用户名: 密码: 验证码:
天波超视距雷达信号处理理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天波超视距雷达利用电离层对电磁波的反射,实现对远距离海面舰船、空中目标的检测、参数估计及跟踪。天波超视距雷达探测距离可以不受地球曲率的限制,实现对800-3500公里远海面目标探测。正是由于天波雷达的这一优势,使得其在远程警戒、早期预警、机场监视、缉毒走私、海洋遥感等领域都得到了广泛的研究与应用。
     尽管天波雷达有许多优势,但是由于天波雷达信号传输环境复杂,其在目标检测尤其是慢速舰船目标检测方面仍然存在许多挑战。本文围绕这些问题展开深入研究,其主要工作和贡献包括:
     1、由于瞬态干扰持续时间较短,幅度强,会掩盖目标频谱使得目标无法检测。本文在充分研究瞬态干扰时域与频域特性的基础上,提出一种基于S变换的瞬态干扰抑制算法。该算法将时域回波变换到时间-多普勒域,从而可以在时间-多普勒二维平面上对瞬态干扰进行检测和定位,并在时域对其有效抑制。
     2、基于时域挖除与线性预测恢复的瞬态干扰抑制技术,其性能通常受到线性预测性能的影响。本文提出一种基于自适应高斯线性调频变换(AGC, AdaptiveGaussian Chirplet Transform)的算法。该算法将原始回波分解为一系列AGC基函数的和,再利用瞬态干扰和回波中其余分量在时域与频域的不同特点直接将瞬态干扰分量消去。该算法不需要利用线性预测技术,从而避免了线性预测技术对抑制效果的影响。同时,文中引入遗传算法来实现AGC基函数分解的多维搜索。
     3、对于慢速舰船目标检测而言,由于慢速舰船目标径向速度较低,其多普勒频率(Doppler frequency)通常靠近一阶海杂波。为了检测慢速舰船目标,需要有较长的相干积累时间。电离层的上下运动会给长时间相干积累的回波信号带来相位噪声。该噪声使得海杂波的频谱扩展从而进一步掩盖舰船目标,使舰船检测更加困难。电离层的这一影响通常称为电离层污染。考虑到海杂波频谱的扩展根本原因在于杂波的瞬时频率随每个脉冲发生变化,本文提出一种基于复数能量检测(Complex Energy Detection, CED)的算法来对杂波瞬时频率进行估计并将其用于电离层污染的校正。仿真结果表明该算法能够在较大污染的情况下取得较好的污染校正效果。
     对于天波雷达的电离层污染校正,针对三次相位信号模型,提出一种新的三次相位信号瞬时频率估计算法。该算法将海杂波分成多个较短的数据段,然后在每个数据段求取脉冲点的瞬时频率,最后将所得到的瞬时频率平滑得到每个脉冲的瞬时频率。将得到的频率用于对污染的校正。仿真结果表明,该算法频率估计精度比文献中提出的多项式相位变换(Discrete Polynomial phase Transform, DPT)算法要高,并且可以在较大污染的情况下实现校正。
     4、对于慢速舰船而言,其频谱通常位于两个一阶谱峰之间,则这类目标的检测更加困难。因为除了一阶杂波外,二阶杂波也可能会影响目标的检测。本文在分析海杂波特点的基础上,首先对杂波协方差矩阵进行子空间分解,在此基础上,将MVDR(Minimum Variance Distortionless Response)理论用于实现舰船目标的有效检测。该算法可以抑制二阶连续杂波,适用于检测位于一阶峰之间但不被一阶峰掩盖的目标。
     5、对于飞机、弹道导弹等高速目标,目标可能出现机动的情况,即这类空中目标会在一段时间内做加速运动。对这类目标而言,传统的距离-多普勒处理会造成信噪比的损失,从而降低目标的检测概率。这类目标的回波可以建模为多项式相位信号。本文基于此模型,提出一种新的多项式相位信号参数估计算法。与已提出的DPT算法相比,该算法能够在更低的信噪比条件下实现机动目标的参数估计和运动补偿。在给定的仿真参数下,当信噪比为3dB时,算法对机动目标的频谱增益可达5dB以上。
     6、对空中目标而言,其飞行高度往往也是感兴趣的参数之一。比如,高度信息可以用于对目标进行分类。本文基于天波雷达空中目标的微多径模型,提出一种基于子空间的高度估计算法。该算法利用观测数据的噪声子空间与仿真数据的信号子空间进行匹配来获得目标的高度估计。给出了仿真结果,仿真结果表明在给定仿真参数下所提算法比最大似然算法有更好的稳健性。
The skywave over-the-horizon (OTH) radar detects ships and aerial targets over thesea surface, estimates the parameters and tracks these targets by utilizing the reflectedelectromagnetic wave from the ionosphere. The detection range of the skywave OTHradar is not limited by the curvature of the earth, but can detect targets over the seasurface up to800-3500km. Due to this advantage, it has been widely studied andapplied in remote surveillance, early warning, airport surveillance, anti-smuggling andcounter drug, ocean remote sensing, etc.
