汽车传动系用双质量飞轮的设计方法与扭振隔振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,小排量(≤1.6L)轿车正逐渐得到人们的青睐,由于采用直列4缸发动机,传动系扭振噪声较大是普遍存在的现象。双质量飞轮式扭振减振器(DMF)能有效衰减动力传动系的扭振噪声,近年来发展十分迅速。然而只有少数国外汽车零部件供应商掌握DMF技术,国内至今还没有成熟的DMF设计理论和方法。而进口的DMF价格偏高,阻碍了其在小排量轿车上的广泛应用。因此,对DMF(特别是小排量轿车用DMF)进行研究具有实际意义。
     本文对应用最为广泛的周向长弧形螺旋弹簧双质量飞轮(DMF-CS)的设计理论进行研究,得出了DMF-CS主要性能参数的设计原则或方法,特别是采用新的方法推导出弧形弹簧的计算公式。继而针对某自主小排量轿车QR车型设计出一款DMF-CS减振器,并进行试验研究。汽车的运行工况非常复杂,要求DMF-CS具有多级弹性特性。因此,进一步对DMF-CS的变刚度方案进行研究,并提出适合小排量轿车用且具有“理想弹性特性”的变刚度方案——变节距弧形弹簧。接着,对一种新式的、性能更加完善的离心摆式DMF-CS扭振减振器进行了研究。重点对其隔振原理进行推导分析,利用离心摆的固有频率与所在双质量飞轮一侧的转速成正比的特性,通过调整设计参数离心摆式DMF-CS减振器能彻底消除发动机点火频率的激励,极大地提高了隔振性能。最后基于虚拟样机技术,对该减振器的隔振性能仿真分析。
Dual mass flywheel torsional damper (DMF) can fall the low natural frequencies of the power train below the idling speed of engine and effectively isolate the torsional vibration from engine, so DMF has been developed rapidly in recent years. However, the technology of DMF was only masted in several oversea companies. Up to the present, there hasn’t been mature method of DMF at home. Today, under the condition of higher fuel price and the global crisis of economy, people select a small displacement car more and more. But the torsional vibration and noise of the power train of a small displacement car is an universal phenomenon for 4-cylinder engine in line. Now, the DMF is almost foreign product and the higher price of DMF blocks its abroad application in the small displacement car. Therefore, the research on DMF (especially for a small displacement car) is very important.
     In the thesis, research on the mothed of DMF-CS combining in the item of exploitation of DMF in Jilin Province was based on the power train of a small displacement car(code name‘QR’). On this condition, the study and simulation analysis of the DMF-CS with centrifugal pendulum-type absorber which is an up-to-date product with much more perfect performance. The thesis combine theoretical analysis, simulation, and test verification together, drew some conclusions on the mothed of DMF-CS and performance of isolation of torsional vibration for DMF-CS with centrifugal pendulum-type. Details are introduced as followings.
     1. The characteristic analysis of torsional vibratioin of power train which does not only verify the effect of vibration isolation, but also offer the gist of torsional rigidity, moment of inertia parameters, is one of important taches in the processs of designing DMF. Considering the characteristics of power train of vehicle, the torsional vibration model of QR power train was built and the natural frequencies and normal modes were computed. The characteristic of torsional vibration of engine was analyzed and the critical plots of power train including CTD and DMF were drawn respectively. The result is that the number of critical resonance points is reduced from 4 to 1 in the common driving condition (4th gear), especially the harmful low resonance eliminated. At last, the influence on the natural characters of torsional vibration of power train by torsional rigidity of DMF was analyzed.
     2. The design method of DMF-CS was researched and the principle or means of some important parameters was summarized. The elasticity characteristic is always the keystone and nodus of the process of designing DMF-CS, so a new way was applied to educe the formula of arc spring in this thesis, avoiding the complex process by the exit way and extending the scope of the formula of arc spring. The requirement of damp character of DMF-CS was summarized, and the difficulty of design process was discussed. The topic how to ascertain the moment of inertia of the first flywheel and the second flywheel was analized. Subsequently, one set of DMF-CS with two-level elasticity characteristic was devised according to the QR power train, and the flow of exploitation of DMF-CS was summed up. After analyzing some projects of variable torsional rigidity, a new project of variable pitch arc spring with ideal elasticity characteristic was brought forward, the number of components of DMF-CS was decreased and the cost of DMF-CS was fallen by the project. The way on which the formula of arc spring is deduced and the variable pitch arc spring were directive and useful to research on DMF-CS.
