准相位匹配技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准相位匹配(QPM)技术是一种通过对光学晶体非线性极化率进行周期性调制来补偿由于折射率色散所造成的光波之间相位失配的技术,它以其独特的优点在诸多领域都有着重要的应用价值。本文利用理论和数值的分析方法,对基于QPM技术的周期极化铌酸锂(PPLN)晶体在光参量放大和光波长转换方面中的应用进行了研究。论文的主要内容和创新点如下:
     一、阐述了QPM技术的基本原理和国内外研究发展现状;总结了形成周期反转结构的各种方案;介绍周期极化晶体的类型和特性;对基于周期极化晶体的光参量放大和光波长转换的原理和发展历程作了介绍。
     二、理论和数值研究了宽带可调谐非共线光参量放大过程,首次提出了两种不同的非共线结构用以实现基于PPLN晶体的光学参量放大。针对超短脉冲光波,提出了最大极化周期的概念用以描述非共线相位匹配和群速度匹配同时满足时晶体的极化周期所能达到的最大值,并给出了用于计算不同温度下PPLN晶体的最大极化周期的数学公式,进而确定了宽带可调谐超短脉冲光参量放大过程应使用的最佳极化周期和最佳非共线结构。在上述基础上提出了一个用于最大化光参量放大过程的信号光调谐带宽、确定工作温度等最佳工作参数以及简化实验操作方法的优化方案,并证实了此方案可以被进一步扩展到其它周期极化晶体和使用不同泵浦光波长的情况中。针对纳秒脉冲光波,同样给出了在获得相对最大的信号光调谐带宽时应使用的最佳极化周期和最佳非共线结构。
     三、利用泰勒级数展开法和直接计算法对参量带宽进行了分析,分析过程中综合考虑到了非共线结构和极化周期所带来的影响。与原有的单一结构光参量放大相比,通过改变非共线结构可以获得更大的参量带宽。对超短脉冲而言,使用合适的非共线结构对参量带宽的增强效果比调整极化周期更好;对于纳秒脉冲而言,合理的选择极化周期和非共线角更为重要。此外,还对泰勒级数展开法和直接计算法取得的结果进行了对比,指出了这两种分析方法各自的优越性。
     四、深入研究了非共线光参量放大过程的增益带宽和参量增益。利用泰勒级数展开法得到了群速度匹配条件和相位匹配条件同时满足时增益带宽的解析表达式,并分析了非共线结构和极化周期对增益带宽的影响,同时讨论了增益带宽与参量带宽的差异。系统考虑晶体的极化周期、非共线结构、泵浦光强度和晶体长度对参量增益所带来的影响,给出了获取高增益的合理方案。
     五、提出了不完全非共线光参量放大的概念,并阐明了其与完全非共线光参量放大的区别,同时给出了基于PPLN晶体的三种不完全非共线光参量放大形式,随后对实际中较常用的两种不完全非共线光参量放大的信号光调谐带宽和参量带宽进行了研究。在对参量带宽和信号光的调谐范围要求不是很高的情况下,采用其中的一种不完全非共线光参量放大形式可以简化实验操作,而另一种不完全非共线光参量放大形式在中红外波段有很好的结果。
     六、研究了分段光栅结构对五种不同波长转换方案:直接差频效应、单通SHG+DFG、单通SFG+DFG、双通SHG+DFG和双通SFG+DFG的转换效率和转换带宽的影响,其中对后面四种的研究工作尚属首次,随后分别给出了每种方案相应的结构优化参数。在保证可以获得几乎相同的转换效率前提下,分段光栅结构的使用能够很好的扩展信号光的转换带宽,增强泵浦光的稳定性。综合考虑到晶体制备的复杂性、转换效率和转换带宽等因素,推荐实际的波长转换器中使用两段光栅结构的PPLN晶体。
The phase-dismatching among interacting light waves can be efficiently compensated by use of the quasi-phase matching(QPM) technology,thus it is used in many areas.In this dissertation,the optical parametric amplification (OPA) and optical wavelength conversion(OWC) based on QPM technology is investigated theoretically and numerically.The main contents are as follows:
     1.The principle and development of the QPM technology,especially its use in the area of optical parametric amplification and optical wavelength conversion are summarized.The characteristics and types of the periodically poled crystals are discussed.The schemes applied to convert the pole of the domain are summarized.
     2.The effects of grating period and noncollinear geometry on the broadly tunable bandwidth of optical parametric amplification are investigated theoretically and numerically for quasi-phase-matched crystal. For ultra-short pulse OPA,the concept of maximum grating period is proposed to achieve the phase matching and group-velocity matching simultaneously in a wide range.By employing the maximum grating period, geometryⅠis recommended due to the much wider signal tunable range compared with geometryⅡ.An expression is proposed to calculate the maximum grating period for congruent periodically poled LiNbO_3(PPLN) with 800nm pump wave.A feasible scheme is presented to determine the working temperature and noncollinear angleα,maximize the tunable range and simplify the tuning by rotating angleθonly.This scheme can also be used for other QPM crystals and other pump waves.For nanosecond pulse OPA,the optimal grating period and noncollinear geometry are presented to obtain the maximum tunable bandwidth.
