高功率密度柴油机共轭传热基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机整机耦合仿真思想的提出至今已有20余年,近年来发展速度较快并逐渐成为指导内燃机设计的重要手段。尽管国内外众多学者应用该思想对多种机型进行了数值分析,然而至今还未能实现在统一的求解器中对流场、温度场和应力场等多物理场同时进行计算,仍然需要在不同的求解器中进行迭代。同时,内燃机功率密度的不断提高导致其热负荷水平的激增,为了有效控制高功率密度内燃机较高的热负荷对燃烧室组件可靠性的不利影响,同时优化整机性能,必须深入开展高功率密度条件下流动与传热的基础问题研究。
     本文以高功率密度内燃机高转速、高增压、高强度燃烧的特点为背景,建立了缸内工质循环的零维和多维数值模型,重点开展了缸内瞬时传热模型研究、高热流密度下燃烧室组件材料热物性的非线性效应研究,在此基础上建立了缸内燃气-燃烧室组件-冷却介质的共轭传热数值计算模型,较深入地研究了燃烧、冷却、材料、结构等因素对高功率密度柴油机燃烧室组件热状态的影响规律。主要研究内容及所得的重要结论包括:
     1、基于热力学、流体力学、传质传热学和化学反应动力学建立了缸内工质循环过程的数值计算模型,比较了零维模型和多维模型在计算结果上的差异,并分析了两种模型的优势和不足,为后续研究燃气侧边界条件的修正方法提供了理论依据。
     2、开展了缸内瞬态传热模型的研究。对比分析了零维模型中几种常用经验公式在不同机型上的适用性以及多维模型中壁面函数法在燃烧室组件温度场计算中的适用性,在此基础上提出了适用于高功率密度柴油机传热计算的新的经验公式以及分布函数,并用试验数据对其进行了验证。
     研究结果表明,随着热流密度的增加,利用传统经验公式进行燃烧室组件温度场计算时,仿真结果与试验数据的最大相对误差接近30%;修正后的经验公式及其分布函数在高功率密度柴油机稳态传热计算中获得了较好的应用,与试验测试值的偏差小于5%。
     3、收集和测试了燃烧室组件特殊材料的导热系数、比热容、热膨胀系数、密度等热物性随温度变化的特征数据,对比分析了高热流密度条件下平板模型的非线性传热本构方程的解析解与数值解的差异,掌握了不同热流密度传热条件下平板内部温度分布的变化规律,并通过感应加热平板试验验证了材料物性的非线性效应。随后对活塞等复杂结构的零件的导热过程分别开展了稳态和瞬态条件下的数值计算及试验研究。
     研究结果表明,当热流密度超过1500kW/m2时,常物性设置与变物性设置所得到的计算结果之间的最大相对误差超过10%;在大规模计算时,变物性设置所用的计算时间比常物性设置多出20%-30%;在高功率密度柴油机共轭传热计算中,活塞、缸盖、缸套等热负荷水平较高的零部件,其热物性需要设置为阶梯函数形式。
     4、建立了缸内气体-燃烧室组件-冷却介质的共轭传热数值计算模型。该模型将上述研究所获得的缸内瞬时传热模型、固体区域非线性导热模型结合在一起,获得了较高精度的数值解。同时在某试验机型上开展了整机热状态测量试验,测试了燃烧室组件的温度分布状态,验证了仿真计算的精度。
     研究结果表明,该模型能显著提升高功率密度柴油机燃烧室组件传热计算的精度,仿真计算结果与试验值之间的偏差小于5%,而传统模型的仿真计算结果与试验值之间的偏差接近30%。
     5、在仿真计算中,通过改变热侧和冷侧的边界条件,计算分析了燃烧和冷却因素对燃烧室组件热状态的影响;通过改变燃烧室组件结构和材料热物性,计算分析了结构、材料等因素对燃烧室热状态的影响。根据以上分析结果,梳理了燃烧、冷却、结构和材料各因素对燃烧室组件热状态的耦合影响规律。
     研究结果表明,在诸多因素中,冷却液流量对燃烧室组件热状态影响最为明显,冷却液流速的增高可有效改善受热表面的温度场分布;其次为水腔结构,在保证强度的前提下,应使水腔尽可能地接近受热表面。
Multiphysics coupled methods for internal combustion engine simulation has been developed more than20years and become an important design means of combustion chamber components. Although this numerical analysis method had applied on various types of IC engines, multi-flied in IC engine such as velocity field, temperature field and stress field still failed to calculation in a single solver. At the same time, increasing engine power density causes proliferation of the heat transfer throughout the chamber surface, which has adverse impact on the thermal loading and reliability of the combustion chamber components. In order to effectively control the thermal loading and optimize the engine performance, the fundamental problems of heat and mass transfer must be depth studied under the conditions of High Power Density (referred to as HPD).
