钴铬合金基牙科遮色瓷粉的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用水热法制备的白榴石前驱体与基础熔块合成了含超细白榴石增强型牙科陶瓷材料,对合成过程中白榴石的析晶机理进行了研究。利用X射线衍射仪(XRD)、高温X射线衍射仪(HXRD)、差热仪(DSC-TG)和扫描电子显微镜(SEM)等分析了白榴石前驱体在基础熔块中的析晶温度和相变过程以及白榴石在烤瓷材料中的显微结构。探讨了向牙科烤瓷材料中添加MoO_3和TiO_2粉体对烤瓷-钴铬合金体系高温润湿性、界面反应以及结合性能的影响。采用乳浊剂SnO_2和CeO_2提高烤瓷对钴铬合金基底的遮色性能。对遮色瓷进行了计算机配色研究,建立了遮色瓷配色数据库。
     将30wt%的水热法制备的白榴石前驱体与70wt%的高温熔融法制备的基础熔块混合均匀后在750℃制备了含超细白榴石增强型牙科陶瓷材料。基础熔块中存在大量的碱金属和碱土金属氧化物,能够使陶瓷材料在较低温度下得到液相,产生离子空位,增加系统的化学能,XRD结果表明白榴石的析晶温度由1027℃下降到了720℃。白榴石晶体在720℃左右开始析出立方相白榴石,在冷却到室温的过程中立方相白榴石相变为四方相白榴石。从700℃到900℃,与基础熔块混合的白榴石前驱体有一个析晶和分解的平衡状态,当温度达到750℃后白榴石晶体的含量基本保持不变,保证了烤瓷材料性能的稳定。利用这种材料配制的牙科烤瓷材料热处理920℃后,烤瓷材料的表面和断面都观测到了平均粒径为115nm的白榴石晶体,并且这些白榴石晶体均匀的分散在烤瓷基体中,明显提高了烤瓷材料的强度和韧性。
     利用高纯的白榴石与基础熔块建立了定量XRD分析的标准曲线,测定了用低温法制备的含超细白榴石晶体的牙科陶瓷材料中白榴石的含量,大致在30-34wt%之间。
     利用高温可视炉、扫描电镜以及拉曼光谱研究了烤瓷与钴铬合金的高温润湿性与界面结合机理,发现添加MoO_3和TiO_2粉体到瓷粉中有助于提高金瓷高温润湿性,且得到了配方:2wt%MoO_3,3wt%TiO_2,1wt%SnO_2和94wt%基体瓷粉。添加的TiO_2在高温下可以降低熔融烤瓷的粘度和表面张力,而添加物MoO_3可以促进烤瓷和钴铬合金间的界面反应,因此添加MoO_3和TiO_2的烤瓷材料具有更好的高温润湿性,并且在热处理过程中均形成了含有新物相的过渡层,过渡层的主要成分为铬的氧化物,烤瓷中的成分会向过渡层扩散并发生化学反应。有上述添加物的烤瓷/Co-Cr合金体系中的过渡层比没有添加物的烤瓷/Co-Cr合金体系更宽。试样进行金瓷三点抗弯测试的断裂面都处于金瓷过渡层靠近陶瓷面的部分,断裂后的合金面有陶瓷嵌入,这种断裂方式表明金瓷两相的结合性较好。添加MoO_3和TiO_2的烤瓷/Co-Cr合金体系和未添加的烤瓷/Co-Cr合金体系的三点抗弯强度分别为43±2和38±3MPa,都远高于烤瓷材料国际标准ISO9693中规定的合格强度25MPa。
     添加一定量的乳浊剂(SnO_2和CeO_2)可以提高烤瓷对钴铬合金的遮色能力,当添加量为:5wt%SnO_2,3wt%CeO_2时,遮色瓷在烤瓷厚度为0.2±0.02mm时就能达到对钴铬合金的完全遮色。
     制备了钒锆黄、锆镨黄、铝锌红和锆钒蓝四种色料的遮色瓷单色色种,建立了配色数据库。并以VitaA2,A3色料为标准进行计算机配色,在多次配色实验,修正后得到了两组配方,与Vita标准色之间的色差分别为1.17和1.12,均小于人眼所能觉察的色差值。
In this research, a superfine leucite-reinforced dental material was prepared byhydrothermally-derived leucite precursor and basic frit. The leucite crystallizationmechanism and phase transition process were investigated. The effect of basic frit onthe crystallization temperature and phase transition process during the leucitecrystallization, as well as the microstructure of leucite crystal in dental porcelain wereanalyzed by X-ray diffractometer (XRD), High-temperature X-ray diffractometer(HXRD), DSC-TG analysis and Scanning Electron Microscopy (SEM). To understandthe wetting and spreading behaviors, the interfacial reactions, and the bondingmechanism of porcelain fused on metal with TiO_2and MoO_3added to the dentalporcelain. The effect of dental porcelain added with SnO_2and CeO_2on color maskingability was investigated. Computer color matching of opaque porcelain was studied,and the opaque porcelain color database was established.