     3.The parametric bandwidth of PPLN based optical parametric amplification with different noncollinear geometries is investigated by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order and by use of the definition directly.The parametric bandwidth can be enhanced in different signal wavelength range by employing suitable geometry or by tuning the grating period.For ultra-short pulses,the enhancement of parametric bandwidth by utilizing suitable geometry is better than that of tuning grating period.But for nanosecond pulses,suitable grating period and noncollinear angleθare more important. The methods of achiving parametric bandwidth by expanding the wave-vector mismatch in a Taylor series or by use of the definition directly are compared.
     4.The gain bandwidth and gain of PPLN based OPA are studied.On the conditions of phase matching and group velocity matching satisfied simultaneously,an expression is obtained by expanding the wave-vector mismatch in a Taylor series.The effect of grating period and noncollinear geometry on the gain bandwidth is analysised,the difference between parametric bandwidth and gain bandwidth is discussed too.Compared with increasing pump intensity,the gain can be effectively improved by increasing crystal's length,while the grating period and the noncollinear amplification geometry almost have no effect on the gain.
     5.Three types of non-absolute noncollinear OPA based on PPLN are proposed.The difference between absolute noncollinear OPA and non-absolute noncollinear OPA is discussed.The parametric bandwidth and the signal tunable bandwidth are studied for two types of non-absolute noncollinear OPA which are used often.
     6.The conversion bandwidth and conversion efficiency of difference frequency generation(DFG)-based,single-pass/double-pass cascaded second-harmonic generation(SHG)+DFG interactions-based and single-pass/double-pass cascaded sum frequency generation(SFG)+DFG interactions-based wavelength conversion in an aperiodic optical superlattice lithium niobate crystal are studied theoretically and numerically.Compared with uniform grating,the conversion bandwidth and stability of the signal and pump wave can be enhanced by optimizing the aperiodic grating,on the presupposition of achiving the same conversion efficiency.Systemcally considered the conversion efficiency,conversion bandwidth and the manufacture of PPLN,two-segment PPLN is recommended to be used in wavelength converter.
引文
[1]顾畹仪,《全光通信网》,北京:北京邮电大学出版社,1999,11.
    [2]Koichiro Nakamura,Jonathan Kurz,Krishnan Parameswaran,et al,"Periodic poling of magnesium-oxide-doped lithium niobate",Journal of Applied Physics,2002,91(7):4528-4534.
    [3] Xianglong Zeng, Xianfeng Chen, Yuping Chen, et al, "Observation of all-optical wavelength conversion based on cascaded effect in periodically poled lithium niobate waveguide", Optics & Laser Technology, 2003, 35, 187-190.
    [4] F. Genereux, G. Baldenberger, and B. Bourliaguet, "Low-voltage tunable second-harmonic generation in an x-cut periodically poled lithium niobate waveguide", Opt. Lett., 2007, 32(9): 1108-1110.
    [5] Shiming Gao, Changxi Yang, and Guofan Jin, "Flat Broad-Band Wavelength Conversion Based on Sinusoidally Chirped Optical Superlattices in Lithium Niobate", IEEE Photon. Technol. Lett., 2004, 16(2): 557-559.
    [6] Y. L. Lee, H. Suche, Y. H. Min, et al, "Wavelength and Time-Selective All-Optical Channel Dropping in Periodically Poled Ti:LiNbO_3 Channel Waveguides", IEEE Photon. Technol. Lett., 2003, 15(7): 978-980.
    [7] Y. L. Lee, C. Jung, Y. C. Noh, et al, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO_3 Waveguide", Opt. Express, 2004, 12(4), 701-707.
    [8] Song Yu and Wanyi Gu, "A Tunable Wavelength Conversion and Wavelength Add/Drop Scheme Based on Cascaded Second-Order Nonlinearity With Double-Pass Configuration", IEEE J. Quantum Electron., 2005, 41(7): 1007-1012.
    [9] Bo Chen and Chang-Qing Xu, "Analysis of Novel Cascaded x(2) (SFG+DFG) Wavelength Conversions in Quasi-Phase-Matched Waveguides", IEEE J. Quantum Electron., 2004, 40: 256-261.
    [10] Song Yu and Wanyi Gu, "Wavelength conversions in quasi-phase-matched LiNbO_3 waveguide based on double-pass cascaded x(2) SFG+DFG interactions", IEEE J. Quantum Electron., 2004, 40: 1548-1554.