     Considering the characteristics of HPD engine, such as high speed, high supercharge pressure, high-intensity combustion, a conjugate formulation to predict spray combustion in cylinder, heat conduction in combustion chamber components, and convection in coolant was developed for multi-dimensional HPD engine simulation. The formulation was first calculated in CFD code and then validated against experimental result.
     The main contents in this thesis are listed below:
     1, Combining thermodynamics, fluid mechanics and chemical kinetics, zero-dimensional and multidimensional numerical model for engine operation simulation was established in chapter two. The advantages and disadvantages of the two models were analyzed exactly. The result in this chapter provided a theoretical basis for further study of in-cylinder heat transfer models.
     2, Compared the numerical results between semi-empirical formula and wall function approach, a new in-cylinder heat transfer model was developed for HPD engine simulation and then validated by experimental data.
     With the increase of heat flux, the relative error of using traditional semi-empirical formula to predict components temperature is up to30%. Results show that the new in-cylinder heat transfer model developed in this paper is more suitable for HPD engine simulation.
     3, Materials thermal properties under different temperature, including thermal conductivity, specific heat capacity, expansion coefficient, were exactly tested by special equipment. Based on this data, nonlinear heat conduction equations of combustion chamber components were solved by numerical and analytical method.
     Results show that the temperature calculated by assuming material thermal properties as constant is larger10%than that of setting the properties as a function of temperature. For complex geometry, the non-linear heat conduction equation costs20%to30%computer resources more than the linear equation. Considering both calculation accuracy and time, it is better to use non-linear formula in cylinder head, piston and liner, at the same time to use linear formula in the rest parts of HPD engine.
     4, a conjugate formulation to predict heat conduction in components solid domain and convection in fluid domain was established for HPD engine simulation. The formulation had integrated the new in-cylinder heat transfer model and the nonlinear conduction model. Finally, the numerical solution of the conjugate formulation was validated against the test data of the HPD engine under different operating conditions.
     Results show that the conjugate formulation significantly improves the solution accuracy. The relative error between calculation data and test data is less than5%.
     5, the analysis of the conjugate formulation under different boundary conditions had subsequently revealed the interaction among various factors of HPD engine, such as combustion and cooling conditions, material properties and components structures.
     Results show that the cooling conditions have the greatest impact on the heat transfer in HPD engine among the four factors. Increasing the coolant velocity can effectively reduce the temperature at components inner surfaces. Secondly, permitting the components structural strength, the smaller distance between the cooling jacket and heated surfaces has the better cooling effect.
引文
[1]周龙保.内燃机学[M].第三版.北京市:机械工业出版社,2011:334.
    [2]周磊,李向荣,魏镕,等.内燃机燃烧科学与技术[M].北京市:北京航空航天大学出版社,2012.
    [3]张卫正,原彦鹏,郭良平,等.高功率密度柴油机设计问题的仿真[J].兵工学报.2006(05):775-778.
    [4]J. Sousanis. Bmw's newest i-6 better, not bigger[J]. Ward's Auto.2011(8).
    [5]T. Murphy.2013 ward's 10 best engines showcase efficiency gains[J]. Ward's Auto.2012(12).
    [6]肖永宁等.内燃机热负荷和热强度[M].北京市:机械工业出版社,1988:249.
    [7]G. Borman, K. Nishiwaki. Internal-combustion engine heat transfer[J]. Progress in Energy and Combustion Science.1987,13(1):1-46.
    [8]A. Almqvist, J. Fabricius, A. Spencer, et al. Similarities and differences between the flow factor method by Patir and Cheng and homogenization[J]. Journal of Tribology-Transactions of the ASME.2011, 133(0317023).
    [9]周龙.活塞组—气缸套传热润滑摩擦耦合机理研究[D].大连理工大学,2011.
    [10]景国玺.活塞组多物理场耦合非线性问题及环组机油消耗改进设计研究[D].浙江大学,2011.
    [11]E. Abu-Nada, I. Al-Hinti, A. Al-Sarkhi, et al. Effect of piston friction on the performance of SI engine:a new thermodynamic approach[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME.2008,130(0228022).
    [12]S. N. Kurbet. R. K. Kumar. Finite element modelling of piston-ring dynamics and blow-by estimation in a four-cylinder diesel engine[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering.2007.221(D11):1405-1414.
    [13]G. A. Livanos. N. P. Kyrtatos. Friction model of a marine diesel engine piston assembly[J]. Tribology International.2007,40(10-12):1441-1453.