     3. The research on DMF-CS was in underway phase at home, so there were short of the checkout way, test method and reference values of DMF-CS, and the correlative studies of the sample were explored. The method of arc spring was verified by the result of static torsional rigidity of DMF-CS. The dynamic character of DMF-CS was measured by the power in different frequencies, swing and pre-torsional angle. Further more, the variable rule of characterics of dynamic torsional rigidity and damp in medium and low frequency (0 ~ 40Hz ) was summarized, offering the gist of torsional rigidity and damp of DMF-CS. No matter what the method or conclusions of test about DMF-CS was useful of referencing to research on DMF-CS.
     4. Based on the researches mentioned, the DMF-CS with centrifugal pendulum-type absorber was studied. On the condition that the linking form between centrifugal pendulum-type absorbe and DMF-CS and the relative movement were analyzied, the mathematical model was built and the theory of isolation of torsional vibration was deeply researched. The differential equations were established using the theory of Lagrange, and the conclusion that the natural frequency of pendulum is proportional to the rotate speed of DMF-CS was drawn by computing the equations. Utilizing the above conclusion, the intia moment in reverse of pendulum was counteracted to the disturbing torque of engine at ignition frequency by adjusting the parameters of pendulum. Hereby, the disturbing torque of engine at ignition frequency was able to eliminate entirely in theory. For getting the more performance of the DMF-CS with centrifugal pendulum-type absorber, we further studied the isolation of torsional vibration under other disturbing torque at impormant frequencies of engine and on the condition of the pendulum being weared. Based on the virtual prototype technology, the model of QR power train which included the DMF-CS with centrifugal pendulum-type absorber was built, and simulation was done under different effect of engine. The simulation results show that DMF-CS with centrifugal pendulum-type absorber almost eliminates the disturbing torque of engine at ignition frequency and restains the disturbing torque below ignition frequency. The simulation results are agreement to theory analysis, which validates the analysis and the mothed of modeling of DMF-CS with centrifugal pendulum-type absorber.
引文
[1]吕振华,冯振东,程维娜,梁恩忠.汽车传动系扭振噪声的发生机理及控制方法述评[J].汽车技术,1993(2):1-4.
    [2] Shaver R. Manual transmission clutch systems[J]. AE-17. Warrendale PA: Society of Automotive Engineering, Inc., 1997.
    [3] Lu zhen-hua. Theoretical study of structural modification control and analytical model reduction of torsional vibration in FR-type automotive power drivetrain[J]. International Journal of Vehicle Design, 1998, 19(4):436-447.
    [4] E.M.A. Rabieh, D.A. Crolla. Coupling of driveline and body vibration in trucks, SAE Conference Transactions on International Trucks and Bus Meeting and Exposition, vol.1203, Detroit, 1996:17-26.
    [5]任少云,孙承顺,张建武.某牵引车传动系起步扭转振动动态响应分析[J].上海交通大学学报,2003(11):1180-1183.
    [6] Andreas Laschet. Computer simulation of vibrations in vehicle powertrains considering nonlinear effects in clutches and manual transmissions View Document[C]. SAE Technical Paper Series 941011.
    [7] H Heisler. Advanced Engine Technology[M]. ISBN:1-56091-734-2, Arnold Publishers, 1995.
    [8] J Derek Smith. Gear Noise and Vibration[M]. ISBN:0-8247-6005-0, Marcel Dekker, 1999.
    [9] Alexander Fidlin, Roland Seebacher. DMF simulation techniques–Finding the needle in the haystack[C]. 8th LuK Symposium, 2006:55-71.
    [10] RICARDO CONSULTING ENGINEERS. Transmissions-technologies and trends[R]. Report presented on February, 2003.
    [11] Klaus Steinel. Clutch Tuning to Optimize Noise and Vibration Behavior in Trucks and Buses[C]. SAE Technical Paper Series 2000-01-3292.