     Although the skywave OTH radar has many advantages, it still has manychallenges in target detection especially slow ship target detection due to its complexsignal propagation environment. This dissertation mainly concerns these aspects. Themain research results and contributions include:
     1. The transient noise has very short duration time but with very strong magnitude.The target spectrum will be masked by the transient noise which makes the targetcannot be detected. On the basis of fully research on the time domain characteristic andfrequency domain characteristic of the transient noise, a transient noise excisionalgorithm based on the S transform is proposed. The algorithm transforms the timedomain return signal onto the time-Doppler domain, which makes the transient noisecan be detected and localized on the two dimensional plane accurately, thus the transientnoise can be excised in time domain effectively.
     2. The performance of the time domain excision and linear pridiction algorithms isgenerally affected by the linear prediction techniques. In this dissertation, an algorithmbased on the adaptive Gaussian chirplet (AGC) transform is proposed. The algorithmdecomposes the original returned signal into the sum of a series of AGC basis functions,and then the transient noise can be subtracted directly by utilizing the differentcharacteristics between the transient noise and the other signal components in both timeand frequency domains. No linear prediction technique is needed in this algorithm, thusthe adverse effect to the excision can be avoided. Meanwhile, genetic algorithm (GA) isintroduced for the multidimensional search of the AGC basis decomposition.
     3. For the slow ship target detection, its Doppler frequency is generally close to thefirst-order sea clutter due to its small radial velocity. In order to detect the slow ship target, a relatively long integration time is necessary. The movement of the ionospherewill result in phase noise to the long time integrated returned signal. The noise broadensthe spectrum of the sea clutter and masks the ship target, thus makes the detection moredifficult. The ionospheric effect is generally referred to as the ionospheric contamination.The root cause of the spectrum spread of the sea clutter is the instantaneous frequencyof the clutter changes with each pulse. Taking this into account, an algorithm based onthe complex energy detection (CED) is proposed to estimate the instantaneousfrequency of the clutter and applied to correct the ionospheric contamination.Simulation results show that the proposed algorithm can work and achieve goodperformance in large ionospheric perturbations.
     For the skywave radar decontamination, based on the cubic phase modeling, a newcubic phase signal instantaneous frequency (IF) estimation algorithm is proposed. Thealgorithm divides the sea clutter into several short data segments, and then estimates theIF of each pulse for the data segments. The final IF of each pulse can be calculated byaveraging the IF of each overlapped data segments. The derived IF is then utilized forthe decontamination. Simulation results show that the IF estimation accuracy is betterthan the Discrete Polynomial phase Transform (DPT) algorithm, and can workeffectively under large ionospheric perturbations.
     4. For slow ship target, its spectrum generally lies between the two first-orderclutter peaks, and then the target detection is more difficult. Besides the first-orderclutter, the second-order clutter can also influence the detection of the target. Based onthe analysis on the characteristic of the ocean clutter, the covariance matrix of the clutteris firstly decomposed into subspaces. Then the MVDR theory is used to detect the shiptarget. The algorithm can suppress the second-order continuous clutter, thus it can beused to detect the target which lies in between the first-order clutter but not masked.