    [14]Y. Harigaya, M. Suzuki, F. Toda, et al. Analysis of oil film thickness and heat transfer on a piston ring of a diesel engine:effect of lubricant viscosity[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME.2006,128(3):685-693.
    [15]J. R. Cho, S. J. Moon. A numerical analysis of the interaction between the piston oil film and the component deformation in a reciprocating compressor[J]. Tribology International.2005,38(5):459-468.
    [16]白敏丽,丁铁新,董卫军.活塞环—气缸套润滑摩擦研究[J].内燃机学报.2005,23(1):72-76.
    [17]Y. Harigaya, M. Suzuki, M. Takiguchi. Analysis of oil film thickness on a piston ring of diesel engine:effect of oil film temperature[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME. 2003,125(2):596-603.
    [18]T. Tian. Dynamic behaviours of piston rings and their practical impact. Part 1:ring flutter and ring collapse and their effects on gas flow and oil transport[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology.2002,216(J4):209-227.
    [19]O. Akalin, G. M. Newaz. Piston ring-cylinder bore friction modeling in mixed lubrication regime:part Ⅰ-analytical results[J]. Journal of Tribology-Transactions of the ASME.2001,123(1):211-218.
    [20]O. Akalin, G. M. Newaz. Piston ring-cylinder bore friction modeling in mixed lubrication regime:part Ⅱ-correlation with bench test data[J]. Journal of Tribology-Transactions of the ASME.2001,123(1):219-223.
    [21]H. Nakai, N. Ino. H. Hashimoto. Effects of film temperature on piston-ring lubrication for refrigeration compressors considering surface roughness[J]. Journal of Tribology-Transactions of the ASME.1998,120(2): 252-258.
    [22]M. T. Ma, I. Sherrington, E. H. Smith. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model.1. Circumferentially uniform film[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology.1997,211(J1):1-15.
    [23]M. T. Ma, I. Sherrington, E. J. Smith, et al. Development of a detailed model for piston-ring lubrication in IC engines with circular and non-circular cylinder bores[J]. Tribology International.1997,30(11):779-788.
    [24]M. T. Ma, E. H. Smith, I. Sherrington. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model.2. Circumferentially variable film[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology.1997,211(J1):17-27.
    [25]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京市:高等教育出版社,1995:476.
    [26]M. T. Ma, E. H. Smith,1. Sherrington. A three dimensional analysis of piston ring lubrication:part 1 modeling[J]. Journal of Engineering Tribology.1995,209(1):1-14.
    [27]M. T. Ma, E. H. Smith, I. Sherrington. A three dimensional analysis of piston ring lubrication:part ii sensitivity analysis[J]. Journal of Engineering Tribology.1995,209(1):15-27.
    [28]Y. Jeng. Theoretical analysis of piston-ring lubrication part ⅰ—fully flooded lubrication[J]. Tribology Transactions.1992,35(4):696-706.
    [29]Y. Jeng. Theoretical analysis of piston-ring lubrication part ⅱ-starved lubrication and its application to a complete ring pack[J]. Tribology Transactions.1992,35(4):707-714.
    [30]M. T. Ma,I. Sherrington, E. H. Smith. Effects of bore out of roughness on the predicted performance of piston rings in internal combustion engine[J]. Proceedings of 21St Leeds-Lyon Symposium On Tribology. 1985:367-379.
    [31]D. Dowson, B. L. Ruddy, P. N. Economou. The elastohydrodynamic lubrication of piston rings[J]. Proceedings of the Royal Society a.1983,386:409-430.
    [32]S. M. Rohde. A mixed friction model for dynamically loaded contacts with application to piston ring lubrication[Z]. Chicago:General Motors Research Laboratories,1980262-280.
    [33]N. Patir, H. S. Cheng. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology-Transactions of the ASME.1979,101(2):220-230.
    [34]D. Dowson, P. N. Economou, B. L. Ruddy. Piston ring lubrication part theoretical analysis of a single ring and a complete ring pack[J]. Energy Conservation through Fluid Film Lubrication Technology:Frontiers in Research and Design.1979:23-52.
    [35]N. Patir, H. S. Cheng. An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication[J]. Transactions of the ASME.1978,100:12-18.
    [36]L. L. Ting, J. E. Mayer. Piston ring lubrication and cylinder bore wear analysis.1. Theory[J]. Journal of Lubrication Technology-Transactions of the ASME.1974,96(3):305-314.
    [37]L. L. Ting, J. E. Mayer. Piston ring lubrication and cylinder bore wear analyses,.2. Theory verification[J]. Journal of Lubrication Technology-Transactions of the ASME.1974,96(2):258-266.