    [12] Hans jürgen Drexl. Torsional Dampers and Alternative Systems to Reduce Driveline Vibrations[C]. SAE Technical Paper Series 870393.
    [13] Tomoaki Kodama, Katsuhiko Wakabayashi. Three Dimensional Vibration Characteristics of High-Speed Automobile Diesel Engine Crankshaft System with a Viscous Fluid Damper[C]. SAE Technical Paper Series 2002-01-0165.
    [14] Ken-Ishi Yamamoto, Mitsuhiro Umeyama, Hiroyuki Ishikawa and Toshihiro Otake. Consideration of a New Type Two-Mass Flywheel[C]. SAE Technical Paper Series 911059.
    [15] Klaus Steinel,Gerhard Tebbe. New Torisonal Damper Concept to Reduce Idle Rattle in Truck Transmissions[C]. SAE Technical Paper Series 2004-01-2722.
    [16]国家环境保护局. GB1495-2002.汽车加速行驶车外噪声限制和测量方法[S]. 2001(11).
    [17]国家环境保护局. GB16170-1996.车外定置噪声[S]. 1996(3).
    [18] ECE Regulation No.51. Uniform Provisions Concerning the Approval of Motor Vehicles Having at Least Four Wheels with Regard to Their Noise Emissions[S]. 2001.8.
    [19] Peter Schwibinger, David Hendrick, Wel Wu, Yasuhiro Imanishi. Reduction of Vibration and Noise in the Powertrain of Passenger Cars with Elastomers Dampers[C]. SAE Technical Paper Series 910616.
    [20] In-Soo Suh, Jeff Orzechowski. Drivetrain Torsional and Bending Vibration for a RWD Vehicle Interior Noise Development[C]. SAE Technical Paper Series 2003-01-1496.
    [21] O. Tangasawi, S. Theodossiades, H. Rahnejatb. Lightly loaded lubricated impacts Idle gear rattle[J]. Journal of Sound and Vibration, 2007:418-430.
    [22] S. Shih, J. Yruma, P. Kittredge. Drivetrain noise and vibration trouble shooting[C]. SAE Technical Paper Series 2001-01-2809.
    [23] S. N. Dogan, G. Lechner. Maβnahmen zur verringerung von Losteilschwingungen in Fahrzeuggetrieben[J]. ATZ Autombiltechnische Zeitschrift 100(10), 1998:710-716.
    [24] Toshiya Sakai, Ryutaro Kunimasa, Naohito Kubodera, Yoshinori Hirano, Hirotaka Kaneko. Analysis of Manual Transmission Gear Rattle Extension to Serial Multi-meshing Gear Rattle. JSAE20054798: 511-514.
    [25] Sheng-Jiaw Hwang, Joseph L. Stout and Ching-Chung Ling. Modeling and Analysis of Powertrain Torsional Response[C]. SAE Technical Paper Series 980276.
    [26] D. Centea, H. Rahnejat, M.T. Menday. Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations(judder) [J]. Applied Mathematical Modelling. 2001:177-192.
    [27] D. Centea, H. Rahnejat, M.T. Menday. The influence of interface coefficient of friction upon propensity to judder in automotive clutches, Proc. Instn. Mech. Engrs. Part D: J. Automobile Engrg. 213(D2), 1999.
    [28] Farshidianfar A, Rahnejat H, Menday M T. Low frequency torsional vibration ofvehicular driveline systems in shuffle[A]. Multi-body Dynamics: Monitoring and Simulation Techniques[C]. London: Professional Engineering Publishing, 2000: 269-282.
    [29] Farshidianfar A, Ebrahimi M, Bartlett and H. Hybrid modeling and simulation of the torsional vibration of vehicle driveline systems[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(2): 217-228.
    [30] Biermann J K, Hagerodt B. Investigation of clonk phenomenon in vehicle transmissions measurement, modeling and simulation[A]. Proceeding of ImechE conference on Multi-body Dynamics Monitoring and Simulation Techniques[C]. London: Professional Engineering Publishing, 1997:315-323.
    [31]林静.降噪和降振技术——在新一代混合动力车上的应用[J].汽车与配件,2006(29):30-33.