     A superfine leucite-reinforced dental material was prepared by heat-treating themixture of30wt%hydrothermally-derived leucite precursor and70wt%basic frit at750℃. The alkali and alkaline earth mental oxides in the basic frit can form liquidphases earlier, create cation vacancies, increase the chemical potential of the system,and thus effectively lower the crystallization temperature of leucite from1027℃to720℃. The cubic leucite was crystallization at720℃and the cubic leucite wouldtransform to tetragonal leucite in the cooling process. There exists a temperature rangefrom700℃to900℃in which leucite crystals are in the equilibrium of forming anddecomposition, when the temperature reached750℃, the content of leucite wasunchanged. The leucite average size in the dental porcelain prepared by the mixture oflow temperature frit and the material is about115nm, and the superfine leuciteparticles are homogeneously distributed in the matrix, which would improve thestrength and toughness of dental materials.
     In order to determine the leucite content in the dental material, quantitative XRDanalysis was used. The calibration curve was established by mixing various weight fraction of pure leucite into the basic frit. The leucite content in the dental material isabout30-34wt%.
     The high temperature wettability and bonding mechanism of porcelain to Co-Cralloy were investigated by TOMMI optical dimension measurement system, SEM andRaman spectra. The addition of TiO_2and MoO_3in the dental porcelain improved thewettability of the dental porcelain/Co-Cr alloy system, and obtained the formulationwas2wt%MoO_3,3wt%TiO_2,1wt%SnO_2and94wt%porcelain. The addition ofTiO_2can lower the high temperature viscosity of the dental porcelain and theexistence of MoO_3may promote the reaction between dental porcelain and the Co-Cralloy. The high temperature wetting of porcelain to Co-Cr alloy was reactive wetting,an intermediate layer with a new phase was formed, the main component of theintermediate layer was the oxide of chromium, and there existed diffusion andchemical reactions from porcelain to the intermediate layer. The intermediate layer ofthe porcelain added with TiO_2and MoO_3/Co-Cr alloy system is wider than theporcelain without TiO_2and MoO_3/Co-Cr alloy system. The bond strength of theporcelain modified with TiO_2and MoO_3was43±2MPa and that of the unmodifiedporcelain was38±3MPa. The bond strength of two samples is much higher than ISOstandard9693(the acceptable bond strength of metal ceramic restorations is25MPa).The fracture occurred near the porcelain layer, and part of the porcelain wasembedded into the matrix of the Co-Cr alloy.
     The addition of SnO_2and CeO_2in dental porcelain can raise the color maskingability, when the adding amount was5wt%SnO_2,3wt%CeO_2, the opaque porcelain(thickness of opaque was0.2±0.02mm) can mask cobalt-chromium alloycompletely.