     5. For high-speed target, such as aircraft and ballistic missile, target maneuvering isprobably to happen. That is, the aerial target will accelerate during the time duration.For this kind of target, the traditional Range-Doppler processing will lead tosignal-to-noise ratio (SNR) lossing, thus reduce the probability of target detection. Thetarget return signal can be modeled as a polynomial phase signal. Based on this model, anew polynomial phase signal parameter estimation algorithm is proposed. Comparingwith the DPT algorithm, the proposed algorithm can achieve maneuvering targetparameter estimation and movement compensation under lower SNR. Under the specified simulation parameters, when the SNR is3dB, the proposed algorithm obtains5dB or more in the spectrum gain.
     6. For the aerial target, its flying altitude is also an interested parameter for theskywave radar. For example, the altitude can be used for classifying the aerial targets.Based on the micro-multipath model of the aerial target for the skywave radar, asubspace altitude estimation algorithm is proposed in this dissertation. The algorithmderives the altitude of the target via matching the noise subspace of the observed datawith the signal subspace of the simulated data. The simulation results are presented, andthey show that the proposed algorithm is more robust than the maximum likelihood(ML) algorithm under the specified simulation parameters.
引文
[1]周万幸.天波超视距雷达发展综述[J].电子学报,2011,39(6):1373-1378
    [2]周文瑜,焦培南.超视距雷达技术[M].北京:电子工业出版社,2008,85-128
    [3]康蓬,韩蕴洁,卢琨,等.波束倾斜修正在天波超视距雷达中的应用[J].电波科学学报,2009,24(6):1150-1153
    [4]姜维,邓维波,杨强.高频超视距混合天地波雷达海杂波特点分析[J].电子与信息学报,2011,33(8):1786-1791
    [5]盛文,任吉.天波超视距雷达海杂波的混沌动态特性分析[J].电波科学学报,2012,27(2):350-358
    [6]卢锟.分布式天波超视距雷达体制研究[J].现代雷达,2011,33(6):16-19
    [7]吴海鹏,焦培南,凡俊梅.高频海洋回波谱电离层污染及实验研究[J].电波科学学报,2004,19(5):515-518
    [8] J. Headrick. HF over-the-horizon radar, in: Radar Handbook,2nd ed., Merrill I. Skolnik, Ed.McGraw-Hill[M].1990,1-43
    [9] J. M. Headrick, J. F. Thomason. Applications of high-frequency radar[J]. Radio Science,1998,33(4):1045-1054
    [10] J. W. Maresca, J. R. Barnum. Theoretical limitations of the sea on the detection of low Dopplertargets by over-the-horizon radar[J]. IEEE Transactions on Antennas and Propagation,1982,30(5):837-845
    [11] G. Fabrizio, F. Colone, P. Lombardo. et al. Adaptive beamforming for high-frequencyover-the-horizon passive radar[J]. IET Radar, Sonar and Navigation,2009,3(4),384–405
    [12] D. J. Strausberger, E. D. Garber, N. E. Chamberlain, et al. Modeling and performance ofHF/OTH radar target classification systems[J]. IEEE Transactions on Aerospace and ElectronicSystems,1992,28(2):396-402
    [13] M. L. Heron. Line broadening on HF ocean surface radar backscatter spectra[J]. IEEE Journalof Oceanic Engineering,1985,10(4):397-401
    [14] G. A. Fabrzio, A. Farina, M. D. Turley. Spatial adaptive subspace detection in OTH radar[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1407-1428
    [15] J. Parent. Statistical study of the spectral broadening of skywave signals backscattered by thesea surface: application to RMS wave height measurement with a skywave radar[J]. IEEETransactions on Antennas and Propagation,1989,37(9):1201-1206
    [16] V. Bazin, J. P. Molinie, J. Munoz, et al. NOSTRADAMUS: An OTH radar[J]. IEEE Aerospaceand Electronic Systems Magazine,2006,21(10):3-11
    [17] S. Grosdidier, A. Baussrad, A. Khenchaf. HFSW radar model: simulation and measurement [J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3539-3549
    [18] Y. Zhang, G. J. Frazer, M. G. Amin. Concurrent operation of two over-the-horizon radars[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(2):114-123.
