阵列偶相关理论及其在扩频通信系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
序列和阵列设计理论在现代通信、雷达、声纳、制导、空间测控、以及电子对抗等系统中具有十分广泛的应用。结构优良的序列和阵列信号可以提高系统的抗干扰、抗噪声、抗截获、抗衰落等性能,可以实现扩频多址通信等。因此对其进行深入研究在理论和应用上都具有十分重要的意义。
     本文主要对基于阵列偶相关理论的各种相关信号形式进行了深入研究。
     首先推导出二元序列偶的周期相关理论界,这为进一步研究具有良好相关特性的二元序列偶集提供了理论基础。
     提出了广义伪随机屏蔽二进序列偶,给出了其变换性质、组合允许条件。搜索出若干广义伪随机屏蔽二进序列偶,并与伪随机二进序列偶进行了对比分析。并将其推广到多维广义伪随机屏蔽二进阵列偶,研究了其等价变换性质、频谱特性和组合允许条件,利用这些条件对小体积广义伪随机屏蔽二进阵列偶进行搜索,并提出了广义伪随机屏蔽二进阵列偶的折叠构造法。
     提出了周期屏蔽二元互补序列偶集。研究了其等价变换性质,及其与非周期屏蔽二元互补序列偶集的等价关系。提出了利用最佳屏蔽二进序列偶与阵列偶、列正交矩阵、周期屏蔽二元互补序列偶集伙伴以及周期乘积法等多种构造方法。
     在奇周期相关条件下提出了奇周期屏蔽二元互补序列偶集。给出了屏蔽序列偶的奇周期相关函数的特性以及奇周期屏蔽二元互补序列偶集的等价变换性质,及其与非周期和周期屏蔽二元互补序列偶集的等价关系。搜索出若干奇周期屏蔽二元互补序列偶集,并给出了多种构造方法。结果表明其与奇周期二元互补序列集相比具有更大的存在空间。
     提出了二元互补阵列偶集。对二元阵列偶的非周期相关特性以及二元互补阵列偶集的等价变换性质进行了研究,得出二元互补阵列偶集的变维并不影响互补性的结论。搜索出若干二元互补阵列偶集,提出多种二元互补阵列偶集的构造方法。研究了互正交二元互补阵列偶集集合的生成方法,由此可生成大量具有更大阵列偶数与体积的互正交二元互补阵列偶集集合。
     研究了基于最佳序列偶和正交矩阵构造ZCZ序列偶集的方法。对其在QS-CDMA系统中的应用进行了分析。结果表明该系统具有较好的性能,可满足多用户通信的要求,因此具有一定的应用前景。并对基于序列偶的扩频通信系统设计方案进行了讨论。
The design theory of sequences and arrays plays an increasingly important role in modern communications, radar, sonar, navigation, space ranging and controlling, and electronically countermeasures systems etc. Well-structured sequence and array signals can improve system’s properties of anti-interference, anti-noise, anti-doubts, the decline of performance and achieve spread spectrum multiple access communication. Therefore, an in-depth study of these signals is of vital importance both in theory and applications.
     The thesis mainly studied various kinds of signals based on array pair correlation theory.
     Firstly, the periodic correlation bounds of binary sequence pair is educed, which provide the theory foundation for further research of binary sequence pair sets with good correlation property.
     Generalized pseudorandom punctured binary sequence pair along with the transformation properties and combinatorial limited conditions are presented. Some generalized pseudorandom punctured binary sequence pairs are searched out, and is compared with pseudorandom binary sequence pair. This concept is extended to generalized pseudorandom punctured binary array pair which is a kind of multi-dimension signal. The equivalent transformation properties, spectrum character and combinatorial limited conditions are discussed also. Based on these conditions, several generalized pseudorandom punctured binary array pairs with small volumes are obtained. The folding construction method is presented.
     Periodic punctured binary complementary sequence pair set is proposed. The equivalent transform properities and relation with aperiodic punctured binary complementary sequence pair set are studied. Many construction methods are presented, such as using perfect punctured binary sequence pair and array pair, column orthogonal matrix, periodic punctured binary complementary sequence pair set’s mate and periodic product methods etc.