     The monochrome color samples of vanadium-zirconium yellow,zirconium-praseodymium yellow, chromium-aluminium-zincum red andzirconium-vanadium blue were prepared, and the opaque porcelain color database wasestablished. Computer color matching experiments of the opaque porcelain were performed accoding to the database. The chromatic aberration of opaque porcelainsprepared by this work and Vita A2、A3were1.17and1.12, respectively, which wereless than what the human eye can distinguish.
引文
[1] Leinfelder KF. Porcelain esthetics for the21st century [J]. J Am Dent Assoc.2000,131(1):47S.
    [2] Naylor W.P., Kessler JC, King AH. Introduction to metal ceramic technology [M].Quintessence Publishing Company.1992,10[28].
    [3] Kelly J., Nishimura I, Campbell S. Ceramics in dentistry: historical roots andcurrent perspectives [J]. J Prosthet Dent.1996,75(1):18-32.
    [4] Hacker C. H., Wagner W. C., Razzoog M. E. An in vitro investigation of the wearof enamel on porcelain and gold in saliva [J]. J Prosthet Dent.1996,75(1):14-7.
    [5] Al-Hiyasat A, Saunders W, Sharkey S, et al. Investigation of human enamel wearagainst four dental ceramics and gold [J]. J Dent.1998,26(5-6):487-95.
    [6] Tanaka A. Metal-porcelain dental restoration and method of making [P]. US Patent4392829.1986.
    [7] Schulmeyer H. G. Procedure for firing dental porcelain on metal [P]. US Patent4498865.1985.
    [8] Vander Z., Joseph M. Dental procelain, a method of producing a dental restoration,a dental alloy [P]. US Patent5453290.1995.
    [9]汪大林,刘玲.牙科陶瓷材料应用研究现状[J].国外医学:生物医学工程分册.1997,20(2):97-101.
    [10] Kononen M., Kivilahti J. Testing of metal-ceramic joint using scanning acousticmicroscopy [J]. Dent Mater,1991,7(3):211-4.
    [11]李世普,陈晓明.生物医用陶瓷导论[M].武汉工业大学出版社.2000:1,72,52.
    [12]陈治清.口腔材料学[M].人民卫生出版社,1995.
    [13]陈治清.口腔材料学[M].人民卫生出版社,2003.
    [14] Baran G. The metallurgy of Ni-Cr alloys for fixed prosthodontics [J]. J ProsthetDent.1983,50(5):639-50.
    [15] Wang R., Fung K. Oxidation behavior of surface-modified titanium fortitanium-ceramic restorations [J]. J Prosthet Dent.1997,77(4):423-34.
    [16] Asaoka K., Tesk J. Transient and residual stress in a porcelain-metal strip [J]. JDent Res.1990,69(2):463.
    [17] Morris H., Stoffer W., Weir D., et al. Casting Alloys: the Materials and" theClinical Effects"[J]. Adv Dent Res.1992,628-31.
    [18] Zel J., Vrijhoef M. Carbon absorption of palladium-enriched ceramic alloys [J]. JOral Rehabil.1988,15(2):163-6.
    [19] Hondrum S. A review of the strength properties of dental ceramics [J]. J ProsthetDent.1992,67(6):859-65.
    [20] Munksgaard E. Toxicology versus allergy in restorative dentistry [J]. Adv DentRes.1992,6(1):17.
    [21] Bezzon O., DE Mattos M, Ribeiro R., et al. Effect of beryllium on the castabilityand resistance of ceramometal bonds in nickel-chromium alloys [J]. J Prosthet Dent.1998,80(5):570-4.
    [22] White S., Ho L., Caputo A., et al. Strength of porcelain fused to titanium beams*1[J] J Prosthet Dent.1996,75(6):640-8.
    [23] Jones D. W. Development of dental ceramics. An historical perspective [J]. DentClin North Am.1985,29(4):621.
    [24]谭建国,周永胜.牙科陶瓷材料[J].中国实用口腔科杂志.2009:2(07):395-397.