    [38]J. A. Greenwood, J. H. Tripp. The contact of two nominally flat rough surfaces[J]. Proc. lnst. Mech. Engr. 1971,185:625-633.
    [39]O. Reynolds. On the theory of lubrication and its application to mr. Beauchamp tower's experiments, including an experimental determination of the viscosity of olive oil[J]. Phil. Trans. R. Soc.1886,177(1): 157-234.
    [40]J. X. Liu, Y. Wang, W. Z. Zhang. The effects of the cooling gallery position on the piston temperature field and thermal stress[J]. Applied Mechanics and Materials.2011,37-38:1462-1465.
    [41]张卫正,曹元福,原彦鹏,等.基于CFD的活塞振荡冷却的流动与传热仿真研究[J].内燃机学报.2010(1):74-78.
    [42]T. Yoshikawa, R. D. Reitz. Development of an oil gallery cooling model for internal combustion engines considering the cocktail shaker effect[J]. Numerical Heat Transfer Part a-Applications.2009,56(7):563-578.
    [43]Y. Yi, M. Reddy, M. Jarrett, et al. CFD modeling of the multiphase flow and heat transfer for piston gallery cooling system[J]. SAE Paper.,2007-01-4128.
    [44]谭建松,俞小莉.高强化发动机活塞冷却方式仿真[J].兵工学报.2006(1):97-100.
    [45]A. K. Agarwal, M. B. Varghese. Numerical investigations of piston cooling using oil jet in heavy duty diesel engines[J]. International Journal of Engine Research.2006,7(5):411-421.
    [46]J. Pan, R. Nigro, E. Matsuo.3-D modeling of heat transfer in diesel engine piston cooling galleries[J]. SAE Paper.,2005-01-1644.
    [47]H. Kajiwara, Y. Fujioka, H. Negishi. Prediction of temperatures on pistons with cooling gallery in diesel engines using CFD tool[J]. SAE Paper.,2003-01-0986.
    [48]Z. Li, R. H. Huang, Z. W. Wang. Subcooled boiling heat transfer modelling for internal combustion engine applications[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering.2012,226(D3):301-311.
    [49]傅松,胡玉平,李新才,等.柴油机缸盖水腔流动与沸腾传热的流固耦合数值模拟[J].农业机械学报.2010(4):26-30.
    [50]董非,郭晨海,蔡忆昔,等.缸盖鼻粱区水腔结构对腔内沸腾传热影响的数值研究[J].内燃机学报.2010(5):435-440.
    [51]李智,黄荣华,程晓军,等.内燃机缸盖水腔内过冷沸腾数值模型研究[J].内燃机学报.2010(3):247-252.
    [52]H. S. Lee. Heat transfer predictions using the chen correlation on subcooled flow boiling in a standard IC engine[J]. SAE Paper.,2009-01-1530.
    [53]A. Mulemane, R. Soman. CFD based complete engine cooling jacket development and analysis[J]. SAE Paper.,2007-01-4129.
    [54]F. Zieher, F. Langmayr, A. Jelatancev, et al. Thermal mechanical fatigue simulation of cast iron cylinder heads[J]. SAE Paper.,2005-01-0796.
    [55]T. Bo. CFD homogeneous mixing flow modelling to simulate subcooled nucleate boiling flow[J]. SAE Paper.,2004-01-1512.
    [56]H. H. Pang, C. J. Brace. Review of engine cooling technologies for modem engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2004,218(11):1209-1215.
    [57]J. G. Hawley, M. Wilson, N. A. F. Campbell, et al. Predicting boiling heat transfer using computational fluid dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2004,218(5):509-520.
    [58]H. Z. Abou-Ziyan. Forced convection and subcooled flow boiling heat transfer in asymmetrically heated ducts of t-section[J]. Energy Conversion and Management.2004,45(7-8):1043-1065.
    [59]K. Robinson, J. G. Hawley, G. P. Hammond, et al. Convective coolant heat transfer in internal combustion engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2003,217(2):133-146.
    [60]P. M. Norris. An investigation of coolant passage heat transfer in a diesel engine cylinder head[D]. Georgia Institute of Technology,1992.
    [61]J. C. Chen. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development.1966,5(3):322.
    [62]严兆大.热能与动力工程测试技术[M].北京市:机械工业出版社,2005:263.
    [63]郭七一.内燃机瞬时测温技术与直喷式柴油机缸内局部瞬时传热研究[D].北京理工大学,1990.
    [64]谭建松,魏志明,俞小莉.基于储测技术的活塞瞬态温度和应力测量[J].浙江大学学报(工学版).2006(1):142-144.