    [11] A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett., Vol. 27, pp. 306-308, 2002.
    [12] Gabor Kurdi, Karoly Osvay, Marta Csatari, Ian N. Ross, and Jozsef Klebniczki, "Optical parametric amplification of femtosecond ultraviolet laser pulses", IEEE Journal of selected topics in quantum electronics, Vol. 10, No. 6, pp. 1259-1267, 2004.
    [13] Sudmeyer T, Aus der Au J, Paschotta R, Keller U, Smith P G R, Ross G W, Hanna D C 2001 J. Phys. D: Appl. Phys. 34 2433
    [14] V. Lupei, G. Aka, and D. Vivien, "Quasi-three-level 946nm CW laser emission of Nd: YAG under direct pumping at 885nm into the emitting level",Optics Communications,2002,204:399-405.
    [15]Y.R.Shen,The Principles of Nonlinear Optics,Wiley,New York,1984.
    [16]J.A.Giordmaine,Mixing of light beams in crystals,Physics Review Letters,1962,8(1):19-20.
    [17]P.D.Maker,R,W,Terhune,M.Nisenoff,et al,Effects of dispersionand focusing on the producing of optical harmonics,Physics Review Letters,1962,8(1):21-22.
    [18]A.Armgtrong,N.Bloembergen,J.Dcuing,et al,Interaction between light waves in a nonlinear dielectric,Physics Review,1962,127(6):1918-1939.
    [19]L.E.Myers,G.D.Miller and R.C.Eckardart,Quasi-phase-matched 1.064μm pumped optical parametric oscillator in bulk periodically poled LiNbO_3,Opt.Lett.,1995,20(1):52-54.
    [20]路洋,基于周期极化铌酸锂和钛酸锂的准相位匹配技术研究,天津大学硕士学位论文,2004.
    [21]许煜寰,《铁电与压电材料》,北京:科学出版社,1978.
    [22]Shintaro Miyazawa,Ferroelectric-domain-inversion in Ti-diffuse LiNbO3 optical waveguide,Journal of Applied Physics,1979,50(7):4599-4603.
    [23]Xu Bin,Ming Nai-Ben,Experimental observations of bistability and instability in a two-dimensional nonlinear optical superlattice,Physical Review Letters,1993,71(24):3959-3962.
    [24]Robert G.Batchko,Vladimir Y.Shur,Martin M.Fejer,et al.,Bachswitch poling in lithium niobate for high-fidelity domain patterning and efficiency blue light generation,Applied Physics Letters,1999,75(12):1673-1675.
    [25]M.Yamada,N.Nada,M.Saetoh,et al.,First-order quasi-phase matched LiNbO3 waveguide periodically poled by appliying an external field for efficient field blue second-harmonic generation,Applied Physics Letters,1993,62(5):435-436.
    [26]M.S.Piltch,C.D.Cantrell,R.C.Sze,Infrared second-harmonic generation in nonbiregringent cadmium telluride,J.Appl.Phys.,1976,47:3514-3517.
    [27]Takaaki Hatanaka,Koichiro Nakamura,Tetsuo Taniuchi,et al.,Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO_3,Opt.Lett.,2000,25(9):651-653.
    [28]G.G.Zhong et al.,in Proceeding of the 11~(th) International Quantum Electronics Conference (Institute of Electrical and Electronics Engineers,New York,1980):631.
    [29]S.Kurimura,I.Shoji,T.Taira,et al.,in Conference on Lasers and Electro-Optics,Vol.56 of OSA Trends in Optics and Photonics Series(Optical Society of America,Washington,D.C.,2001),paper CTu13.
    [30] Hirano Y et al., LiNbO_3 OPO reaches 60.2 W of output, Photonics Spectra, 2000, 58.
    [31] K. Mizuuchi, K. Yamamoto, M. Kato, Appl. Lett., 1997, 70: 1201.
    [32] I. Shoji, T. Kondo, A, Kitamoto, et al., Absolute scale of second-order nonlinear-optical coefficients, J. Opt. Soc. Am. B, 1997, 14: 2268-2294.
    [33] W. Chen, G. Mouret, D. Boucher, et al., Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOASO_4, Appl. Lett. B, 2001.
    [34] J. P. Feve, Benoit Boulanger, Bertrand Menaert, et al., Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal, Opt. Lett., 2003, 28: 1028-1030.
    [35] C. Weiss, G. Torosyan, and J. P. Meyn, Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate, Opt. Express, 2001, 8(9): 497-502.
    [36] W. R. Boseneberg, J. I. Alexander, L. E. Myers, et al., "2.5W, continuous-wave, 629nm solid-state laser source", Opt. Lett., 1998, 23(3): 207-209.