    [32] J. H. Griffin, W-T Wu, J. A. Wickert, J. B. Brown. Torsional vibration of drive trains[C]. SAE Technical Paper Series 941697.
    [33] C.L. Gaillard, R. Singh. Dynamic analysis of automotive clutch dampers[J]. Applied Acoustics, 2000:399-424.
    [34]郜志英,沈允文,董海军,刘晓宁.齿轮系统参数平面内的分岔结构[J].机械工程学报,2006, 24(3):68-72.
    [35]郜志英,沈允文,董海军,刘梦军.齿轮系统周期运动稳定性研究[J].机械工程学报,2005, 16(9):757-760.
    [36]郜志英,沈允文,刘素有,刘梦军.间隙非线性齿轮系统周期解结构及其稳定性研究[J].机械工程学报,2004, 40(5):17-22.
    [37] T. Fujimoto, T. Kizuka, Audible noise simulation—an attempt to predict idling rattle in manual transmissions[C]. SAE Technical Paper Series 2003-01-0674.
    [38] S. Theodossiades, M. Gnanakumarr, H. Rahnejat, P. Kelly. On the effect dual mass flywheel upon impact induced noise in vehicular powertrain systems, Proceedings of the Institute of Mechanical Engineers Part D: Journal of Automobile Engineering, 2006, 220 (6):747–761.
    [39] T.C. Kim, R. Singh. Dynamic interactions between loaded and unloaded gear pairs under rattle conditions[C]. SAE Technical Paper Series 2001-01-1553.
    [40] T. Fujimoto, T. Kizuka, Predictive calculation of idling rattle in manual transmissions—based on experimental measurements of gear vibration occurring in backlashes[C]. SAE Technical Paper Series 2003-01-0678.
    [41] Eugene I. Rivin. Analysis and Reduction of Rattling in Power Transmission Systems[C]. SAE Technical Paper Series 2000-01-0032.
    [42] S. Theodossiades, O. Tangasawi, H. Rahnejat. Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle[J]. Journal of Sound and Vibration, 2007:632-658.
    [43] Steven A. Amphlett, Jason P. March Ricardo. Studying low-frequency vehicle phenomena using advanced modeling techniques[C]. SAE Technical Paper Series 951270.
    [44] Fudala G J, et al. A Systems Approach to Reducing Gear Rattle[C]. SAE Technical Paper Series 870396.
    [45]邬惠乐,邵成,冯振东.汽车动力传动系统扭转振动的研究[J].汽车工程,1983(4):21-29.
    [46]方传流,冯振东,吕振华.汽车动力传动系扭振的固有特性和结构修改控制措施分析[J].汽车工程,1993(2):9-18.
    [47] E. M. A. Rabeih, Leeds D. A. Crolla. Coupling of driveline and body vibrations in trucks[C]. SAE Technical Paper Series 962206.
    [48] Seán Adamson, Rotec GmbH. Improved Approaches to the Measurement and Analysis of Torsional Vibration[C]. SAE Technical Paper Series 2004-01-1723.
    [49] Chandramouli Padmanabhan, Todd E. Rook, Rajendra Singh. Modeling of automotive gear rattle phenomenon[C]. SAE Technical Paper Series 951316.
    [50]董海军,沈允文,刘梦军,张锁怀.齿轮系统Rattling动力学行为研究[J].中国机械工程,2004, 40(1):136-141.
    [51]张锁怀,赵国性,沈允文.扭矩波动对齿轮时变系统拍击门槛转速的影响[J].机械科学与技术(西安),2005,24(12):1416-1419.
    [52]秦萍,阎兵,董大伟.多缸内燃机轴系扭振性能的计算分析与改善[J].内燃机,2002(2):21-24.
    [53]吕振华,冯振东.汽车发动机曲轴阻尼式扭振吸振器设计方法探讨及应用[J].内燃机工程,1992,13(2):27-33.
    [54]刘辉,项昌乐,李和言.发动机激励下车辆传动系统动载研究[J].机械强度,2006,28(6):805-808.
    [55]李渤仲,陈之炎,应启光.内燃机轴系扭转振动[M].北京:国防工业出版社,1984.