     Under odd-periodic correlation condition, the odd-periodic punctured binary complementary sequence pair set is proposed. The properities of punctured binary sequence pair’s odd-periodic correlation function, the equivalent transformation properties of odd-periodic punctured binary complementary sequence pair set and relations with aperiodic and periodic punctured binary complementary sequence pair set are presented also. Odd-periodic punctured binary complementary sequence pair sets are searched out, and several construction methods are proposed. The result shows that it has larger exist space compared with odd-periodic binary complementary sequence set.
     The binary complementary array pair set is proposed also. The aperiodic correlation properities of binary array pair and binary complementary array pair set’s equivalent transformation properties are studied, and find that changing dimension doesn’t affect its complementary properity. Some binary complementary array pair sets are obtained, and many kinds of construction methods are proposed. The synthesized methods of mutual orthogonal binary complementary array pair set are studied also, through this method amount of mutual orthogonal binary complementary array pair set with larger numbers and volumes can be obtained.
     The construction method of ZCZ sequence pair set is studied based on perfect sequence pair and orthogonal matrix, and analyzed its application in QS-CDMA system. The result shows that it has good performance, satisfies the requirement of multi-user communication, and has certain application foreground. The design scheme of spread-spectrum system based on sequence pairs is discussed.
引文
[1] Simon M K, Omura J K, Scholtz R A, Levitt B K.Spread spectrum communications handbook.北京:人民邮电出版社, 2002.
    [2]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术.西安:西安电子科技大学出版社,2004.
    [3]田日才,扩频通信.北京:清华大学出版社,2007.
    [4]李建业.LAS-CDMA——新一代的无线技术.电信科学, 2001,(1):60-62.
    [5] Wang X, Poor H V. Wireless communication systems advanced techniques for signal reception. Beijing: Publishing House of Electronics Industry,2004.
    [6] Shannon C E.A mathematical theory of communication.The Bell System Technical Journal, 1948, 27(7): 379-423, 623-656.
    [7]朱近康.扩展频谱通信及其应用.合肥:中国科学技术大学出版社,1993.
    [8] Simon M K, et al. Spread spectrum communication. Vol. I-III: Computer Science Press, 1985.
    [9]梅文华,王淑波,邱永红等.跳频通信.北京:国防工业出版社,2005.
    [10]孙立新,邢宁霞.CDMA(码分多址)移动通信技术.北京:人民邮电出版社,1996.
    [11]竺南直,肖辉,刘景波.码分多址(CDMA)移动通信系统.北京:电子工业出版社,1999.
    [12]吴晓文,段晓明,蒲迎春.第三代移动通信标准化研究的最新进展.电子学报,1999,27(11A):21-24.
    [13]尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展望.电子学报, 1999,27(11A):3-8.
    [14]胡建栋,郑朝晖,龙必起等.码分多址与个人通信.北京:人民邮电出版社,1996.
    [15]吴伟陵.移动通信中的关键技术.北京:北京邮电大学出版社,2000.
    [16] Omura J K, Yang P T. Spread spectrum S-CDMA for personal communication services.Military Communications Conference, 1992:269-273.
    [17] Pickholtz R L, Milstein L B, Schilling D L. Spread spectrum for mobile communications. IEEE Trans. Veh. Technol.1991,40(2):313-322.
    [18] De G R, Elia C, Viola R. Bandlimited quasi-synchronous CDMA: a novel satellite accesstechnique for mobile and personal communication systems. IEEE Journal on Selected Areas in Communications.1992, 10(2): 328-343.
    [19] Golomb S W. Sequences with randomness properties. 1955.
    [20] Zierler N. Several binary sequences generators. 1955, MIT Lincoln Lab.
    [21]钟义信.伪噪声编码通信.北京:人民邮电出版社, 1979.
    [22]赵晓群.阵列偶和加权二元序列理论的研究: [博士学位论文].哈尔滨:哈尔滨工业大学. 1998.
    [23] Sarwate D V, Pursley M B.Crosscorrelation properties of pseudorandom and related sequences. Proceedings of the IEEE, 1980, 68(5): 593-619.
    [24]杨义先.最佳信号设计的进展.中国科学基金, 1995, (2): 7-12.
    [25] [苏]斯维尔德利克M B.最佳离散信号.郭桂荣.北京:电子工业出版社, 1984.
    [26]杨义先,林须端.编码密码学.北京:人民邮电出版社, 1992.
    [27]林茂庸.信号理论与应用.北京:电子工业出版社, 1990.