    [37] P. E. Powers, T. J. Kulp, and S. E. Bisson, Continuous-buning of a continuous-wave periodically poled lithium niobate parametric oscillator by use of a fan-out grating desing, Opt. Lett., 1998, 23(3): 159-161.
    [38] T. Suhara, H. Ishizuki, M. Fujimura, et al., Waveguide Quasi-phase-matched Sun-Frequency Generation Device for High-Efficiency Optical Sampling, IEEE Photon. Technol. Lett., 1999, 11(8): 1027-1029.
    [39] Lawrence E. Myers , Walter R. Bosenberg, et al., Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators, IEEE J. Quantum Electron., 1997, 33(10): 1663-1672.
    
    [40] V. Berger, Nonlinear photonic crystals, Physical Review Letters, 1998, 81(19): 4136-4139.
    [41] N. G. R. Broderich, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal, Physical Review Letters, 2000, 84(19): 4345-4348.
    [42] A. Chowdhury, C. Staus, B. F. Boland, et al., Experimental demonstration of 1535-1555nm simultaneous optical wavelength interchange with a nonlinear photonic crystal, Opt. Lett., 2001, 26: 1353-1355.
    [43] Zhang Chao, Wei Hong, Zhu Yongyuan, et al., Third-harmonic generation in a general two-component quasi-periodic optical superlattice, Opt. Lett., 2001, 26: 899-901.
    [44] Jun Liao, Jing-Liang He, Hui Liu, et al., Simultaneous generation of red, green and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interaction from a single aperiodically ploed LiTaO_3, Applied Physics Letters, 2003, 82(19): 3159-3161.
    [45] R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, "Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses," J. Opt. Soc. Amer. B, Opt. Phys., vol. 10, pp. 2222-2232, 1993.
    [46] G. M. Gale, M. Cavallari, T.J. Driscoll, F. Hache, "Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator", Opt. Lett. 20 (1995) 1562-1564.
    [47] A. Shirakawa, T. Kobayashi, "Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm(-l) bandwidth", Appl. Phys. Lett. 72 (1998) 147-149.
    [48] Bader U, Meyn J P, Bartschke J, Weber T, Borsutzky A, Wallenstein R, Batchko R G Fejer M M, Byer R L 1999 Opt. Lett. 24 1608
    [49] A. Galvanauskas, K. K. Wong, K. El Hadi, et al., Amplification in 1.2-1.7μm communication widow using OPA in PPLN waveguides, Electronics Letters, 1999, 35(9): 731-733
    [50] C. Q. Xu, H. Okayama, and M. Kawahara, 1.5μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_3 channel waveguide, Appl. Phys. Lett, 1993, 63: 3559-3561.
    [51] M. H. Chou, J. Hauden, M. A. Arbore, et al., 1.5μm band wavelength conversion based on difference-frequency generation in LiNbO_3 waveguides with integrated coupling structures, Opt. Lett., 1998, 23: 1004-1006.
    [52] H. Kanbara, Itoh H. and Asobe M et al., All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide, IEEE Photon. Technol. Lett. 11: 328-331, 1999.
    [53] Parameswaran K.R., Fujimura M., Chou M.H., and Fejer M.M. Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN, IEEE Photon. Technol. Lett. 12: 654-656, 2000.
    [54] Yan Wang, Changyuan Yu, Lianshan Yan, et al., 44-ns Coutinuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide With Two-Pump Conviguration, DCF, and a Dispersion Compensator, IEEE Photon. Technol. Lett., 2007, 19(11): 861-863.
    [55] David Dahan and Gadi Eisenstein, Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering, Opt. Express, 2005, 13(16): 6234-6249.
    [1]Y.R.Shen,The Principles of Nonlinear Optics,Wiley,New York,1984.
    [2]Rober W.Boyd,Nonlinear Optics,New York,Academic Press,Inc.1992.
    [3]任铁雄,KTP晶体的周期极化特性研究,天津大学硕士毕业论文,2006.
    [4]钱士雄,王恭明 编著,非线性光学-原理与进展,复旦大学出版社,2001.
    [5]P.A.Franken,A.E.Hill,C.W.Peters,et al.,Generation of optical harmonics,Phys.Rev.Lett.,1961,7:118-119.
    [6]R.H.Kingston,Parametric amplification and oscillation at optical frequencies,Proc.IRE,1962,50:472.
    [7]N.M.Kroll,Parametric amplification in spatially extended media and the application to the design of tunable oscillators at optical frequencies,Phys.Rev.,1962,127:1207-1211.
    [8]S.A.Akhmanov and R.V.Khokhlov,Concerning one possiblility of amplification of light waves,Sov.Phys.JETP,1963,16:252-254.