    [25]刘玲.牙科陶瓷学的历史根源和现状[J].国外医学生物医学工程分册.1996,19(5):290-92.
    [26] Haselton D., Diaz-Arnold A., Hillis S. Clinical assessment of high-strengthall-ceramic crowns [J]. J Prosthet Dent.2000,83(4):396-401.
    [27] Polz M. Method of applying opaque dental ceramic material to a metal structure[P]. US Patent4879136.1989.
    [28] Thiel N., Weber S. Dental ceramic restoration using a multi-layered structure [M].US Patent5591030.1997.
    [29] Anusavice K., Shen C., Lee R. Strengthening of feldspathic porcelain by ionexchange and tempering [J]. J Dent Res.1992,71(5):1134-8.
    [30] Fischer H., Maier H., Marx R. Improved reliability of leucite reinforced glass byion exchange [J]. Dent Mater.2000,16(2):120-8.
    [31] Fischer H., Marx R. Improvement of strength parameters of a leucite-reinforcedglass ceramic by dual-ion exchange [J]. J Dent Res.2001,80(1):336-9.
    [32] Burk B., Burnett A. P. Leucite-containing porcelains and method of making same[P]. US Patent4101330.1978.
    [33] Steidl J., Assmann S. Ceramic dental restoration [P]. US Patent6342302.2002.
    [34] Kacicz J. M., Fonviellw F. P. Leucite porcelain [P]. US Patent4604366.1985.
    [35] Brodkin D., Panzera C., Panzera P., et al. Low fusing dental porcelainscontaining fine-grained leucite [P]. US Patent6120591.2000.
    [36] Novotna M., atava V., Lezal D., et al. Preparation of leucite based materials [J].Solid State Phenom.2003,90-91:377-82.
    [37] Novotna M., Klouzkova A., Maixner J., et al. Preparation of leucite powders withcontrolled particle size distribution [J]. Ceram-Silikaty.2005,49(4):252-8.
    [38] Kohoutkova M., Klouzkova A., Maixner J., et al. Preparation andcharacterization of analcime powders by X-ray and SEM analyses [J]. Ceram-Silikaty.2007,51(1):9.
    [39] Zhang Y., Wu J. Q., Rao P. G., et al. Low temperature synthesis of high purityleucite [J]. Mater Lett.2006,60(23):2819-23.
    [40] Zhang Y., Qu C., Rao P., et al. Nanocrystalline seeding effect on thecrystallization of two leucite precursors [J]. J Am Ceram Soc.2007,90(8):2390-8.
    [41]何惠明,苗鸿雁.钛材专用烤瓷粉的理化性能研究[J].实用口腔医学杂志.1997,13(001):56-8.
    [42]何惠明,苗鸿雁.钛材专用烤瓷粉的微观结构研究[J].实用口腔医学杂志.1997,13(1):53-6.
    [43]何惠明,周忠慎.钛材专用烤瓷粉的研制[J].实用口腔医学杂志.1996,12(4):275-7.
    [44]何惠明,艾绳前,施长溪等.新型Ti—ceramic陶瓷与钛材的结合强度[J].第四军医大学学报.1997,18(2):152.
    [45]汪大林,艾绳前,徐君伍.钛及钛合金表面烤瓷的实验研究[J].中华口腔医学杂志.1995,30(4):201-3.
    [46]宋君祥.提高金属熔附烤瓷性能的研究[D];四川大学,2004.
    [47]宋君祥,冉均国,苏葆辉等.纳米等离子处理对提高牙科合金金瓷结合性的研究[J].四川大学学报:工程科学版.2004,36(5):74-7.
    [48] Brodkin D., Panzera C., Panzera P. Machinable leucite-containing porcelaincompositions and methods of manufacture [P]. US Patent6133174.2000.
    [49] Dimeglio L., Panzera C. Two phase dental porcelain composition [P]. EP Patent0795311A2.2000.