    [28]李振玉,卢玉民.扩频选址通信.北京:国防工业出版社, 1988.
    [29] [美]杰里L.依伏斯,爱得华K.里笛编.现代雷达原理.卓荣邦,杨士毅.北京:电子工业出版社, 1991.
    [30]梅文华,杨义先.跳频通信地址编码理论.北京:国防工业出版社, 1996.
    [31] [美]阿汗麦得N,罗K R.数字信号处理中的正交变换.胡正明,陆传赉.北京:人民邮电出版社, 1979.
    [32]万哲先,代宗铎,刘木兰,冯绪宁.非线性移位寄存器.北京:科学出版社, 1978.
    [33]许成谦.最佳离散信号设计理论研究: [博士学位论文].北京:北京邮电大学, 1997.
    [34] Bomer L, Antweiler M. Perfect binary arrays with 36 elements. Electronics Letters, 1987, 23(14):730-732.
    [35] Bomer L, Antweiler M.Two-dimensional perfect binary arrays with 64 elements. IEEE Trans. Inf. Theory, 1990, 36(2):411-414.
    [36] Jedwab J, Davis J A . Nonexistence of perfect binary arrays. Electronics Letters. 1993, 29(1):99-101.
    [37]杨义先.最佳信号理论与设计.北京:人民邮电出版社, 1996.
    [38] Pursley M B, Sarwate D V. Evaluation of correlation parameters for periodic sequences. IEEE Trans. Inf. Theory, 1977, IT23 (7): 508-513.
    [39] Luke H D. Binary alexis sequences with perfect correlation. IEEE Trans. Commun.,2001, 49(6): 966-968.
    [40] Cao X W, Qiu W S. A note on perfect arrays. Signal Processing Letters, 2004,11(4):435-438.
    [41] Luke H D.Almost-perfect quadriphase sequences. IEEE Trans. Inform. Theory, 2001, 47(6):2607-2608.
    [42] Fan P Z, Darnell M. Sequence designs for communication application, Taunton, Somerset, U.K., Res.Studies Press Ltd.,1996,chapter 1.
    [43]黄国泰.关于Hadamard矩阵的第四个猜想.数学的实践与认识. 1988, (4):68-70.
    [44]张西华.不存在4k(k≥1)阶完全循环的Hadamard矩阵的猜想的证明.科学通报,1984, 29(24):1485-1486.
    [45] Alltop W O. Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory, 1980, 26:250-254.
    [46] Paterson K G. Binary sequence sets with favorable correlations from difference sets and MDS codes. IEEE Trans. Inform. Theory, 1998, 44 (1): 172-180.
    [47]肖国镇,梁传甲,王育民.伪随机序列及其应用.国防工业出版社, 1985.
    [48] No J S, Chung H, Yun M S. Binary pseudorandom sequences of period 2m-1 with ideal autocorrelationgenerated by the polynomial zd+(z+1)d. IEEE Trans. Inf. Theory, 1998, 44(3): 1278-1283.
    [49] Scholtz R A , Welch L R. GMW sequences. IEEE Trans. Inf. Theory, 1984, IT30 (5): 548-553.
    [50] Wolfmann J. Almost perfect autocorrelation sequences. IEEE Trans. Inf. Theory, 1992, 38 (4): 1412-1418.
    [51] Hans D. Almost perfect nonlinear power functions on GF(2n): the Welch Case. IEEE Trans. Inf. Theory, 1999, 45 (4): 1271-1275.
    [52] Klapper A M, Goresky M. Partial period autocorrelations geometric sequences. IEEE Trans. Inf. Theory, 1994, 40 (2): 494-502.
    [53] Hoholdt H, Justesen J. Ternary sequences with perfect periodic autocorrelation. IEEE Trans. Inf. Theory, 1983, IT29 (4): 597-600.
    [54] Luke H D. Almost-perfect polyphase sequences with small phase alphabet. IEEE Trans. Inf. Theory, 1997, 43 (1): 361-363.
    [55] Calabro D, Wolf J K. On the synthesis of two-dimensional arrays with desirable correlation properties. Information And Control, 1968, 11: 530-560.
    [56] Antweiler M M, Bomer L, Luke H D. Perfect ternary arrays. IEEE Trans. Inf. Theory, 1990, 36(3): 696-705.