    [56] Ad Kooy,Achim Gillmann,Johann J?ckel,Michael Bosse. DMFW-Nothing New? [C]. 7th LuK Symposium, 2002:5-14.
    [57] Albert Albers. Advanced Development of Dual Mass Flywheel(DMFW) Design-NoiseControl for Today's Automobiles[C]. 5th LuK Symposium, 1994.
    [58]严济宽.机械振动隔离技术[M].上海科学技术文献出版社,1985.
    [59]李伟,史文库,龙岩.双质量飞轮——四连杆-弹簧机构型扭振减振器弹性特性分析与优化设计[J].汽车技术,2008(9):17-21.
    [60]王望予主编.汽车设计[M].北京:机械工业出版社,2000.
    [61]吕振华,冯振东.汽车离合器扭振减振器设计方法探讨[J].汽车工程,1992,14(4):218-223.
    [62]刘圣田,吕振华,邵成,袁念诗.双质量飞轮式扭转减振器[J].汽车技术,1997(1):23-27.
    [63]吕振华,房法成,程维娜,邵成.汽车离合器多级式非线性扭振减振器弹性元件优化设计[J].汽车技术,1995(9):1-6.
    [64] R. Seaman, C. Johnson, R. Hamilton. Component inertial effects on transmission design[C]. SAE Technical Paper Series 841686.
    [65] Wolfgang Reik, Roland Seebacher, Ad Kooy. The Dual Mass Flywheel[C]. 6th LuK Symposium, 1998:69-93.
    [66] Osamu Nakano, Masami Suzuki, Yoshiro Koyasu, Atsuo Morii, Yoshinobu Izawa. Development of high fatigue strength spring~Application on clutch disc torsional damper[C]. SAE Technical Paper Series 950903.
    [67]《汽车工程手册》编辑委员会.汽车工程手册·设计篇[M].北京:人民交通出版社,2001.
    [68] Drexl H. J. Kraftfahrzeugkupplungen-Funktion und Auslegung[M]. verlag moderne industrie, Bibliothek der Technik, Band 138, ISBN 3-478-93155-X.
    [69] ZF Sachs. Commercial Vehicle Clutchs[R]. FAW R&D Center, 2002.5.
    [70]张鹏程.基于整车动力传动系的双质量飞轮减振特性研究[D].长春:吉林大学,2006.
    [71] LuK的第5000万个双质量飞轮在德国下线[EB/OL](2008-01-07)[2008-12-22]. http://info.qipei.hc360.com/2008/01/07085590300.shtml.
    [72] NicolòCavina, Gabriele Serra. Analysis of a Dual Mass Flywheel System for Engine Control Applications[C]. SAE Technical Paper Series 2004-01-3016.
    [73] Schaeffler Gruppe LuK.舍弗勒(中国)LuK产品展示会——一汽集团专场-SAC&DMF[R].一汽集团技术中心,2006.12.
    [74]李伟,史文库.双质量飞轮(DMF)的研究综述[J].噪声与振动控制,2008(8):1-5.
    [75]刘圣田.双质量飞轮式扭振减振器对振动的控制分析[J].农业机械学报, 2004, 35(3):16-19.
    [76] Arno Sebulke. The Two-Mass Flywheel--A Torsional Vibration Damper for the Power Train of Passenger Cars---State of the Art and Further Technical Development[C]. SAE Technical Paper Series 870394.
    [77] Wolfgang Reik. Torsional Isolation in the Drive Train-An Evaluation Study[C]. 4th LuK Symposium, 1990:125-146.
    [78]吕振华,陈涛.双体飞轮-周向弹簧型扭振减振器弹性特性设计研究[J].汽车工程, 2006, 28(1):73-77.
    [79] Satoru Ohnuma, Shigetaro Yahata, Ryoichi Kudou. Development of engine flywheel with torsional damper[J]. JSAE Review, 1986.7:94-95.
    [80] Michael Zottmann, Jurgen Kleifges, Bernhard Schierling, Alexander Manger. Torsional Vibration Damper Especially A Dual-mass Flywheel[P]. United States Patent Application Publication, US2003/0114228A1, 2003.