    [50]杨金萍,吴建青.金属基烤瓷牙冠残余应力产生的原因与控制方法[J].中国陶瓷工业.2003,10(1):35-7.
    [51] Wagner W., Asgar K., Bigelow W, et al. Effect of interfacial variables on metal-porcelain bonding [J]. J Biomed Mater Res.1993,27(4):531-7.
    [52]陈治清.口腔生物材料学[M].化学工业出版社现代生物技术与医药科技出版中心.2004.
    [53] Dehoff P. H., Anusavice K. J. Viscoelastic stress analysis of thermally compatibleand incompatible metal–ceramic systems [J]. Dent Mater.1998,14(4):237-45.
    [54] Lenz J., Kessel S. Thermal stresses in metal–ceramic specimens for the ISOcrack initiation test (three-point flexure bond test)[J]. Dent Mater.1998,14(4):277-80.
    [55] Fischer J., Baltzer N., Fleetwood P. Thermal creep analysis of noble metal alloysfor the ceramic‐fused‐to‐metal technique [J]. J Biomed Mater Res.1999,48(3):258-64.
    [56] Huang H., Lin M., Lee T., et al. Effect of chemical composition of Ni-Cr dentalcasting alloys on the bonding characterization between porcelain and metal [J]. J OralRehabil.2005,32(3):206-12.
    [57] Hegedus C., Kokenyesi V., Imre A., et al. Interface between Ni-Cr alloy andceramic studied by scanning electron microscopy][J]. Fogorvosi szemle.1999,92(4):121.
    [58] Hofstede T. M., Ercoli C., Graser G. N., et al. Influence of metal surface finishingon porcelain porosity and beam failure loads at the metal-ceramic interface [J]. The JProsthet Dent.2000,84(3):309-17.
    [59Graham J., Johnson A., Wildgoose D., et al. The effect of surface treatments onthe bond strength of a nonprecious alloy-ceramic interface [J]. Int J Prosthodont.1999,12(4):330.
    [60] Shell J. S., Nielsen J. P. Study of the bond between gold alloys and porcelain [J].J Dent Res.1962,41(6):1424-37.
    [61]邵规贤.搪瓷学[M].轻工业出版社.1983.
    [62]王海燕,程麟,凌志达.搪瓷瓷釉与金属之间的密着[J].玻璃与搪瓷.2007,35(5):33-5.
    [63] Joiner A. Tooth colour: a review of the literature [J]. J Dent.2004,32(1):3-12.
    [64] Mclaren K. Colour space, colour scales and colour difference [J]. Colour physicsfor industry Huddersfield: H Charlesworth&Co Ltd.1987,97-115.
    [65]薛朝华.颜色科学与计算机测色配色实用技术[M].化学工业出版社化学与应用化学出版中心.2004.
    [66]高承志.计算机选色技术在修复比色中的应用[J].口腔颌面修复学杂志.2001,2(4):243-5.
    [67]王成龙,刘洪臣,张文禹等.金属烤瓷修复体色度学研究[J].口腔颌面修复学杂志.2008,9(4):247-9.
    [68]全春天,郭丛丛,周晨等.青年人牙齿审美社会心理影响与正畸治疗需求的关系[J].中华口腔医学研究杂志(电子版).2011,5(3):51-4.
    [69]卞清,张明,徐云玲.晶体X射线衍射实验的数据分析模式[J].物理实验.2007,27(4):3-5.
    [70]左演声,工程材料,陈文哲等.材料现代分析方法[M].北京工业大学出版社.2000.
    [71]杨南如.无机非金属材料检测方法[M].武汉:武汉工业大学出版社.1990.
    [72]王培铭,许乾慰.材料研究方法[M].科学出版社.2005.
    [73]常铁军,刘喜军.材料近代分析测试方法[M].哈尔滨工业大学出版社.2005.