    [57] Arasu K T, Launey W D. Two-dimensional perfect quaternary arrays. IEEE Trans. Inf. Theory, 2001, 47 (4): 1482-1494.
    [58] Moharir P S. Generalized PN sequences. IEEE Trans. Inf. Theory, 1977, 23(6): 782-784.
    [59] Golay M J E. Complementary series. IEEE Trans. Inf. Theory, 1961,7(2): 82-87.
    [60] Luenberger D G. On Barker codes of even length. Proceeding of the IEEE, 1963, 51(1): 230-231.
    [61] Golomb S W, Scholtz R A. Generalized Barker sequences. IEEE Trans. Inf. Theory, 1965, 11(4): 533-537.
    [62] Chan Y K, Siu M K, Tong P. Two-dimensional binary arrays with good autocorrelation . Information and Control, 1979, 42:125-130.
    [63] Mitchell C. Comment existence of one-dimensional perfect binary arrays. Electronics Letters, 1988, 24(11):714.
    [64] Kopilovich L E. On perfect binary arrays. Electronics Letters, 1988, 24(9): 566-567.
    [65] Wild P. Infinte families of perfect binary arrays. Electronics Letters, 1988, 24(14):845-847.
    [66] Jedwab J, Mitchell C J. Constructing new perfect binary arrays. Electronics Letters, 1988, 24(11):650-652.
    [67] Jedwab J, Mitchell C J. Infinite families of quasiperfect and doubly quasiperfect binary arrays. Electronics Letters, 1990, 26(5):294-295.
    [68] Luke H D. Zweidimensionale folgen mit perfeken periodische korrelation -funktionen. Frequenz, 1987, 41:131-137.
    [69] Luke H D. Folgen mit perfeken periodischen auto-und korrelation funktionen. Frequenz, 1986,40:215-220.
    [70] Yang Y X. Comment 'Nonexistence of certain perfect binary arrays' and 'nonexistence of perfect binary arrays'. Electronics Letters. 1993, 29(11):1001-1002.
    [71] Yang Y X. Existence of one-dimensional perfect binary arrays. Electronics Letters, 1987, 23(24): 1277-1278.
    [72] Yang Y X. On the perfect binary arrays. J. of Electronics, 1990, 7(2): 175-181.
    [73]杨义先.最佳二进阵列研究.电子科学学刊, 1989, 11(5):500-508.
    [74]杨义先.准最佳二进阵列.电子科学学刊, 1992, 20(4):37-44.
    [75]于凯,陆传赉.关于循环Hadamard矩阵存在的必要条件.北京邮电大学学报,1995, 18(2): 32-36.
    [76]潘建中.关于“不存在4k(k≥1)阶完全循环的Hadamard矩阵的猜想的证明”的注.科学通报, 1986, 31(9):719.
    [77]李世群,杨义先.关于循环哈达玛猜想的讨论.北京邮电学院学报, 1990, 13(1):10-13.
    [78] Shimezawa K, Harada H, Shirai H. Cyclic shifted-and-extended codes based on almost perfect autocorrelation sequences for CDM transmission scheme. IEEE 60th Vehicular Technology Conference. 2004: 5087-5091.
    [79]李世群. 3维6阶Hadamard矩阵的发现.系统科学与数学, 1992, 12(3):277-279.
    [80] Taki Y, Miyakawa H. Even-shift orthogonal sequences. IRE Trans. Inf. Theory, 1969, 15(2):295-300.
    [81] Luke H D. Binary odd-periodic complementary sequences. IEEE Trans. Inf. Theory, 1997, 43(1):365-367.
    [82] Kemp A H, Darnel M. Synthesis of uncorrelated and nonsquare of multilevel complementary sequences. Electronics Letters, 1989, 25(12):791-792.
    [83] Sivaswamy R. Multiphase complementary codes. IEEE Trans. Inf. Theory, 1978, IT-24(5):546-552.
    [84] Frank R L. Polyphase complementary codes. IEEE Trans. Inf. Theory, 1980, IT-26(6):641-647.
    [85] Sarwate D V. Sets of complementary sequences. Electronics Letters, 1983, 19(18):711-712.
    [86] Darnell M, Kemp A H. Synthesis of multilevel complementary sequences. Electronics Letters, 1988, 24(19):1251-1252.