    [65]八田桂三.内燃机测试手册[M].北京市:机械工业出版社,1987:426.
    [66]刘德新,王天友,刘书亮,等.用剪切干涉高速摄影法测量内燃机缸内温度场的实验研究[J].内燃机学报.2002(4):317-323.
    [67]何邦全,姚春德,刘增勇,等.三基色测温法在柴油机燃烧温度场测量中的应用研究[J].内燃机学报.2001(6):526-530.
    [68]胡芃,陈则韶.量热技术和热物性测定[M].合肥市:中国科学技术大学出版社,2009:345.
    [69]奥齐西克著,俞昌铭主译.热传导[M].北京市:高等教育出版社,1983:756.
    [70]X. Lu, P. Tervola, M. Viljanen. Transient analytical solution to heat conduction in composite circular cylinder[J]. International Journal of Heat and Mass Transfer.2006,49(1-2):341-348.
    [71]A. Haji-Sheikh, J. V. Beck. Temperature solution in multi-dimensional multi-layer bodies[J]. International Journal of Heat and Mass Transfer.2002,45(9):1865-1877.
    [72]M. D. Mikhailov, M. N.ozisik. Transient conduction in a three-dimensional composite slab[J]. International Journal of Heat and Mass Transfer.1986,29(2):340-342.
    [73]M. F. A. Azeez, A. F. Vakakis. Axisymmetric transient solutions of the heat diffusion problem in layered composite media[J]. International Journal of Heat and Mass Transfer.2000,43(20):3883-3895.
    [74]X. Lu, P. Tervola, M. Viljanen. A new analytical method to solve the heat equation for a multi-dimensional composite slab[J]. Journal of Physics a-Mathematical and General.2005,38(13):2873-2890.
    [75]Y. Sun,1. S. Wichman. On transient heat conduction in a one-dimensional composite slab[J]. International Journal of Heat and Mass Transfer.2004,47(6-7):1555-1559.
    [76]F. de Monte. An analytic approach to the unsteady heat conduction processes in one-dimensional composite media[J]. International Journal of Heat and Mass Transfer.2002,45(6):1333-1343.
    [77]F. de Monte. Transient heat conduction in one-dimensional composite slab. A 'natural' analytic approach[J]. International Journal of Heat and Mass Transfer.2000,43(19):3607-3619.
    [78]胡汉平.热传导理论[M].合肥市:中国科学技术大学出版社,2010.
    [79]黄厚诚,王秋良.热传导问题的有限元分析[M].北京市:科学出版社,2011:154.
    [80]顾元宪,陈飚松,张洪武,等.非线性瞬态热传导的精细积分方法[J].大连理工大学学报.2000(S1):24-28.
    [81]顾元宪,赵红兵,亢战,等.瞬态热传导问题的优化设计与灵敏度分析[J].大连理工大学学报.1999(02):158-165.
    [82]A. Sutradhar, G. H. Paulino, L. J. Gray. Transient heat conduction in homogeneous and non-homogeneous materials by the laplace transform galerkin boundary element method[J]. Engineering Analysis with Boundary Elements.2002,26(2):119-132.
    [83]T. Belytschko, Y. Krongauz, D. Organ, et al. Meshless methods:an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering.1996,139(1-4):3-47.
    [84]M. N. Ozisik, D. Y. Tzou. On the wave theory in heat-conduction[J]. Journal of Heat Transfer-Transactions of the ASME.1994,116(3):526-535.
    [85]D. Y. Tzou. An engineering assessment to the relaxation-time in thermal wave-propagation[J]. International Journal of Heat and Mass Transfer.1993,36(7):1845-1851.
    [86]D. Y. Tzou. A unified field approach for heat-conduction from macro-scales to micro-scales[J]. Journal of Heat Transfer-Transactions of the ASME.1995,117(1):8-16.
    [87]T. Q. Qiu, C. L. Tien. Heat-transfer mechanisms during short-pulse laser-heating of metals[J]. Journal of Heat Transfer-Transactions of the ASME.1993,115(4):835-841.
    [88]张士元,郑百林,贺鹏飞.基于非傅立叶热传导半无限大体热冲击力学分析[J].力学季刊.2009(03):420-426.
    [89]伍茜.热冲击问题的理论研究及其在内燃机中的应用[D].浙江大学,2005.
    [90]莽珊珊.强瞬态热冲击下轴对称弹性体的热弹耦合问题研究[D].南京理工大学,2004.
    [91]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].1997.
    [92]过增元,朱宏晔.热质的运动和传递——热子气的守恒方程和傅立叶定律[J].工程热物理学报.2007(1):86-88.