    [74]周永强,吴泽,孙国忠等.无机非金属材料专业实验[M].哈尔滨工业大学出版社.2002.
    [75]章莉娟,郑忠.胶体与界面化学[M].华南理工大学出版社.2006.
    [76]9693I. Metal-ceramic dental restorative systems.[S]. Geneva: InternationalOrganization for Standardization.1999.
    [77] Chantikul P., Anstis G., Lawn B. R., et al. A critical evaluation of indentationtechniques for measuring fracture toughness: II, strength method [J]. J Am Ceram Soc.2006,64(9):539-43.
    [78]大田登、刘中本[M].西安:西安交通大学出艇社.1997.
    [79]荆其诚.光学.色度学[M].科学出版社.1979.
    [80]汤顺青.色度学[M].北京理工大学出版社.1990.
    [81] Mrazova M., Klouzkova A. Leucite porcelain fused to metals for dentalrestoration [J]. Ceram Silik.2009,53(3):225-30.
    [82] Liebau F. Structural chemistry of silicates: structure, bonding, and classification[M]. Springer.1985.
    [83]刘康时.陶瓷工艺原理[M].华南理工大学出版社.1990.
    [84]蔡作乾、王琏.陶瓷材料辞典[M].化学工业出版社.2002.
    [85]张锐、许红亮、王海龙.玻璃工艺学[M].化学工业出版社,2008.
    [86]陆佩文.无机材料科学基础:硅酸盐物理化学[M].武汉理工大学出版社.2006.
    [87]田英良、孙诗兵.新编玻璃工艺学[M].中国轻工业出版社.2009.
    [88]享家驹.日用陶瓷工艺学[M].武汉:武汉工业大学出版社.1995.
    [89]干福熹、姜中宏、龚祖同.光学玻璃(上册)[M].北京:科学出版社.1982.
    [90] Mackert J. The effect of the leucite transformation on dental porcelain expansion[J]. Dent Mater.1986,2(1):32-6.
    [91] Cesar P., Yoshimura H., Miranda Junior W., et al. Correlation between fracturetoughness and leucite content in dental porcelains [J]. J Dent.2005,33(9):721-9.
    [92] Mclean J. Evolution of dental ceramics in the twentieth century [J]. J ProsthetDent.2001,85(1):61-6.
    [93] Mackert J. R., Twiggs S. W., Russell C. M., et al. Evidence of a critical leuciteparticle size of microcracking in dental porcelains [J]. J Dent Res.2001,80(6):1574-9.
    [94] Cattell M., Chadwickt, Knowles J., et al. The nucleation and crystallization offine grained leucite glass-ceramics for dental applications [J]. Dent Mater.2006,22(10):925.
    [95] Fischer H., Rentzsch W., Marx R. A modified size effect model for brittlenonmetallic materials [J]. Eng Fract Mech.2002,69(7):781-91.
    [96] Erbe E., Sapieszko R. Chemically derived leucite [P]. US Patent5622551.1997.
    [97] Kohoutkova M., Klouzkova A., Kostka P., et al. Synthesis and characterization ofan amorphous precursor for leucite dental ceramics [J]. J Non-cryst Solids.2008,354(2-9):741-8.
    [98] Zhang Y, Lv M, Chen D D, et al. Leucite crystallization kinetics with kalsilite asa transition phase [J]. Mater Lett.2007,61(14-15):2978-81.
    [99] Novotna M., Klouzkova A., Maixner J., et al. Preparation of leucite powders withcontrolled particle size distribution [J]. Ceram Silik.2005,49(4):252-8.
    [100] Holand W., Frank M., Rheinberger V. Surface crystallization of leucite inglasses [J]. J Non-cryst Solids.1995,180(2-3):292-307.
    [101] Yao L, Peng C, Wu J. Fabrication of superfine leucite‐reinforced dentalmaterial by hydrothermal precursor and low‐temperature Frit [J]. J Am Ceram Soc.2011,94(11):3694-97.