    [87] MaKinnon E R. Synthetis of single sets of 2n mutually orthogonal phase codes. Electronics Letters, 1990, 26(16):1240-1241.
    [88] Budisin S Z. Supercomplementary sets of sequences. Electronics Letters, 1987, 23(10):504-506.
    [89] Spasojevic P, Georghiades C N. Complementary sequences for ISI channel estimation. IEEE Trans. Inf. Theory, 2001, 47( 3):1145-1152.
    [90] Barker R H. Group synchonizing of binary digital systems. In Communication Theory. Jackson Wed. New York: Academic Press, Inc., 1953.
    [91] Welch L R. Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory, 1974, IT-20 (3): 397-399.
    [92] Levenshtein V I. New lower bounds on aperiodic crosscorrelation of binary codes. IEEE International Symposium on Information Theory, 1998:471.
    [93] MoGree T P, Cooper G R. Upper bounds and construction techniques for signal sets with constrained synchronous correlation and specified time-bandwidth product. IEEE Trans. Inf. Theory, 1984, IT-30(2):439-443.
    [94] Kumar P V, Liu C M. On lower bounds to the maximum correlation of complex roots-of-unity sequences. IEEE Trans. Inf. Theory, 1990, 36(3):633-640.
    [95] Chung H, Kumar P V. Optical orthogonal codes-new bounds and an optimal correlation. IEEE Trans. Inf. Theory, 1990, 36(4):866-873.
    [96] Blokhuis A, Tiersma H J. Bounds for the size of radar arrays. IEEE Trans. Inf. Theory, 1988, 34(1):164-167.
    [97] Hamkins J, Zeger K. Improved bounds on maximum size binary radar arrays. IEEE Trans. Inf. Theory, 1997, 43(3):997-1000.
    [98] Budisin S Z. Efficient pulse compressor for Golay complementary sequences. Electronics Letters, 1991, 27(3): 219-220.
    [99] Turyn R. Ambiguity functions of complementary sequences. IEEE Trans. Inf. Theory, 1963, 9(1): 46-47.
    [100] Kretschmer F F JR, Gerlach K. Low sidelobe radar waveforms derived from orthogonal matrices. IEEE Trans. Aero. Electro. Sys., 1991, 27(1): 92-102.
    [101] Gerlach K, Kretschmer F F JR. General forms and properties of zero cross-correlation radar waveforms. IEEE Trans. Aero. Electro. Sys., 1992, 28(1): 98-103.
    [102]朱晓华,贾鸿志.双频级联互补码的研究.电子学报, 1995, 23(7): 118-119.
    [103] Uehara S, Imamura K. Characteristic polynomials of binary complementary sequences. IEICE Trans. Fundamentals, 1997, E80-A(1): 193-196.
    [104] Karkkainen K H A, Leppanen P A. Linear complexity of binary Golay complementary. IEICE Trans. Fundamentals, 1996, E79-A(4): 609-613.
    [105] Habbab I M I, Turner L F. New class of M-ary communication systems using complementary sequences. IEE Proc. F., Commun., Radar & Signal Process., 1986, 133(3): 293-300.
    [106] Kruskal J B. Golay's complementary series. IRE Trans. Inform. Theory, 1961, 7(1): 273-276.
    [107] Ott Udo. Sharply flag-transitive projective planes and power residue difference sets. Journal of Algebra, 2004, 276(2):663-673.
    [108] Eliahou S, Kervaire M. Saffari B. A new restriction on the lengths of Golay complementary Sequences. J. of Comb. Theory, 1990, 55(1): 49-59.
    [109] Bomer L, Antweiler M. Periodic complementary binary sequences, IEEE Trans.on information Theroy, 1990,36(6):1487-1494.
    [110] Arasu K T. Xiang Q. On the existence of periodic complementary binary sequences. Designs, Codes and Cryptography, 1992, 2: 257-262.
    [111] Lin C T, Selfridge J L, Shine P J S. A note on periodic complementary binary sequences. J. Comb. Math. and Comb. Comput., 1995, 19: 225-229.
    [112] Dokovic D Z. Note on periodic complementary sets of binary sequences. Designs, Codes and Cryptogr. 1998, 13(3): 251-256.
    [113] Luke H D, Sehotten H D.Odd-Perfect almost binary correlation sequences,IEEE Trans. On Aerospace and Eleetronie Systems, 1995, 31(1), 495- 498.