    [81] Soon-Jae Hong, Yongin-City. Daul Mass Flywheel using Air Dampening[P]. United States Patent Application Publication, US20030233907A1, 2003.
    [82] Viktor Kuhne, Bopfingen. Viscous Damper Assembly for a Flywheel Assembly Including Friction Plates[P]. United States Patent Application Publication, US5088964, 1992.
    [83] Bernd Stockman, Bcrnhard Schierling. Two-Mass Flywheel[P]. United States Patent Application Publication, US005493936A, 1996.
    [84] Bonfilio, Ciriaco, Clichy, FR. Zweimassen-D?mp-fungsschwungrad mit ver?nderlicher Steifigkeit. DE 19634380A1, 1997.6.
    [85]钱人一.德国鲁克公司的双质量飞轮(上)[J].汽车与配件,2006(5):35-37.
    [86] Affiliation Andreas Walter, Benedikt Merz. Comparison and Development of Combustion Engine Models for Driveline Simulation[C]. SAE Technical Paper Series 2006-01-0436.
    [87] Schaeffler Gruppe LuK. LuK双质量飞轮介绍[R].一汽集团技术中心,2008.12.
    [88]史文库,王砚红.双质量飞轮式扭振减振器[P].中华人民共和国知识产权局,CN2849323,2006.
    [89]赵金霞,关跃.双质量飞轮[P].中华人民共和国知识产权局,CN2651512Y,2004.
    [90]陈涛,吕振华,苏成谦.弧形螺旋弹簧弹性特性分析方法研究[J].中国机械工程, 2006(3):P493-495.
    [91]吕振华,熊海龙,陈涛.汽车动力传动系双质量飞轮—径向弹簧型扭振减振器弹性特性设计方法[J].汽车工程. 2002(1):51-55.
    [92]吕振华,吴志国,陈涛.双质量飞轮-周向短弹簧型扭振减振器弹性特性设计原理及性能分析[J].汽车工程,2003,25(5):493-497.
    [93]赵金霞.双质量飞轮的作用和特性[J].新技术新工艺,2003(5):19-20.
    [94]李铮. DMF350双质量飞轮的开发研究[D].长春:吉林大学,2005.
    [95] Albert Albers, Marc Albrecht, Arne Krüger and Ralph Lux. New Methodology for Power Train Development of in the Automotive Engineering– Integration of Simulation, Design and Testing[C]. SAE Technical Paper Series 2001-01-3303.
    [96] Reihard Feldhaus, et al. Two-Mass Flywheel[P]. United States Patent, US005307710A, 1994
    [97] Patrice Bertin, Eric Breton, Ayman Mokdad. Radial Dual Mass Flywheel[C]. SAE Technical Paper Series 950893.
    [98]刘圣田,吕安涛,马见明.典型双质量飞轮式扭振减振器结构分析[J].山东省交通科技. 1998(2):19-21.
    [99] Hans Petri, Dietmar Heidingsfeld. The Hydraulic Torsion Damper-A New Concept for Vibration Damping in Powertrains[C]. SAE Technical Paper Series 892477.
    [100]刘圣田.液力双质量飞轮式扭振减振器[J].汽车运输,1998(9):17-19.
    [101] Toshimitsu Sakai, Yuhji Doi, Ken-ichi Yamamoto, Takeo Ogasawara, Mitsuaki Narita. Theoretical and Experimental Analysis of Rattling Noise of Automotive Gearbox[C]. SAE Technical Paper Series 810773.
    [102]蒋国平,王国林,周孔亢.汽车整车振动研究综述[J].广西大学学报(自然科学版),2001:194-197.
    [103] Kukhyun Ahn, Jang Moo Lee, Wonsik Lim, Yeong-il Park. Analysis of a Clutch Damper Using a Discrete Model[J]. KSME International Journal, 2004: 1883-1890.
    [104]张义民.机械振动力学[M].长春:吉林科学技术出版社,2000.
    [105]刘圣田.汽车动力传动系扭振减振器对扭振固有特性影响分析[J].上海汽车, 1995(5):4-9.
    [106]何渝生,魏克严,洪宗林、孙祥根.汽车振动学[M].北京:人民交通出版社,1990.