    [19] G. J. Frazer, Y. I. Abramovich, B. A. Johnson. HF skywave MIMO radar: the HILOWexperimental program[C]. The42ndAsilomar Conferences on Signals, Systems and Computers,Pacific Grove, CA,2008:639-643
    [20] G. J. Frazer, Y. I. Abramovich, B. A. Johnson. Multiple-input multiple-output over-the horizonradar: experimental results[J]. IET Radar Sonar and Navigation,2009,3(4):290–303
    [21]郭欣.天波超视距雷达信号处理技术研究[D].南京:南京理工大学,2003,41-49
    [22]杨志群.天波超视距雷达信号处理方法研究[D].南京:南京理工大学,2003
    [23] J. Xie, Y. Yuan, Y. Liu. Suppression of sea clutter with orthogonal weighting for target detectionshipborne HFSWR[J]. IEE Proceedings Radar, Sonar and Navigation,2002,149(1):39-44
    [24] B. Li, B. Xu, Y. Yuan. Extraction of mixed-order multicomponent ship target signals frombroadened sea clutter in bistatic shipborne surface wave radar[J]. IET Radar, Sonar andNavigation,2009,3(3):214-223
    [25] Y. Li, N. Zhang, Q. Yang. Characteristic-knowledge-aided spectral detection of high frequencyfirst-order sea echo[J]. Journal of Systems Engineering and Electronics,2009,20(4):718-725
    [26]何缓,柯亨玉,万显荣,等.双基地高频地波雷达系统布站研究[J].电子与信息学报,2012,34(2):333-337
    [27] Z. Zhao, X. Wan, D. Zhang, et al. An experimental study of HF passive bistatic radar via hybridsky-surface wave mode[J]. IEEE Transactions on Antennas and Propagation,2013,61(1):415-424
    [28]周晨,赵正予,邓峰.电离层行进式扰动对天波超视距雷达坐标配准的影响[J].系统工程与电子技术,2011,33(10):2222-2225
    [29] K. Lu, X. Z. Liu, Y. T. Liu. Ionospheric decontamination and sea clutter suppression for HFskywave radars[J]. IEEE Journal of Oceanic Engineering,2005,30(2):455-462
    [30]卢锟.短序列条件下基于分段多项式建模方法的相位估计性能分析[J].电子与信息学报,2005,27(4):523-526
    [31] K. Lu, X. Z. Liu. Enhanced visibility of maneuvering targets for high-frequencyover-the-horizon radar [J], IEEE Transactions on Antennas and Propagation,2005,53(1):404-411
    [32]刘慧霞,梁彦,陈绪元,等.一种自适应天波超视距雷达航迹融合算法[J].电子学报,2009,37(6):1348-1352
    [33]王增福,潘泉,陈丽平,等.基于航路-航迹关联的天波超视距雷达航迹分类[J].系统工程与电子技术,2012,34(10):2018-2022
    [34]金术玲,梁彦,潘泉,等.一种天波超视距雷达分级Hough变换航迹起始方法[J].电子与信息学报,2008,30(8):1968-1972
    [35]全英汇,张磊,邢孟道,等.天波超视距雷达缺损信号的频谱重构[J].系统工程与电子技术,2011,33(8):1732-1737
    [36] Y. H. Quan, M. D. Xing, L. Zhang, et al. Transient interference excision and spectrumreconstruction for OTHR[J]. Electronics Letters,2012,48(1):
    [37]周忠根,水鹏朗.基于小波影响锥的天波雷达瞬态干扰抑制方法[J].电波科学学报,2011,26(4):688-692
    [38]周忠根,水鹏朗.基于复数据经验模式分解的天波超视距雷达瞬态干扰抑制[J].电子与信息学报,2011,33(12):2831-2836
    [39]邢孟道,保铮,强勇.天波超视距雷达瞬态干扰抑制[J],电子学报,2002,30(6):823-826
    [40]强勇,超视距雷达抗干扰与目标检测方法[D].西安:西安电子科技大学,2004
    [41]魏旻,李军,龚耀寰.天波超视距雷达中流星余迹干扰模型[J].电波科学学报,2007,22(3):390-394
    [42] T. Liu, J. Wang.OTHR impulsive interference detection based on AR model in phasedomain[J]. WSEAS Transaction on Signal Processing,2009,5(4):147-156
    [43] T. Liu, X. Chen, J. Wang, et al. Subspace impulsive interference suppression in OTHR[J].Progress in Electromagnetics Research C,2009,7:167-181
    [44]王子曦,胡进峰,肖赛军,等.天波雷达在不规则地形中的接收阵列天线综合[J].电波科学学报,2011,27(4):672-679