    [114] Luke H D. Ternary complementary and Welti-Folgen. Frequenz, 1989, 43(9): 228-233.
    [115] Sehotten H D, Bomer L, Antweiler M. Complementary ternary sequences. In 14th Symp. Inform. Theory and Its Appl., (SITA’91) 1991, 597-599.
    [116] Gavish A, Lempel A. On ternary complementary sequences. IEEE Trans. Inf. Theory, 1994, 40(3): 522-526.
    [117] Budisin S Z. New complementary pairs of sequences. Electronics Letters, 1990, 26(13):881-883
    [118] Budisin S Z. New multilevel complementary pairs of sequences. Electronics Letters, 1990, 26(22):1861-1863.
    [119] Craigen R. Complex Golay sequences. J. Comb. Math. Comb. Comput, 1994,15(1): 161-169.
    [120] Healey P. Complementary code sets for OTDR. Electronics Letters, 1989, 25(11):692-693.
    [121] Budisin S Z. Complementary Huffman sequences. Electronics Letters, 1990, 26(8): 533-534.
    [122] Feng K Q, Shiue P J S, Xiang Q. On aperiodic and periodic complementary binary sequences. IEEE Trans. Inf. Theory, 1999, 45(1): 296-303.
    [123] Hideyuki T, NaoKi S, Makoto N. General construction of periodic complete complementary codes composed of expanded modulatable orthogonal sequences. IEEE Symp. Computer and Communications, 2000: 738-743.
    [124] Golay M J E. Multi-Slit spectrometry. J. Opt. Soc. Am., 1949, 39: 437-444.
    [125]蒋学峰,朱兆达.大多普勒容限巴克码脉压.航空学报, 1991, 12(3): A167-A172.
    [126] Chen X H, Oksman J. A new algorithm to optimize Barker code sidelobe suppression filters. IEEE Trans. Aero. Electro. Sys., 1990, 26(4): 673-677.
    [127] Urkowitz H. Comments on“new algorithm to optimize Barker code sidelobe suppression filters”. IEEE Trans. Aero. Elect. Sys., 1991, 27: 921.
    [128] Smith P M, Edmonson P J. Pulse Compression Using Weighted Combined Barker Codes. Can. J. Elect. & Comp. Eng., 1990, 15(3): 101-106.
    [129]杨光正. Barker码的一些结论和二元码的优选问题.电子科学学刊, 1995, 17(1): 35-41.
    [130] Lindner J. Binary sequences up to length 40 with best possible autocorrelation function. ElectronicsLetters, 1975, 11(21): 507.
    [131] Robin G. Suites binaries bien autocorrelees. Ann. Telecommun, 1984, 39(7-8): 333-334.
    [132] Friese M. Polyphase Barker sequences up to length 36. IEEE Trans. Inf. Theory, 1996, 42(4): 1248-1250.
    [133]Moharir P S. Ternary Barker codes. Electronics Letters, 1974, 10(22): 460-461.
    [134] Moharir P S, Selvarajan A. Optical Barker codes. Electronics Letters, 1974, 10(9): 154-155.
    [135] Moharir P S, Selvarajan A. Systematic search for optical Barker codes with minimum length. Electronics Letters, 1974, 10(12): 245-246.
    [136] Moharir P S, Rao K V, Varma S K. Barker towers. Electronics Letters, 1984, 20(25/26): 1027-1029.
    [137] Sarwate D V. Bounds on crosscorrelation and autocorrelation of sequences. IEEE Trans. Inf. Theory, 1979,131(6):720-724.
    [138] Sidelnikov V M. On mutual correlation of sequences. Soviet Math. 1971,12(1):197-201.
    [139] Levenshtein V I. New lower bounds on aperiodic crosscorrelation of binary codes. IEEE Trans. Inf. Theory, 1999,45(1):284-288.
    [140] Suehiro N. A signal design without co-channel interference for approximately synchronized CDMA systems. IEEE Journal on Selected Areas in Communications.1994,12(5):837-841.
    [141] Fan P Z, Suehiro N, Kuroyanagi N, Deng X M. Class of binary sequences with zero correlation zone. Electronics Letters ,1999,35(10):777-779.
    [142] Deng X M, Fan P Z. Spreading sequence sets with zero correlation zone. Electronics Letters, 2000, 36(11): 993-994.
