, Liotta LA. Basement membranes in human cancer. Pathol Annu., 1986, 21(2):251-276
    32. Chambers AF, Matrisian LM. Changing view of the role of matrix metalloproteinase in metastasis. J Natl Cancer Inst., 1997, 89:1260-70
    33.袁发焕.细胞外基质、基质金属蛋白酶及其抑制因子的研究进展.国外医学临床生物化学与检验学分册,2000,21(2):62-65
    34. Liotta LA. Tumor invasion and metastasis-role of the extracellular matrix. Cancer Res., 1986, 46(1 ):1-7
    35. Albelda SM. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest, 1993, 69:4-17
    
    
    36. Juliano RL, Vamer JA. Adhesion molecules in cancer: the role of integrins. Curr. Opin. Cell Biol., 1993, 5(5):812-818
    37. Liotta LA. Biochemical mechanisms of tumor invasion and metastases. Clin. Physiol Biochem., 1987, 5(3-4):190-199
    38. Hart IR, Saini A. Biology of tumor metastasis. Lancet, 1992, 339(13):1453-1457
    39. Remi P, John DR, Wayne CG, et al. Regulation of the adhesion of a human breast carcinoma cell line to type Ⅳ collagen and vitronectin: role for lipoxygenase and protein kinase C. Cancer Res., 1996, 56:2206-2212
    40.田臻,张伟国.粘附机制与口腔粘膜鳞状细胞癌侵袭和转移关系的研究进展.口腔额面外科杂志,2001,11(1):53-56
    41. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J., 1990, 4(11): 2868-2880
    42.魏泓.整合蛋白与肿瘤转移.癌症,1996,15(5):392-394
    43.周晓红.整合素研究进展 国外医学生理病理科学与临床分册,1995,12(2):84-86
    44. Schwartz MA. Signaling by integrins: implications for tumorgensis. Cancer Res., 1993, 53:1503-1506
    45. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck, 1998, 20(8):745-752
    46. Vink J, Thomas L, Etoh T, et al. Role of beta-1 integrins in the organ specific adhesion of melanoma cells in vitro. Lab Invest, 1993, 68(2): 192-203
    47. Schadendorf D, Gawlik C, Haney U, et al. Tumor progression and metastatic behaviour in vivo correlate with integrin expression on melanocytic tumors. J. Patho, 1993, 170:429-434
    48. Tang DG, Onoda JM, Steinert BW, et al. Phenotypic properties of cultured tumor cells: integrin αⅡb β3 expression, tumor-cell-induced platelet aggregation, and tumor-cell adhesion to endothelium as important parameters of experimental metastasis. Int. J. Cancer, 1993, 54:338-347
    
    
    49. Chopra H, Timar J, Chen YQ, et al The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin alpha Ⅱb beta 3 on melanoma cells. Int. J. Cancer, 1991, 49(5):774-786
    50. Grossi IM, Fitzgerald LA, Umbarger LA, et al. Bidirectional control of membrane expression and/or activation of the tumor cell IRGpⅡb/Ⅲa receptor and tumor cell adhesion by lipoxygenase products of arachidonic acid and linoleic acid. Cancer Res., 1989, 49:1029-1037
    51. Hynes RO, Lander AD. Contact and adhesive specificites in the associations, migration and targeting of cells and axons. Cell, 1992, 68(2):303-322
    52. Staunton DE, Marlin SD, Stratowa C, et al. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell, 1988, 52:925-933
    53. Nigam Ak, Savage FJ, Boulos BB, et al. Loss of cell-cell and -matrix adhesion molecules in colorectal cancer. Br. J. Cancer, 1993,68(3):507-514
    54. Simone F, Frank S, Dirk R, et al. Phorbol ester-induced shedding of intercellular adhesion molecule-1 on erythroleukemic K562 cells. Biochim. Biophys. Acta., 1996, 1312:255-261
    55. Araki T, Miki C, Kusunoki M. Biological implications of circulating soluble intercellular adhesion molecule-1 in colorectal cancer patients. Scand J. Gastroenterol, 2001, 36(4):399-404
    56. Sunami T, Yashiro M, Chung KH. ICAM-1 gene transfection inhibits lymph node metastasis by human gastric cancer cells. JPN. J Cancer Res., 2000, 91(9):925-933
    57.孙婧瑾,周信达,刘银坤,等.肝癌组织中细胞间粘着分子-1的表达与肝癌侵袭转移关系的研究.中国癌症杂志,1997,7(3):161-164
    58.曲增强,吴孟超,谢天培,等.Ⅰ型细胞间粘附分子在肝细胞癌中的表达及其意义.中华病理学杂志,1997,26(2):82-84
    59. Anastassiou G, Schilling H, Stang A, et al. Expression of the cell adhesion molecules ICAM-1, VCAM-1 and NCAM in uveal melanoma: a clinicopathological study. Oncology, 2000, 58(1):83-88
    60. Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev., 1999, 18(3):345-357
    