    [102] Denry I., Mackert J.R., Holloway J., et al. Effect of cubic leucite stabilizationon the flexural strength of feldspathic dental porcelain [J]. J Dent Res.1996,75(12):1928.
    [103] Zhang Y, Rao P G, Lv M, et al. Mechanical properties of dental porcelain withdifferent leucite particle sizes [J]. J Am Ceram Soc.2008,527-34.
    [104]穆柏春.陶瓷材料的强韧化[M].冶金工业出版社.2002.
    [105] Davidge R. W. Mechanical behaviour of ceramics [M]. Cambridge UniversityPress.1979.
    [106]张国军、金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报.1994,22(003):259-69.
    [107]张国军、岳雪梅、金宗哲.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报.1995,23(4):365-72.
    [108]赵宏、金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析[J].硅酸盐学报.1996,24(5):491-7.
    [109] Rasmussen S. T., Groh C. L., O'brien W. J. Stress induced phase transformationof a cesium stabilized leucite porcelain and associated properties [J]. Dent Mater,1998.14(3):202-11.
    [110]周达飞.材料概论[M].化学工业出版社.2001.
    [111] Zhang Y, Lv M, Rao P, et al. Quantitative XRD Analysis ofHydrothermally-derived Leucite Content in Dental Porcelain Ceramics [J]. Journal ofthe Ceramic Society of Japan.2007,115(1341):329-32.
    [112] Oishi S., Miyata T., Suzuki T. Growth of leucite crystals from a K2Mo2O7flux[J]. J Mater Sci Lett.2003,22(13):927-9.
    [113] Wong C, Bollampally R. Thermal conductivity, elastic modulus, and coefficientof thermal expansion of polymer composites filled with ceramic particles forelectronic packaging [J]. J Appl Polym Sci.1999,74(14):3396-403.
    [114] Taylor D., Henderson C. The thermal expansion of the leucite group of minerals[J]. Am Mineral.1968,53:1476-89.
    [115] Mackert J.R., Evans A. Quantitative X-ray Diffraction Determination of LeuciteThermal instability in Dental Porcelain [J]. J Am Ceram Soc.1991,74(2):450-3.
    [116]张鸣雷、王景云、吴健.钴铬合金烤瓷冠与镍铬合金烤瓷冠的临床使用效果比较与分析[J].吉林医学.2007,28(9):1093-4.
    [117]白轶昕、谢伟丽、孙宇.两种非贵金属烤瓷冠的临床应用效果评价[J].现代口腔医学杂志.2009,23(4):386-8.
    [118]李绍光.两种不同金属烤瓷修复体的临床效果分析[J].现代诊断与治疗.2012,23(6):788-90.
    [119] O'connor R. P., Mackert J. R., Myers M. L., et al. Castability, opaque masking,and porcelain bonding of17porcelain-fused-to-metal alloys [J]. J Prosthet Dent.1996,75(4):367-74.
    [120] Hattali M., Valette S., Ropital F., et al. Study of SiC-nickel alloy bonding forhigh temperature applications [J]. J Eur Ceram Soc.2009,29(4):813-9.
    [121] Liu G, Valenza F., Muolo M., et al. Wetting and interfacial behavior of Ni-Sialloy on different substrates [J]. J Mater Sci,2009,44(22):5990-7.
    [122] Contreras A., Leon C., Drew R., et al. Wettability and spreading kinetics of Aland Mg on TiC [J]. Scr Mater.2003,48(12):1625-30.
    [123] Sobczak N., Singh M., Asthana R. High-temperature wettability measurementsin metal/ceramic systems-Some methodological issues [J]. Curr Opin Solid StateMater Sci.2005,9(4-5):241-53.
    [124] O'brien W. J., Ryge G. Contact angles of drops of enamels on metals [J]. JProsthet Dent.1965,15(6):1094.