    [45]鲁小倩,孙荣.修正Hankel矩阵SVD用于多模环境杂波对消研究[J].现代雷达,2012,34(3):26-29
    [46] Y. H. Liu, Z. P. Nie, Z. Q. Zhao. Cascaded approach for correcting ionospheric frequencymodulation in HF sky-wave radars[J]. Journal of University of Electronic Science andTechnology of China,2009,38(1):17-20
    [47] N. Omaki, Z. Yun, N. Celik, et al. Effective HF radar installation in challenging terrainenvironments for homeland security applications[J]. IEEE Antennas and Propagation Letters,2011,10:1143-1146
    [48]刘涛.超视距雷达抗瞬态干扰算法研究[D].成都:电子科技大学,2009,55-60
    [49] T. Liu,Y. Gong, Y. H. Gong. OTHR impulsive interference suppression in strong clutterbackground[J]. IEICE Transactions,2009, E92-A(11):2866-2873
    [50]陈希信,黄银河.基于矩阵奇异值分解的高频雷达瞬态干扰抑制[J],电子与信息学报,2005,27(12):1879-1882
    [51] R. H. Khan. Ocean-clutter model for high-frequency radar[J]. IEEE Journal of OceanicEngineering,1991,16(2),181–188
    [52] R. G. Stockwell, L. Mansinha, R. P. Lowe. Localization of the complex spectrum: the Stransform[J]. IEEE Transactions on Signal Processing,1996,44(4):998-1001
    [53] E. Sejdic, L. Stankovic, M. Dakovic, et al. Instantaneous frequency estimation using theS-transform[J], IEEE Signal Processing Letters,2008,15:309-312
    [54] X. Guo, H. Sun, T. S. Yeo. Transient interference excision in over-the-horizon radar usingadaptive time-frequency analysis[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):722-735
    [55] S. Qian, D. Chen. Signal representation using adaptive normalized Gaussian functions[J].Signal Processing,1994,36(1):1-11
    [56] National Instruments. Signal processing toolset user manual.2001, Chapter2:1-7
    [57] Q. Yin, S. Qian, A. G. Feng. A fast refinement for adaptive Gaussian chirplet decomposition [J].IEEE Transactions on Signal Processing,2002,50(6):1298-1306
    [58] J. Qian, J. S. Barlow, M. P. Michael. A simplified arithmetic detector for EEG sharptransients-prilimrary results[J]. IEEE Transactions on Biomedical Engineering,1988,35(1):11-18
    [59]韩蕴洁,杨志群,储晓彬.天波雷达检测舰船时电离层失真的校正方法研究[J].现代雷达,2003,10:5-8
    [60] A. Capria, F. Berizzi, R. Soleti, et al. A frequency selection method for HF-OTH skywave radarsystems[C]. Proceedings of the EUSIPCO2006Conference, Florence, Italy,2006
    [61] G. F. Earl, B. D. Ward. Frequency management support for remote sea-state sensing using theJindalee skywave radar[J]. IEEE Journal of Oceanic Engineering,1986,11(2):164–172
    [62] Y. I. Abramovich, S. J. Anderson, I. S. D. Solomon. Adaptive ionospheric distortion correctiontechniques for HF skywave radar[C]. Proceedings of the1996IEEE National Radar Conference,Michigan, USA,1996,267–272
    [63] A. Bourdlillon, G. Gauthier. Use of maximum entropy spectral analysis to improve shipdetection over-the-horizon radar[J]. Radio Science,1987,22(2):313-320
    [64] J. Parent, A. Bourdlillon. A method to correct HF skywave backscattered signals for ionosphericfrequency modulation[J]. IEEE Transaction on Antennas Propagation,1988,36(1):127-135