    [143] Torii H, Nakamura M, and Suehiro N. A new class of zero-correlation zone sequences. IEEE Trans. Inf. Theory, 2004, 50(3): 559-565.
    [144] Torii H, Nakamura M. Enhancement of ZCZ sequence set construction procedure. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 2007, E90-A(2): 535-538.
    [145] Hayashi T. A generalization of binary zero-correlation zone sequence sets constructed from Hadamard matrices. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2004, E87-A(1):286-291.
    [146] Cha J S, Kameda S, Yokoyama M, etal. New binary sequences with zero-correlation duration for approximately synchronised CDMA. Electronics Letters. 2000,36(11):991-993.
    [147] Cha J S, Song S I, Lee S Y, etc. A class of zero-padded spreading sequences for MAI cancellation in DS-CDMA systems. IEEE 54th Vehicular Technology Conference. 2001, 4:2379-2383.
    [148] Cha J S. Class of ternary spreading sequences with zero correlation duration. Electronics Letters, 2001,37(10):636-637.
    [149] Zeng F X, Ge L J.On generalized orthogonal spreading sequences for quasi synchronous CDMA system.Information, The Fourth Pacific Rim Conference on Multimedia Communications and Signal Processing, 2003,11:645-649.
    [150] Zhang C, Lin X K, Hatori M. New sequence pairs with ear zero correlation windows. IEEE International Conference on Communications, 2004, 6:3261-3264.
    [151] Cha J S, Kwak K Y, Lee J,etal. Novel interference-cancelled ZCD-UWB system for WPAN. Proceeding of 2004 IEEE International Conference on Communications, 2004, 1: 95-99.
    [152] Cha J S, Hur N Y, Moon K, Lee C Y. ZCD-UWB system using enhanced ZCD codes. International Workshop on Ultra Wideband Systems and Technologies. 2004, 5:371-375.
    [153] Zeng F X, Zhang Z Y, Ge L J.Theoretical limit on two dimensional generalized complementary orthogonal sequence set with zero correlation zone in ultra wideband communications. International Workshop on Ultra Wideband Systems and Technologies. 2004, 5:197-201.
    [154] Hayashi T,Okawa S. Binary array set having a cross-shaped zero-correlation zone. IEEE Signal Processing Letters, 2004, 11(4):423-426.
    [155] Rathinakumar A, Chaturvedi A K. Mutually orthogonal sets of ZCZ sequences. Electronics Letters, 2004,40(18):1133-1134.
    [156] Wang X N, Fan P Z. A class of frequency hopping sequences with no hit zone. Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies. 2003:896-898.
    [157] Donelan H,O'Farrell T. Zero correlation zone sequences for multi-carrier DS-CDMA systems. Third International Conference on 3G Mobile Communication Technologies, 2002:141-145.
    [158] Guo X X, Chen J, Qui Y L,etal. A new architecture of matched-filter bank for high-speed code acquisition of ZCZ-CDMA system. Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2003:391-395.
    [159] Matsufuji S, Takatsukasa K, Kuroyanagi N. Ternary ZCZ sequence sets for efficient frequency usage. Proceedings of SCI 2000. 2000:119-123.
    [160] Matsufuji S, et al. Two types of polyphase sequence sets for approximately synchronized CDMA systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003, E86-A(1): 229-234.
    [161] Tang X H, Fan P Z. A class of pseudonoise sequences over GF(P) with low correlation zone. IEEE Trans. Inf. Theory, 2001, 47(4):1644-1649.
    [162]唐小虎.低/零相关区理论与扩频通信系统序列设计: [博士学位论文].成都:西南交通大学, 2001.
    [163] Jang J W, No J S, Chung H, Tang X H. Binary sequence sets with low correlation zone. Proceedings International Symposium on Information Theory, 2005. ISIT 2005: 487-490.
    [164] Hayashi T. A class of ternary sequence sets having a zero-correlation zone for even and odd correlationfunctions. Proceedings of IEEE International Symposium on Information Theory, 2003:434-434.
    [165] Donelan H, O'Farrell T. Families of ternary sequences with aperiodic zero correlation zones for MC-DS-CDMA. Electronics Letters , 2002,38(25):1660-1661.
    [166] Tang X H . Binary array set with zero correlation zone. Electronics Letters 2001, 37(13): 841-842.