    [9]J.A.Armstrong,N.Bloembergen,J.Ducuing,et al.,Interaction between light waves in a nonlinear dielectric,Phys.Rev.,1962,127:1918-1939.
    [10]C.C.Wang and G.W.Racette,Measurement of parametric gain accompanying optical difference frequency generation,Appl.Phys.Lett.,1965,6:169-171.
    [11]J.A.Giordmaine and R.C.Miller,Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,Phys.Rev.Lett.,1965,14:973-975.
    [12]K.P.Burneika,M.V.Ignatavichus,V.I.Kabelka,et al.,Parametric Light Amplification and Oscillation in KDP with Mode-Locked Pump,IEEE J.Quantum Electron.,1972,8(6):574.
    [13]A.Laubereau,L.Greiter,and W.Kaiser,Interse tunable picosecond pulses in the infrared,Appl.Phys.Lett.,1974,25(1):87-89.
    [14]Anna Fragemann,Optical parametric amplification with Periodically poled KTiOPO_4,Doctoral Thesis,2005.
    [15]M.L.Bortz,M.A.Arbore,and M.M.Fejer,Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,Opt.Lett.,1995,21(1):49-51.
    [16] John J. Zayhowski, Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers, Opt. Lett. 1997, 22(3): 169-171.
    [17] P. E. Powers, K. W. Aniolek, et al., Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator, Opt. Lett., 1998, 23(24): 1886-1888.
    [18] A. Galvanauskas, A. Hariharan, D. Harter, et al., High-energy femtosecond pulse amplification in a quasi-phase-matched parametric amplifier, Opt. Lett., 1998, 23(3): 210-212.
    [19] K. W. Aniolek, R. L. Schmitt, et al., Microlaser-pumped periodically poled lithium niobate optical parametric generator-optical parametric amplifier, Opt. Lett., 2000, 25(8): 557-559.
    [20] J. Hellstrom, G. Karlsson, V. Pasiskevicius, et al., Optical parametric amplification in periodically poled KTiOPO_4 seeded by an Er-Yb: glass microchip laser, Opt. Lett., 2001, 26(6): 352-354.
    [21] F. Rotermund, V. Petrov, F. Noack, et al., Compact all-solid-diode-pumped femtosecond laser source vased on chirped pulse optical parametric amplification in periodically poled KTiOPO_4, Elecron. Lett., 2002, 38(12): 561-563.
    [22] G. Karlsson, Pasiskevicius, et al., Generation of 100-kW-level pulses at 1.53μm in the diode-pumped Er-Yb: glass laser-PPKTP optical parametric amplifier system, Proc. SPIE, 2002, 5137:37.
    [23] I. Jovanovic, J. R. Schmidt, and C. A. Ebbers, Optical parametric chirped-pulse amplification in periodically poled KTiOPO_4, Appl. Phys. Lett., 2003, 83: 4125-4127.
    [24] A. Fragemann, V. Pasiskevicius, G. Karlsson, et al., High-peak power nanosecond optical parametric amplifier with periodically poled KTP, Opt. Express, 2003, 11(11): 1297.
    [25] An-Chung Chiang, Tsong-Dong Wang, Yen-Yin Lin, et al., Pulsed Optical Parametric Generation, Amplification, and Oscillation in Monolithic Periodically Poled Lithium Niobate Crystals, IEEE J. Quantum. Electron., 2004, 40(6): 791-799.
    [26] F. Rotermund, C. Yoon, V. Petrov, et al., Aplication of periodically poled stoichiometric LiTaO_3 for efficient optical parametric chirped pulse amplification at 1 kHz, Opt. Express, 2004, 12(26): 6421-6427.
    [27] A. Fragemann, V. Pasiskevicius, and F. Laurell, Broadband nondegenerate optical parametric amplification in the mid infrared with periodically poled KTiOPO_4, Opt. Lett., 2005, 30(17): 2296-2298.
    [28] I. Jovanovic, N. Forget, C. G. Brown, et al., Generation of hight-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO_4, Opt. Lett., 2005, 30: 1036-1038.
    [29] M. Tiihonen, V. Pasiskevicius, and F. Laurell, Broadly tunable picosecond narrowband pulses in a Periodically-poled KTiOPO_4 parametric amplifier, Opt. Express, 2006, 14(19): 8728-8736.
    [30] T. Mochizuki, S.Yamamoto, T. Shimura, et al., Optical parametric amplification of mid-infrared femtosecond pulses using periodically-poled lithium niobate, Lasers and Electro-Optics-Pacific Rim, 2007, Conference on, 1-2.
    [31] G. M. Gale, M. Cavallari, T. J. Driscoll, et al., Sum-20-fs tunable pulses in the visible from an 82-MHz Optical parametric oscillator, Opt. Lett., 1995, 20(154): 1562-1564.