    [65] W. Y. Martin, R. Khan, L. N. Son. A singular value decomposition (SVD) based method forsuppressing ocean clutter in high frequency radar[J]. IEEE Transaction on Signal Processing,1993,41(3):1421-1425
    [66] P. E. Howland, D. C. Cooper. Use of the Wigner–Ville distribution to compensate forionospheric layer movement in high-frequency sky-wave radar systems[J]. IEE Proceedings F:Radar Signal Processing,1993,140(1),29–36
    [67] P. Maragos, J. F. Kaiser, T. F. Quatieri. On amplitude and frequency demodulation using energyoperators[J]. IEEE Transactions on Signal Process.1993,41(4):1532–1550
    [68] A. C. Bovik, P. Maragos, T. F. Quatieri. AM-FM energy detection and separation in noise usingmultiband energy operators[J]. IEEE Transactions on Signal Processing,1993,41(12):3245–3265
    [69] S. Mallat. A Wavelet Tour of Signal Processing—The Sparse Way,3rd Edition[M]. Orlando:Academic Press,2008,89–149
    [70] B. J. Lipa, D. E. Barrick. Extraction of sea state from HF radar sea echo: mathematical theoryand modeling[J]. Radio Science,1986,21(1),81–100
    [71] A. Papoulis. Probability, Random Variables, and Stochastic Process,2nd edn.[M]. New York:McGraw-Hill,1984
    [72]嘉德克B K.多项式一致逼近函数导论[M].沈燮昌,译.北京:北京大学出版社,1989
    [73] S. Peleg, B. Friedlande. The discrete polynomial-phase transform[J]. IEEE Transactions onSignal Processing,1995,43(8):1901-1914
    [74] K. Lu, J. Wang, X. Z. Liu. A piecewise parametric method based on polynomial phase model tocompensate ionospheric phase contamination[C]. Proceedings of the ICASSP2003, Hong Kong,China,2003,2:406-409
    [75]刘颜回,聂在平,赵志钦.改进的分段多项式建模的电离层相位去污染新方法[J].电波科学学报,2008,23(3):476-483
    [76]姜维,邓维波.分段多项式建模校正电离层相位污染算法研究[J].电波科学学报,2011,26(5):855-863
    [77]李雪,邓维波,焦培南,等.多项式建模解电离层相位污染阶数选择新方法[J].电波科学学报,2009,24(6):1094-1098
    [78] P. O’Shea. A fast algorithm for estimating the parameters of a quadratic FM signals[J]. IEEETransactions on Signal Processing,2004,52(2):385-393
    [79] J. R. Barnum. Ship detection with high-resolution HF skywave radar[J]. IEEE Journal ofOceanic Engineering,1986,11(2):196-209
    [80] B. T. Root. HF-over-the-horizon radar ship detection with short dwells using cluttercancellation[J]. Radio Science,1998,33(4):1095-1111
    [81]郭欣,倪晋麟,刘国岁.短相干积累条件下天波超视距雷达的舰船检测[J].电子与信息学报,2004,26(4):613-618
    [82]杨炼,孙合敏,潘新龙.基于扩展Prony算法的海杂波循环对消法[J].现代雷达,2011,33(6):53-57
    [83]罗欢,陈建文,赵志国,等.基于信号阻塞矩阵检测OTHR舰船目标[J].雷达科学与技术,2011,9(2):160-165
    [84]赵志国,陈建文,鲍拯.一种改进的OTHR自适应海杂波抑制方法[J].系统工程与电子技术,2012,34(5):909-914
    [85] G. Wang, X. G. Xia, B. T. Root, et al. Manoeuvring target detection in over-the-horizon radarusing adaptive clutter rejection and adaptive chirplet transform[J]. IET Radar, Sonar, andNavigation,2003,150(4):292-298
    [86] D. Ramakrishnan, J. Krolik. Adaptive radar detection in doubly nonstationary autoregressiveDoppler spread clutter[J]. IEEE Trans. on Aerospace and Electronic Systems,2009,45(2):484-501