    [167] Hayashi T. Ternary array set having a zero-correlation zone. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003, E86-A(8):2163-2167.
    [168] Hayashi T. A class of two-dimensional binary sequences with zero-correlation zone. IEEE Signal Processing Letters. 2002, 9(7): 217-221.
    [169]曾凡鑫.适应近似同步CDMA系统扩频序列.通信学报, 2003, 24(11-A):34-38.
    [170]陈斯超. CDMA系统的高效率双值零相关区序列集的开发方法.通信学报, 2003, 24(10):21-30.
    [171] Hayashi T. Binary zero-correlation zone sequence set construction using a primitive linear recursion. IEICE Trans. On Fundamentals, 2005,E88-A (7):2034-2038.
    [172] Hayashi T. Binary zero-correlation zone sequence set constructed from a M-sequence. IEICE Trans. On Fundamentals, 2006,E89-A (2):633-638.
    [173]曾凡鑫,葛利嘉.无线通信中的序列设计原理.北京:国防工业出版社,2007.
    [174] Fan P Z, Mow W H. On optimal training sequence sesign for multiple-antenna systems over dispersive fading channels and its extensions. IEEE Trans. Veh. Technol.. 2004,53(5): 1623-1626.
    [175] Long B Q, Zhang P,etal. A generalized QS-CDMA system and the design of new spreading codes. IEEE Trans. Veh. Technol., 1998, 47(4): 1268-1275.
    [176] Kim S H, Jang J W. New constructions of quaternary low correlation zone sequences. IEEE Trans. Inf. Theory, 2005,51(4): 1469-1477.
    [177]赵晓群,何文才,王仲文等.最佳二进阵列偶理论研究.电子学报,1999, 27 (1): 34-37.
    [178]何文才,赵晓群,贾世楼等.最佳二进阵列偶的复合构造法.电子学报, 1999, 27(4):51-54.
    [179]许成谦.差集偶与最佳二进阵列偶的组合研究方法.电子学报, 2001, 29(1): 87-89.
    [180]赵晓群,霍晓磊,刘颖娜.一种新的二元互补序列偶的构造方法.电子与信息学报.2005, 27(8):1335-1337.
    [181] Xu C Q, Zhao X Q. Periodic complementary binary sequence pairs. Journal of Electronics. 2002,19(2):152-159.
    [182]蒋挺,赵晓群,李琦,贾志成,候蓝田.准最佳二进阵列偶.电子学报,2003, 31(5): 751-755.
    [183]蒋挺,赵晓群,何文才,候蓝田.双准最佳二进阵列偶的研究.通信学报, 2003, 24(3):8-15.
    [184]蒋挺,候蓝田,赵晓群.最佳屏蔽二进阵列偶理论研究.电子学报.2004, 32(2):282-286.
    [185] Jiang T, Zhao X Q. Hou L T. Perfect Punctured Binary Sequence Pairs. Journal of Electronics, 2003, 20(4): 285-288.
    [186]蒋挺,赵晓群,侯蓝田.奇周期最佳屏蔽二进序列偶.系统工程与电子技术,2003, 25(4):513~516.
    [187]蒋挺,毛飞,赵成林等.几乎最佳二进阵列偶理论研究.电子学报. 2005, 33(10):1817-1821.
    [188]文红,胡飞,靳蕃.奇周期互补序列集.电波科学学报,2006,21(1):70-73,83.
    [189]王敬东,申敏.TI TMS320C55x DSP在TD-SCDMA系统中的应用.重庆邮电学院学报. 2002, 14(2):22-25.
    [190]马微微,黄其华,安建平.基于DSP+FPGA的扩频接收机快捕技术.电讯技术.2003,2:68-71.
    [191]陆重阳,卢东华. FPGA技术及其发展趋势.微电子技术. 2003,31(1):5-7.
    [192]束礼宝,宋克柱,王砚方.伪随机数发生器的FPGA实现与研究.电路与系统学报.2003,8(3):121-124.
    [193]郭经红,尤肖虎,程时昕.WCDMA系统中匹配滤波器的FPGA实现.通信学报.2002,22(1):52-58.
    [194]张欣.基于VHDL语言的并行数字相关器的数据通道设计.半导体技术.2003,28(1):40-43.
    [195]朱志燕,乔红.一种数字化直接序列扩频信号接收技术.电讯技术.2003,4:88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700