    [93]张清光,曹炳阳,过增元.稳态导热中的非傅立叶效应[J].工程热物理学报.2007(02):271-273.
    [94]谢茂昭.内燃机计算燃烧学[M].第二版.大连市:大连理工大学出版社,2005.
    [95]W. J. D. Annand, M. T. H. Instantaneous heat transfer rates to the cylinder head surface of a small comperssion ignition engine[J]. Proceedings of the Institution of Mechanical Engineers.1970,185(72): 976-987.
    [96]W. J. D. Annand. Heat transfer in the cylinders of reciprocating internal combustion engines[J]. Proceedings of the Institution of Mechanical Engineers.1963.177(36):973-996.
    [97]G. Woschni. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine[J]. SAE Paper.,670931.
    [98]G. Sitkei, G. Tamanaian. A rational approach for calculation of heat transfer in diesel engines[J]. SAE Paper., 720027.
    [99]G. F. Hohenberg. Advanced approaches for heat transfer calculations[J]. SAE Paper.,790825.
    [100]K. Huber, G. Woschni. K. Zeilinger. Investigations on heat transfer in internal combustion engines under low load and motoring conditions[J]. SAE Paper.,905018.
    [101]K. Huber. Der warmeubergang schnellaufender direkteinspritzender dieselmotoren[D]. TU Munchen,1990.
    [102]M. Bargende. Ein gleichungsansatz zur berechnung der instationaren wandwarmeverluste im hochdruckteil von ottomotoren[D]. TH Darmstadt,1991.
    [103]G. Woschni. Experimentelle bestimmung des ortlich gemittelten warmeubergangskoeffizienten im ottomotor[J]. Mtz.1981,42(6):229-234.
    [104]A. Wimmer, R. Pivec. Heat transfer to the combustion chamber and port walls of 1C engines- measurement and prediction[J]. SAE Paper.,2000-01-0568.
    [105]C. Schubert, A. Wimmer, F. Chmela. Advanced heat transfer model for Cl engines[J]. SAE Paper., 2005-01-0695.
    [106]Y. Wu, B. Chen, F. Hsieh. Heat transfer model for small-scale air-cooled spark-ignition four-stroke engines[J]. International Journal of Heat and Mass Transfer.2006,49(21-22):3895-3905.
    [107]Y. Wu, B. Chen, F. Hsieh, et al. Heat transfer model for small-scale spark-ignition engines[J]. International Journal of Heat and Mass Transfer.2009,52(7-8):1875-1886.
    [108]D. Lejsek, A. Kulzer, J. Hammer. A novel transient wall heat transfer approach for the start-up of SI engines with gasoline direct injection[J]. Heat and Mass Transfer.2010,46(10):1053-1067.
    [109]D. Lejsek, A. Kulzer. Investigations on the transient wall heat transfer at start-up for SI engines with gasoline direct injection[J]. SAE Paper.,2009-01-0613.
    [110]李世伟.柴油机缸内工作过程传热模型的研究[D].山东大学,2012.
    [111]A. lrimescu. Convective heat transfer equation for turbulent flow in tubes applied to internal combustion engines operated under motored conditions[J]. Applied Thermal Engineering.2013.50(1):536-545.
    [112]J. S. Sardar. Three-dimensional simulation analysis of a diesel engine using moving dynamic mesh with different turbulence and combustion models[D]. Northern Illinois University,2010.
    [113]D. J. Torres. Y. H. Li, S. Kong. Partitioning strategies for parallel KIVA-4 engine simulations[J]. Computers & Fluids.2010,39(2):301-309.
    [114]R. Kolakaluri. Y. Li, S. Kong. A unified spray model for engine spray simulation using dynamic mesh refinement[J]. International Journal of Multiphase Flow.2010,36(11-12):858-869.
    [115]Y. Li, S. Kong. Integration of parallel computation and dynamic mesh refinement for transient spray simulation[J]. Computer Methods in Applied Mechanics and Engineering.2009,198(17-20):1596-1608.
    [116]C. Son. Advanced RANS type turbulence models and LES models for internal combustion engine intake simulations[D]. University of Wisconsin,2009.
    [117]Y. H. Li, S. C. Kong. Diesel combustion modelling using LES turbulence model with detailed chemistry[J]. Combustion Theory and Modelling.2008,12(2):205-219.
    [118]Y. Zhang. A numerical study of in-cylinder mixture formation in a low pressure direct injection gasoline engine[D]. Michigan State University,2007.
    [119]D. J. Torres, M. F. Trujillo. KIVA-4:an unstructured ale code for compressible gas flow with sprays[J]. Journal of Computational Physics.2006,219(2):943-975.