    [87] J. Hu, W. W. Tung, J. Gao. Detection of low observable targets within sea clutter by structurefunction based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation,2006,54(1):136-143
    [88] S. Haykin, R. Bakker, B. W. Currie. Uncovering nonlinear dynamics-the case study of seaclutter[J]. Proceedings of the IEEE,2002,90(5):860-881
    [89] L. Liu, J. Hu, Z. S. He, et al. Chaotic signal reconstruction with application to noise radarsystem[J]. EURASIP Journal on Advances in Signal Processing,2011,2
    [90] D. V. Ivonin, V. I. Shrira, P. Broche. On the singular nature of the second-order peaks in HFradar sea echo[J]. IEEE Journal of Oceanic Engineering,2006,31(4):751-767
    [91]文必洋,石振华,吴世才.高频雷达海洋回波谱的数字模拟[J].武汉大学学报(自然科学版),2000,46(1):127-130
    [92]王永良,丁前军,李荣峰.自适应阵列处理[M].北京:清华大学出版社,2009
    [93] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays [J].IEEE Trans. on Aerospace and Electronic Systems,1988,24(4):397-401
    [94]焦培南,凡俊梅,吴海鹏,等.高频天波返回散射回波谱实验研究[J].电波科学学报,2004,19(6):643-648
    [95]苏洪涛,刘宏伟,保铮,等.天波超视距雷达机动目标检测方法[J].系统工程与电子技术,2004,26(3):283-287
    [96]雷志勇,黄银河.高频雷达机动目标的时频图像处理方法研究[J].中国电子科学研究院学报,2009,4(2):197-201
    [97]侯成宇,沈一鹰.基于最小二乘拟合的机动目标运动补偿算法[J].现代雷达,2009,31(1):54-57
    [98]秦国栋,陈伯孝,杨明磊,等.双基地多载频FMCW雷达目标加速度和速度估计方法[J].电子与信息学报,2009,31(4):794-797
    [99]齐国清,贾欣乐.基于DFT相位的正弦波频率和初相的高精度估计方法[J].电子学报,2001,29(9):1164-1167
    [100] Y. Zhang, M. G. Amin, G. J. Frazer. High-resolution time-frequency distributions formanoeuvring target detection in over-the-horizon radars[J]. IEE Proceedings Radar, Sonar andNavigation,2003,150(4):299-304
    [101] A. Yasotharan, T. Thayaparan. Time-frequency method for detecting an accelerating target insea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(4):1289-1310
    [102] L. Stankovic, T. Thayaparan, M. Dakovic, Signal decomposition by using the S-method withapplication to the analysis of HF radar signals in sea-clutter[J]. IEEE Transaction on SignalProcessing,2006,54(11):4332-4342
    [103] S. Peleg, B. Porat. Linear FM signal parameter estimation from discrete-time observations[J].IEEE Trans. on Aerospace and Electronic Systems,1991,27(4):607-616
    [104] C. D. Luigi, E. Moreau, An iterative algorithm for estimation of linear frequency modulationsignal parameters[J]. IEEE Signal Processing Letters,2002,9(4):127-129
    [105] P. M. Djuric, S. M. Kay. Parameter estimation of chirp signals[J]. IEEE Transactions onAcoustics, Speech, and Signal Processing,1990,38(12),:2118-2126
    [106] P. O. Shea. A new technique for instantaneous frequency rate estimation[J]. IEEE SignalProcessing Letters,2002,9(8):251-252
    [107] M. L. Farquharson. Estimating the parameters of polynomial phase signals[D]. Brisbane:Queensland University of Technology,2006:1-10
    [108] G. W. Pulford, R. J. Evans. A multipath data association tracker for over-the-horizon radar[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(4):1165-1183
    [109] J. L. Krolik, R. H. Anderson. Maximum likelihood coordinate registration for over-the-horizonradar[J]. IEEE Transactions on Signal Processing,1997,945-959