    [32] T. Wilhelm, J. Piet, and E. Riedle Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter, Opt. Lett., 1997, 22(19): 1494-1496.
    [33] G. Cerullo, M. Nisoli and S. De Silvestri, Generation of 11fs pulses tunable across the visible by optical parametric amplification, Appl. Phys. Lett., 1997, 71: 3616-3618.
    [34] G. Cerullo, M, Nisoli, S. Stagire, et al., Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible, Opt. Lett., 1998, 23(16): 1283-1285.
    [35] A. Shirakawa, I. Sakane, and T. Kobayashi, Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared, Opt. Lett., 1998, 23(16): 1292-1294.
    [36] A. Shirakawa, I. Sakane, M. Takasaka, et al., Sub-5-fs-visible pulse generation by pulse-front-matched noncollinear optical parametric amplification, Appl. Phys. Lett., 1999, 74(16): 2268-2270.
    [37] G. Cerullo, M, Nisoli, S. Stagire, et al., Mirror-dispersion-controlled OPA: a compact tool for sub-10-fs spectroscopy in the visible, Opt. Lett., 1999, 24(21): 1529-1531.
    [38] Z. Rossi, D. Polli, G. Cerullo, et al., Few-optical cycle laser pulses by OPA: broadband chirped mirror compression and SPIDER characterization, Appl. Phys. B, 2002, 74: S245-S249.
    [39] A. Baltuska, T. Fuji, and T. Kobayashi, Visible pulse compression to 4-fs by optical parametric amplification and programmable dispersion control, Opt. Lett., 2002, 27: 1220-1222.
    [40] Zhao Baozhen, Liang Xiaoyan, Leng Yuxin, et al., Iinvestigation of noncollinear QPM optical parametric amplification based on periodically poled KTP, Opt. Communications, 2005, 248: 387-394.
    [41] Dieter H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, n_e, in congruent lithium niobate, Opt. Lett., 22(20): 1553-1555.
    [42] S. J. B. Yoo, C, Caneau, R. Bhat, et al., All optical wavelength conversion by quasi-phase matched DFG in AlGaAs waveguides, Appl. Phys. Lett., 1996,68: 2609-2611.
    [43] C. Q. Xu, H. Okayama, and M. Kawahara, 1.5μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_3 channel waveguide, Appl. Phys. Lett., 1993, 63: 3559-3561.
    [44] M. H. Chou, J. Hauden, M. A. Arbore, et al., 1.5μm band wavelength conversion based on difference-frequency generation in LiNbO_3 waveguides with integrated coupling structures, Opt. Lett., 1998,23: 1004-1006.
    [45] Song Yu and Wanyi Gu, "Wavelength conversions in quasi-phase-matched LiNbO_3 waveguide based on double-pass cascaded x{2) SFG+DFG interactions", IEEE J. Quantum Electron., 2004, 40: 1548-1554.
    [46] J. Wang, J, Sun, J. Li, et al., Single-to-dual channel wavelength conversion of picosecond pulses using PPLN-based double-ring fibre laser, Electron. Lett., 2006,42(4).
    [47] Jian Wang, Junqiang Sun, Xinliang Zhang, et al., Experimental observation of tunable wavelength down- and up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide, Opt. Communications, 2007, 269: 179-187.
    [48] Xueming Liu, Hanyi Zhang, Yili Guo, et al., Optimal Design and Applications for Quasi-phase-matching Three-Wave Mixing, IEEE J. Quantum Electron., 2002, 38(9): 1225-1233.
    [49] Shiming Gao, Changxi Yang, and Guofan Jin, Flat Broad-Band Wavelength Conversion Based on Sinusoidally Chirped Optical Superlattices in Lithium Niobate, IEEE Photon. Tech. Lett., 2004, 16(2): 557-559.
    [50] Benyuan Gu, Yan Zhang, and Bizhen Dong, Investigations of harmonic generations in aperiodic optical superlattices, J. Appl. Phys., 2000, 87(11): 7629-7637.
    [1]Danielius R,Piskarskas A,Stabinis A,et al.,Traveling-wave parametric generation of widely tunable,highly coherent femtosecond light pulses,J.Opt.Soc.Amer.B,Opt.Phys.,1993,10(11):2222-2232.
    [2]Dubietis A,Jonusauskas G,and Piskarskas A,Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,Opt.Commun.,1992,88:437-440.
    [3]马晶,章若冰,刘博 等,飞秒BBO光参量放大中闲频光二次谐波的产生,物理学报,2005,54(8):3675-3679.
    [4]刘华刚、章若冰、朱晨 等,非单色光抽运的光参量啁啾脉冲放大的带宽及增益特性研究,物理学报,2008,57(5):2981-2986.
    [5]Bader U,Meyn J P,Bartschke J,et al.,Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser,Opt.Lett.,1999,24:1608-1610.