    [107]吕兴才.内燃机轴系扭转/弯曲/纵向振动的研究与控制[D].天津:天津大学,2001.
    [108]邬惠乐. CA-10型汽车动力系统的扭转振动[J].吉林工业大学学报,1986(3):8-20.
    [109]吕振华,冯振东,邬惠乐.结构固有振动特性设计的最优动力学修改原理[J].汽车工程,1991(3):137-143.
    [110] Edson Luciano, Douglas Vinicius Lemes, Sidnei Aparecido Galvani, Francisco Emilio. Analyzing the Torsional Vibration of Engines in Dynamometer Previewing theImpacts in Clutch Disc Calibration[C]. SAE Technical Paper Series 2004-01-3247.
    [111]卢众. EA888双级双质量飞轮的参数优化与结构设计[D].长春:吉林大学,2007.
    [112]杨从洛,徐卫国.车用发动机曲轴扭振与整车传动系的相互关系[J].汽车技术,2000(4):14-17.
    [113]陈孝飞.简论节点定理在振动分析中的适用性[J].机械设计与制造,1999 (5):65-66.
    [114]徐兆坤,周晓宇,王德忠.内燃机轴系扭转振动节点的力学特征分析[J].柴油机,1998(1):30-32.
    [115]吕振华.线性和二次广义特征值问题的矩阵摄动法新探及汽车动力传动系扭振分析方法和控制措施轮析[D].长春:吉林大学,1990.
    [116]余志生主编.汽车理论(第2版) [M].北京:机械工业出版社,1998.
    [117] Wolfgang Reik. Torsional Vibration in the Drive Train of Motor Vehicle-Principle Considerations[C]. 4th LuK Symposium, 1990.
    [118]龙岩,李伟. DMF-CS扭振减振器刚度、阻尼参数测量——试验报告[R].吉林大学汽车工程学院,2008.
    [119]刘志勇,夏毅敏,黎孟珠,苏庆勇.汽车离合器从动盘减振弹簧的结构改进[J].机械设计,2007,24(6):66-68.
    [120]卢玉东.多级非线性双质量飞轮减振器的研究[D].长春:吉林大学,2008.
    [121]汪曾祥,魏先英,刘祥至.弹簧设计手册[M].上海:上海科学技术文献出版社,1986.
    [122]张英会,刘辉航,王德承.弹簧手册[M].北京:机械工业出版社,1997.
    [123] Andrew Szadkowsk, Edward Prange, Nagi G. Naganathan. Hysteresis effects on driveline torsional vibrations[C]. SAE Technical Paper Series 951293.
    [124]王祺.内燃机轴系扭转振动[M].北京:国防工业出版社,1985.
    [125]李伟,史文库,龙岩,权彦. DMF-CS型扭振减振器刚度匹配设计[J].吉林大学学报(工学版),2009,第1期增刊:62-67.
    [126]刘惟信.机械最优化设计(第二版)[M].北京:清华大学出版社,1997.
    [127]房法成,田华,刘宏伟,程维娜.汽车离合器扭振减振器的工作特性[J].吉林工业大学学报,1995,25(4):14-17.
    [128]裘新,吕振华,林逸,邵成.轿车动力总成-液压悬置-副车架系统参数的优化设计[J].汽车技术,1998(7):6.
    [129]王立功,冯振东,宋传学. Audi100轿车动力总成液力悬置动态特性的实验分析[J].汽车技术,1994(12):14-19.
    [130]于志辉. DMF-CS扭振减振器工艺报告[R].吉林省大华机械制造有限公司,2008.
    [131]林鹤.机械振动理论及应用[M].北京:冶金工业出版社,1990.
    [132] Jim Bianchi. Centrifugal pendulum-type absorbers increase vibration damping [EB/OL] (2008-06-02)[2008-09-04]. http://www.reuters.com/article/pressRelease/idUS149916+02- Jun-2008+ PRN20080602.
    [133]李伟,龙岩,史文库.离心摆式DMF-CS扭振减振器隔振性能分析[J].中国机械工程(已录用).
    [134]上海铁道学院主编.机车柴油机动力学[M].北京:中国铁道出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700