    [110] G. W. Pulford. OTHR multipath tracking with uncertain coordinate registration[J]. IEEETransactions on Aerospace and Electronic Systems,2004,40(1):38-56
    [111] C. W. Anderson, S. D. Green, S. P. Kingsley. HF skywave radar: estimating aircraft heightsusing super-resolution in range[J]. IEE Proceedings-Radar, Sonar and Navigation,1996,143(4):281-285
    [112] M. Papazoglou, J. Krolik. Matched-field estimation of aircraft altitude from multipleover-the-horizon radar revisits[J]. IEEE Transactions on Signal Processing,1999,47(4):966-976
    [113] R. Anderson, S. Kraut, J. Krolik. Robust altitude estimation for over-the-horizon radar using astate-space multipath fading model[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):192-201
    [114]江鹏飞,陈建文,鲍拯,等.天波雷达匹配域处理测高方法目标机动影响分析[J].信号处理,2012,28(11):1535-1542
    [115] J. D. Milson. Exact ray path calculations in a modified Bradley/Dudeney model ionosphere [J].IEE Proceedings,1985,132(1):33-38
    [116] J. R. Hill. Exact ray paths in a multisegment quasi-parabolic ionosphere[J]. Radio Science,1979,14(5):855-861
    [117] R. J. Norman, P. L. Dyson, J. A. Bennett. Quasicubic-segmented ionospheric model[J]. IEEProceedings Microwave Antenna Propagation,1996,143(4):323-327
    [118] P. L. Dyson, J. A. Bennett. A model of the vertical distribution of the electron concentration inthe ionosphere and its application to oblique propagation studies[J]. Journal of Atmospheric andTerrestrial Physics,1988,50(3):251-262
    [119] M. Papazoglou. Matched-field altitude estimation for over-the-horizon radar[D], Durham:Duke University,1998
    [120] W. Xu, Z. Xiao, L. Yu. Performance analysis of matched-field source localization underspatially correlated noise field[J]. IEEE Journal of Oceanic Engineering,2011,36(2):273-284
    [121]肖专,复杂海洋环境匹配场源定位性能分析[D].杭州:浙江大学,2011
    [122] K. Kim, W. Seong, K. Lee. Adaptive surface interference suppression for matched-modesource localization[J]. IEEE Journal of Oceanic Engineering,2010,35(1):120-130
    [123] W. Seong, S. H. Byun. Robust matched field-processing algorithm based on feature extraction[J]. IEEE Journal of Oceanic Engineering,2002,27(3):642-652
    [124] S. Aravindan, N. Ramachandran, P. S. Naidu. Fast matched field processing[J]. IEEE Journalof Oceanic Engineering,1993,18(1):1-5
    [125] E. J. Sullivan, D. Middleton. Estimation and detection issues in matched-field processing [J].IEEE Journal of Oceanic Engineering,1993,18(3):156-167
    [126] D. F. Gingras, P. Gerstoft, N. L. Gerr. Electromagnetic matched-field processing: basicconcepts and tropospheric simulations[J]. IEEE Transactions on Antennas and Propagation,1997,45(10):1536-1545
    [127] W. Xu, A. B. Baggeroer, H. Schmidt. Performance analysis for matched-field sourcelocalization: simulations and experimental results[J]. IEEE Journal of Oceanic Engineering,2006,31(2):325-344
    [128]杨坤德.水声阵列信号的匹配场处理[M].西安:西北工业大学出版社,2008:1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700