    [6]Fragemann A,Pasiskevicius V,and Laurell F,Broadband nondegenerate optical parametric amplification in the mid infrared with periodically poled KTiOPO_4,Opt.Lett.,2005,30(17)::2296-2298.
    [7]Sudmeyer T,Aus der Au J,Paschotta R,et al.,Novel ultrafast parametric systems:high repetition rate single-pass OPG and fibre-feedback OPO,J.Phys.D:Appl.Phys.,2001,34:2433-2439.
    [8]姜永亮,赵保真,梁晓燕 等,基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大,物理学报,2007,56(5):2709-2713.
    [9]Ye Liu,Jean-Claude Diels,Group-Velocity Matched Femtosecond Parametric Oscillation by Noncollinear Quasi-Phase Matching,IEEE J.Quantum Electron.,2006,42(8):760-764.
    [10]Danielius R,Piskarskas A,Trapani P D,et al.,Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,Opt.Lett.,1996,21(13):973-975.
    [11]Wilhelm T,Piel J,Riedle E,Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,Opt.Lett.,1997,22(19):1494-1496.
    [12]Steven T Y,Stephan P V,Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,Opt.Lett.,1999,24(3):133-135.
    [13]Mark J M,Vince D,Peter E P,et al.,Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,Opt.Lett.,1999,24(17):1227-1229.
    [14]Weiquan Zhang,Optimum operation of femtosecond parametric oscillation of a noncollinear phase match in KTP,Appl.Opt.,2005,44(12);2431-2437.
    [15]Gabor K,Karoly O,Marta C,et al.,Optical Parametric Amplification of Femtosecond Ultraviolet Laser Pulses,IEEE J.Sel.Topics Quantum Electron.,2004,10(6):1259-1267.
    [16]Bader U,Mattern T,Bauer T,et al.,Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate,Opt.Commun.,2003,217:375-380.
    [17]Zhao Baozhen,Liang Xiaoyan,Leng Yuxin,et al.,Investigaion of noncollinear QPM optical parametric amplification based on periodically poled KTP,Opt.Commun.,2005,248:387-394.
    [1]A.Dubietis,G.Jonusauskas,A.Piskarskas.Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal.Opt.Commun.,1992,88(4-6):437-440.
    [2] R. Danielius, A. Piskarskas, A. Stabinis et al.. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. J. Opt. Soc. Amer. B: Opt. Phys., 1993, 10(11): 2222-2232.
    [3] Weiquan Zhang. Femtosecond optical parametric generation of noncollinear phase matching for a biaxial crystal. Appl. Opt., 2003,42(27): 5596-5601.
    [4] Ross I N, Matousek P, Towrie M et al.. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Optics Commun., 1997, 144(1): 125-133.
    [5] Wang Y J, Barry L D, Optical-parametric-amplification-based prepulse elminator for a chirped-pulse-amplification Nd: glass laser, J. Opt. Soc. Am (B), 1994, 11(9): 1531-1538.
    [6] Yang Xiaodong, Xu Zhizhan, Leng Yuxin, et al., Multiterawatt laser system based on optical parametric chirped pulse amplification, Opt. Lett., 2002, 27(13): 1135-1137.
    [7] Yang Xiaodong, Xu Zhizhan, Zhang Zhengquan, et al., Gain bandwidth of optical parametric chirped pulse amplification with a type-I noncollinear phase-matched BBO crystal, Acta Optica Sinica, 2000,20(8): 1151-1152.
    [8] A. Baltuska, T. Fuji, T. Kobayashi, Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control, Opt. Lett., 2002, 27(5): 306-308.
    [9] Lawrence E. Myers, Walter R. Bosenberg, Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators, IEEE J. Quantum Electron., 1997, 33(10): 1663-1672.
    [10] T. Wilhelm, J. Piel, E. Riedle. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter, Opt. Lett., 1997, 22(19): 1494-1496.
    [11] Steven T. Yang, Stephan P. Velsko, Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate, Opt. Lett., 1999,24(3): 133-135.
    [12] Akira Shirakawa, Isao Sakane, Takayoshi Kobayashi, Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared, Opt. Lett., 1998,23(16): 1292-1294.
    [13] Ye Liu, Jean-Claude Diels, Group-Velocity Matched Femtosecond Parametric Oscillation by Noncollinear Quasi-Phase Matching, IEEE J. Quantum Electron., 2006, 42(8): 760-764.
    [14] Norman P. Barnes, Vincent J, Corcoran Parametric generation processes: spectral bandwidth and acceptance angles, Appl. Opt., 1976, 15(3): 696-699
    [15]L.Hongjun,Z.Wei,C.Guofu,et al.,Investigatin of spectral bandwidth of optical parametric amplification,Appl.Phys.B,2004,79:569-576.