    
    61. Morandini R, Boeynaems JM, Hedley SJ, et al. Modulation of ICAM-1 expression by alpha-MSH in human melanoma cells and melanocytes. J. Cell Physiol. 1998, 175(3):276-282.
    62. Natali P, Nicotra MR, Carvaliere R, et al. Differential expression of intercellular adhesion molecule-1 in primary and metastatic melanoma lesions. Cancer Res., 1990, 50:1271-1278
    63. Tozawa K, Sakurada S, Kohri K. Effects of anti-nuclear factor κ B reagents in blocking adhesion of human cancer cell to vascular endothelial cells. Cancer Res., 1995, 55:4162-4167
    64. Karmann K, Wang M, Fanslow WC, et al. Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor and interleukin-1. J. Exp. Med., 1996, 184:173-182
    65. Finco TS, Baldwin AS. Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity, 1995,3(3):263-272
    66. Baldwin AS. The NF-κ B and Iκ B protein: new discoveries and insights. Annu. Rev. Immunol, 1996, 14:649-681
    67. Sherri L, Katherine AF, Graham CN, et al. Inhibition of 5-lipoxygense blocks IL-1 β-induced vascular adhesion molecule-1 gene expression in human endothelial cells. J. Immun., 1997, 158:3401-3407
    68. Brad HR, Jennifer AD, Laura CT, et al. Activation of nuclear factor-κ B correlate with MCP-1 expression by human mesangial cells. Kidney Int., 1995, 48:1263-1271
    69. Gou FK, Li YL, Wu SG. Antisense IRAK-2 oligonuleotide blocks IL-1-stimilated NF-κ B activation and ICAM-1 expression in cultured endothelial cells. Inflammation, 1999,23(6):535-543
    70. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interations with the extracelluar matrix during invasion and metastasis. Annu. Rev Cell Biol., 1993, 9:541-573
    71. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev., 1993,73:161-195
    
    
    72. Reuven R, Erik WT, Yukihide I, et al. Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase Ⅳ on the invasion of basement membranes by metastatic cells. Cancer Res., 1988,48:3307-3312
    73. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res., 1987, 47:3239-3245
    74. Fadwa AA, Patricia MF, Ashani TW, et al. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res., 2000, 60:4629-4637
    75. Aznavoorian S, Stetler-Stevenson WG, Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer, 1993,71 (4): 1368-1383.
    76. Stetler-Stevenson WG, Liotta LA, Kleiner DE, et al. Role of matrix metalloproteinase in tumor invasion and metastasis. FASEB J., 1993, 7:1434-1441
    77. Davis B, Miles DW, Happerfield LC, et al. Activity of type Ⅳ collagenase in benign and malignant breast disease. Br. J. Cancer, 1993, 67:1126-1131
    78.卜文,汤钊猷,叶胜龙,等.Ⅳ型胶原酶与肝细胞癌侵袭转移性的关系.中华消化杂志,1999,19(1):13-15
    79.李红梅,方伟岗,郑杰,等.不同转移潜能的人肿瘤细胞系金属蛋白酶活性分析.中华病理学杂志.1998,27(5):341-343
    80. Celentano DC, Frishman WH. Matrix metalloproteinases and coronary artery disease: a novel therapeutic target. J. Clin. Pharmacol, 1997, 37(11):991-1000
    81. Edwards DR, Beaudry PP, Laing TD, et al. The roles of tissue inhibitors of metalloproteinases in tissue remodelling and cell growth. Int. J. Obes. Relat. Metab. Disord., 1996, 20(3):9-15
    82.曾仲.基质金属蛋白酶组织抑制物的生物学功能.国外医学分子生物学分册,2000,22(2):84-87
    83. Conway JG, Trexler SJ, Wakefiels JA, et al. Effect of matrix metalloproteinase inhibitors on tumor growth and spontaneous metastasis. Clin. Exp. Metastasis, 1996, 14:115-124
    84. Yeow KM, Phillips BW, Beaudry PP, et al. Expression of MMPs and TIMPs in mammalian cells. Methods Mol Biol., 2001, 151:181-189
    
    
    85.史宏男,何荣根,周晓健.金属蛋白酶及其组织抑制剂在涎腺腺样囊性癌细胞株表达的分子生物学研究.中华口腔医学杂志,1997,32(6):323-325
    86.丁挺波,杨渝珍,韩玲,等.基质金属蛋白酶活性测定的改良底物胶电泳法.同济医科大学学报,2000,29(1):43-48
    87.卜文,黄晓武,汤钊猷.基质金属蛋白酶-2与肝细胞癌侵袭转移性的关系.中华医学杂志,1997,77(9):661-663
    88. David WA, Janica M, Bernard HD. Lipoxygenase inhibitors block PDGF-induced mitogenesis: a MARK-independent mechanism that blocks fos and egr. Am J. Physiol., 1995,268(37):604-610
    89. Musser JH, Kreft AF. 5-lipoxygenase: properties, pharmacology, and the quinolinyl (bridged)aryl class of inhibitors. J. Med. Chem., 1992, 35(14):2501-2524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700