    [120]A. E. Klingbeil, H. Juneja, Y. Ra, et al. Premixed diesel combustion analysis in a heavy-duty diesel engine[J]. SAE Paper.,2003-01-0341.
    [121]G. Rao. Simulation of IC engine in-cylinder flows using KIVA-3V[D]. Michigan State University,2002.
    [122]K. Y. Huh, I. Chang, J. K. Martin. A comparison of boundary layer treatments for heat transfer in IC engines[J]. SAE Paper.,900252.
    [123]J. Yang, J. K. Martin. Predictions of the effects of high temperature walls, combustion, and knock on heat transfer in engine-type flows[J]. SAE Paper.,900690.
    [124]T. Morel, E. F. Fort, P. N. Blumberg. Effect of insulation strategy and design parameters on diesel engine heat rejection and performance[J]. SAE Paper.,850506.
    [125]D. N. Assanis. A computer simulation of the turbocharged turbocompounded diesel engine system for studies of low heat rejection engine performance[D]. MIT,1985.
    [126]白敏丽,吕继组,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究[J].内燃机学报.2004(6):525-531.
    [127]李佑长.四缸柴油机缸盖传热研究[D].武汉理工大学,2007.
    [128]李娜,张强.欧-Ⅲ排放柴油机缸盖冷却水腔流动与传热的数值解析[J].内燃机工程.2007(1):51-55.
    [129]陈红岩,李迎,俞小莉.柴油机流固耦合系统稳态传热数值仿真[J].农业机械学报.2007(2):56-60.
    [130]李迎,俞小莉,陈红岩,等.发动机冷却系统流固耦合稳态传热三维数值仿真[J].内燃机学报.2007(3):252-257.
    [131]李迎,陈红岩,俞小莉.流固耦合仿真技术在发动机稳态传热计算中的应用[J].内燃机工程.2007(4):19-22.
    [132]王兆文.重载车用柴油机缸盖内冷却水流动分析及强化传热研究[D].华中科技大学,2008.
    [133]王虎,桂长林,赵小勇.考虑冷却流场的缸套失圆耦合分析[J].农业机械学报.2008(4):24-29.
    [134]王虎,桂长林.内燃机缸体-冷却液流固耦合模型的共轭传热研究[J].汽车工程.2008(4):317-321.
    [135]骆清国,刘红彬,龚正波,等.柴油机气缸盖流固耦合传热分析研究[J].兵工学报.2008(7):769-773.
    [136]陈海波.汽油机固—液耦合及沸腾传热研究[D].吉林大学,2009.
    [137]李宝童,洪军,孙静,等.发动机冷却液流动与传热的数值模拟[J].西安交通大学学报.2009(3):17-21.
    [138]王唯栋,孙平,张锐,等.柴油机机体-冷却水套流固耦合系统传热仿真[J].农业工程学报.2010(7):1]8-122.
    [139]白敏丽,蒋惠强,陈家骅.发动机活塞组—缸套整体耦合系统瞬态温度场数值模拟[J].小型内燃机.1994(4):12-17.
    [140]Y. Liu, R. D. Reitz. Modeling of heat conduction with chamber walls for multidimensional internal combustion engine simulation [J]. Int. J. Heat Mass Transfer.1998.41(6):859-869.
    [141]全玉梅.内燃机燃烧室部件整体耦合系统传热仿真模拟[D].大连理工大学,2000.
    [142]J. F. Wiedenhoefer, R. D. Reitz. Multidimensional modeling of the effects of radiation and soot deposition in heavy-duty diesel engines[J]. SAE Paper.,2003-01-0560.
    [143]J. Xin, S. Shih, E. Itano. Integration of 3D combustion simulations and conjugate heat transfer analysis to quantitatively evaluate component temperatures[J]. SAE Paper.,2003-01-3128.
    [144]J. Tiainen, I. Kallio, A. Leino, et al. Heat transfer study of a high power density diesel engine[J]. SAE Paper., 2004-01-2962.
    [145]S. Etemad, C. F. Stein, S. Eriksson. Heat transfer analysis and cycle averaged heat flux prediction by means of CFD and its validation for an IC-engine[J]. SAE Paper.,2005-01-2029.
    [146]S. Etemad, T. Hagner, C. F. Stein. Accurate modelling of the thermal behaviour of a diesel engine by means of CFD and its validation[J]. SAE Paper.,2007-01-1905.
    [147]李迎.内燃机流固耦合传热问题数值仿真与应用研究[D].浙江大学,2006.
    [148]刘志恩.内燃机燃烧室多体耦合系统三维瞬态传热模拟及应用研究[D].华中科技大学,2007.