    [16]马晶,章若冰,张伟力等,飞秒光参量放大中三波群速度失配的补偿,物理学报,2005,54(2):755-762.
    [1]S.J.B.Yoo,Wavelength conversion technologies for WDM network applications,J.Lightwave Technol.,1996,14:955-966.
    [2]C.Q.Xu,H.Okayama,and M.Kawahara,1.5μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO_3 channel waveguide,Appl.Phys.Lett.,1993,63:3559-3561.
    [3]M.H.Chou,I.Brenner,K.R.Parameswaran,et al.,Stabiliti and bandwidth enhancement of difference frequency generation(DFG)-based wavelength conversion hy pump detuning,Electron.Lett.,1999,35(12):978-980.
    [4]M.H.Chou,J.Hauden,M.A.Arbore,et al.,1.5μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,Opt.Lett.,1998,23:1004-1006.
    [5]K.Gallo,G.Assanto,G.Stegeman,Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,Appl.Phys.Lett.,1997,71:1020-1022.
    [6] X. L. Zeng, Xianfeng Chen, Yuxin Xia, Observation of all-optical wavelength conversion based on cascaded effect in periodically poled lithium niobate waveguide, Optics and Laser Techno., 2003, 35: 187-190.
    [7] G. P. Banfi, P. K. Datta, V. Degiorgio, et al., Wavelength shifting and amplification of optical pulses through cascaded second order processes in periodically poled lithium niobate, Appl. Phys. Lett., 1998,73(2): 136-138.
    [8] C. G. Trevino-Palacios, G. I. Stegeman, P. Baldi, et al., Wavelength shifting using cascaded second order processes for WDM applications at 1.55μm, Electron. Lett., 1998, 34(22): 2157-2158.
    [9] I. Cristiani, G. P. Banfi, V. Degiorgio, et al., Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide, Appl. Phys. Lett., 1999, 75(9): 1198-1200.
    [10] I. Cristiani, V. Degiogio, L. Socci, et al., Polarization insensitive wavelength conversion in a lithium niobate wave guide by the cascading technique, IEEE Photon. Technol. Lett., 2002, 14(5): 669-671.
    [11] B. Chen, C. Q. Xu, Analysis of novel cascaded SFG+DFG wavelength conversions in quasi-phase-matched waveguides, IEEE. J. Quantum Electron., 2004, 40(3): 256-261.
    [12] Song Yu and Wanyi Gu, "Wavelength conversions in quasi-phase-matched LiNbO_3 waveguide based on double-pass cascaded x(2) SFG+DFG interactions", IEEE J. Quantum Electron., 2004, 40: 1548-1554.
    [13] T. Suhara and H. Nishihara, Theoretical analysis of waveguide second-harmonic generation phase matchend with uniform and chirped gratings, IEEE J. Quantum Electron., 1990, 26: 1265-1276.
    [14] Zeng Xianlong, Chen Xianfeng, Wu Fei, et al., Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings, Opt. Comtnun., 2002, 204: 407-411.
    [15] T. Umeki, M. Asobe, Y. Nishida, et al., Widely tunable 3.4μm band difference frequency generation using apodized x(2) grating, Opt. Lett., 2007, 32(9): 1129-1131.
    [16] X. Liu, H. Zhang, Y. Guo, et al., Optimal design and applications for quasi-phase-matching three-wave mixing, IEEE. J. Quantum Electron., 2002, 38(9) : 1225-1233.
    [17] K. Mizuuchi and K. Yamamoto, Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase-shifts, Opt. Lett., 1998,23: 1880-1882.
    [18] M. H. Chou, K. R. Parameswaran, M. M. Fejer, et al., Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides, Opt. Lett., 1999, 24: 1157-1159.
    [19] Y. W. Lee, F. C. Fan, C. Huang, et al., Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate, Opt. Lett., 2002, 27: 2191-2193.
    [20] Shiming Gao, Changxi Yang, and Guofan Jin, Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate, IEEE Photon. Technol. Lett., 2004, 16(2): 557-559.
    [21] K. Gallo and G. Assanto, Analysis of lithium niobate all-optical wavelength shifters for the third spectral window, J. Opt. Soc. Am. B, 1999, 16(5): 741-753.
    [22] C. Q. Xu, K, Fujita, A. R. Pratt, et al., Optimization of 1.5μm-band LiNbO3 quasi-phase-matched wavelength conversion for optical communication systems, IEICE Trans. Electron., 2000, E83-C(6): 884-891.
    [23] R. Ramponi, R. Osellame, M. Marangoni, et al., Cascading of second-order processes in a planar i-indiffused LiNbO_3 waveguide: Application to frequency shifting, Opt. Commun., 1999, 172: 203-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700