    [125] De Melo R. M., Travassos A. C., Neisser M. P. Shear bond strengths of aceramic system to alternative metal alloys [J]. J Prosthet Dent.2005,93(1):64-9.
    [126] Joias R. M., Tango R. N., De Araujo J. E., et al. Shear bond strength of aceramic to Co-Cr alloys [J]. J Prosthet Dent.2008,99(1):54-9.
    [127] Nikellis I., Levi A., Zinelis S. Effect of soldering on the metal-ceramic bondstrength of an Ni-Cr base alloy [J]. J Prosthet Dent.2005,94(5):435-9.
    [128] Zinelis S., Barmpagadaki X., Vergos V., et al. Bond strength and interfacialcharacterization of eight low fusing porcelains to cp Ti [J]. Dent Mater.2010,26(3):264-73.
    [129] Vianco P. T., Frear D. R. Issues in the replacement of lead-bearing solders [J].JOM.1993,45(7):14-9.
    [130] Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems [J].Acta Mater.1998,46(7):2319-27.
    [131] Eustathopoulos N., Nicholas M. G., Drevet B. Wettability at high temperatures[M]. A Pergamon Title.1999.
    [132] Eustathopoulos N., Sobczak N., Passerone A., et al. Measurement of contactangle and work of adhesion at high temperature [J]. J Mater Sci.2005,40(9):2271-80.
    [133]陈名海、刘宁.金属/陶瓷润湿性的研究现状[J].硬质合金.2002,19(004):199-205.
    [134] Kumar G., Prabhu K. N. Review of non-reactive and reactive wetting of liquidson surfaces [J]. Adv Colloid Interfac.2007,133(2):61-89.
    [135] Frage N., Froumin N., Dariel M. Wetting of TiC by non-reactive liquid metals[J]. Acta Mater.2002,50(2):237-45.
    [136] Shen P, Fujii H., Matsumoto T., et al. Critical Factors Critical Factors Affectingthe wettability of α‐Alumina by Molten Aluminum [J]. J Am Ceram Soc.2004,87(11):2151-9.
    [137] Sekulic D. P. Wetting and spreading of liquid metals through openmicrogrooves and surface alterations [J]. Heat Transfer Eng.2011,32(7-8):648-57.
    [138] Leinfelder K. F. Porcelain esthetics for the21st century [J]. J Am Dent Assoc.2000,131(suppl1):47S-51S.
    [139] Brewer J., Akers C., Garlapo D., et al. Spectrometric analysis of the influence ofmetal substrates on the color of metal-ceramic restorations [J]. J Dent Res.1985,64(1):74-7.
    [140] Rosenstiel S. F., Johnston W. M. The effects of manipulative variables on thecolor of ceramic metal restorations [J]. J Prosthet Dent.1988,60(3):297.
    [141] Douglas R. D., Przybyldka M. Predicting porcelain thickness required for dentalshade matches [J]. J Prosthet Dent.1999,82(2):143-9.
    [142]裴延平、陈吉华、常青等.不同金属基底和遮色瓷厚度对金瓷修复体色彩的影响[J].华西口腔医学杂志.2005,23(2):133-5.
    [143]罗云、巢永烈.不同品牌不透明瓷层厚度与遮色能力的研究[J].中华口腔医学杂志.1999,34(2):116-9.
    [144] Xiong F, Chao Y, Zhu Z. Translucency of newly extracted maxillary centralincisors at nine locations [J]. J Prosthet Dent.2008,100(1):11-7.
    [145] Fondriest J. Shade matching in restorative dentistry: the science and strategies[J]. Int J Periodont Rest.2003,23(5):467-80.
    [146]王辉、熊芳、于海洋等.遮色瓷的不同表面粗糙度对烤瓷熔附金属修复体明度和反射率的影响[J].华西口腔医学杂志.2009,27(4):397-400.
    [147]郭航、王峰、冯化端.4340例烤瓷修复体选色调查[J].华西口腔医学杂志.2000,18(3):174-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700