    [149]R. R. Malagi, S. N. Kurbet, N. Gowrishenkar. Finite element study on piston assembly dynamics emphasis with lubrication[J]. SAE Paper.,2009-28-0064.
    [150]王虎.内燃机缸套失圆研究[D].合肥工业大学,2010.
    [151]E. Urip, K. H. Liew, S. L. Yang. Modeling IC engine conjugate heat transfer using the KIVA code[J]. Numerical Heat Transfer Part a-Applications.2007,52(1):1-23.
    [152]E. Urip, S. Yang. An efficient IC engine conjugate heat transfer calculation for cooling system design[J]. SAE Paper.,2007-01-0147.
    [153]E. Urip. The KIVA code with conjugate heat transfer model for IC engine simulation[D]. Michigan Technological University,2006.
    [154]Q. Xue. Development of adaptive mesh refinement scheme and conjugate heat transfer model for engine simulations[D]. Iowa State University,2009.
    [155]Y. Li, S. Kong. Coupling conjugate heat transfer with in-cylinder combustion modeling for engine simulation[J]. International Journal of Heat and Mass Transfer.2011,54(11-12):2467-2478.
    [156]林杰伦.内燃机工作过程数值计算[M].西安市:西安交通大学出版社,1986:349.
    [157]周松,王银燕.内燃机工作过程仿真技术[M].北京市:北京航空航天大学出版社,2012:225.
    [158]R. Temam, A. Miranville. Mathematical modeling in continuum mechanics[M].2nd ed. Cambridge University Press,2005.
    [159]庄礼贤,尹协远,马晖扬编.流体力学[M].中国科技大学出版社,2009:508.
    [160]F. A. Williams. Combustion theory[M].2nd ed. Menlo Park, California:The Benjamin/Cummings,1985.
    [161]J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, et al. Molecular theory of gases and liquids[M]. New York: Wiley,1954.
    [162]R. Taylor, R Krishna. Multicomponent mass transfer[M]. New York:John Wiley & Sons, Inc.,1993:608.
    [163]T. Poinsot, D. Veynante. Theoretical and numerical combustion[M].3rd ed. RT Edwards, Inc.,2012.
    [164]K. K. Kuo. Principles of combustion[M].2nd ed. John Wiley & Sons, Inc,2005.
    [165]L. Gicquel, N. Gourdain, J. F. Boussuge, et al. High performance parallel computing of flows in complex geometriesfJ]. Comptes Rendus Mecanique.2011,339(2-3):104-124.
    [166]O. Vermorel, S. Richard, O. Colin, et al. Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES[J]. Combustion and Flame.2009,156(8):1525-1541.
    [167]V. Moureau, P. Domingo, L. Vervisch. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame:filtered laminar flame-PDF modeling[J]. Combustion and Flame.2011,158(7): 1340-1357.
    [168]V. Yakhot, S. A. Orszag. Renormalization group analysis of turbulence. I. Basic theory.[J]. Journal of Scientific Computing.1986,1(1):3-51.
    [169]C. G. Speziale, S. Thangam. Analysis of an RNG based turbulence model for separated flows[J]. International Journal of Engineering Science.1992,30(10):1379-1388.
    [170]M. P. Halstead, L. J. Kirsch, C. P. Quinn. Autoignition of hydrocarbon fuels at high-temperatures and pressures-fitting of a mathematical-model[J]. Combustion and Flame.1977,30(1):45-60.
    [171]K. Kolesa. EinfluB hoher wandtemperaturen auf das betriebsverhalten und insbesondere auf den warmeubergang direkteinspritzender dieselmotoren[D]. TU Munchen,1987.
    [172]C. Schwarz. Simulation des transienten betriebsverhaltens von aufgeladenen dieselmotoren[D]. TU Mtlnchen, 1993.
    [173]C. Vogel. EinfluB von wandablagerungen auf den warmeubergang im verbrennungsmotor[D]. TU Munchen, 1995.
    [174]ASTM. Standard test method for thermal diffusivity by the flash method[S].2011.
    [175]ASTM. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis[S].2012.
    [176]Z. T. Liu, Y. Zhang, M. Pang. Metallographic study of laser thermal shock on a piston[J]. Laser Physics. 2013,23(0260022).
    [177]邵颖慧,张宇,夏琪玮,等.缸盖材料温变效应的理论与实验研究[J].内燃机工程.2013.
    [178]邵颖慧.热流密度和材料物性对零件传热的影响[D].浙江大学,2013.
    [179]陶文铨.数值传热学[M].西安市:西安交通大学出版社,2001:566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700