室内测量定位系统发射站优化及校准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大尺寸工件的精密测量与定位是以航空航天、轨道交通制造为代表的大型装备制造业的基础,是提高精度和效率,保证质量不可或缺的工艺保障手段。基于传统仪器的精密测量与定位过程中,量程与精度矛盾突出,整体性能难以满足大型装备制造的要求。网络式结构的测量系统为解决该矛盾提供原理上的支持。室内测量定位系统正是多个发射站形成网络结构的测量系统,由独立工作的接收器配合,可同时监测大型被测物的各个部件,实时性高,并行性好,通过增加基站的方式协调了测量精度与大空间的矛盾。发射站是整个系统硬件的核心,决定了整个系统硬件的工作性能;而发射站的精确标定,以及系统模型描述的准确度和系统校准技术是构建测量网络软件方面的核心。本文对室内测量定位系统发射站的优化以及系统校准技术进行了研究,主要的研究内容如下:
     1、在分析系统组成和测量原理基础上,推导了发射站的测角几何原理,对扫描光平面进行了设计,进一步研究了发射站几何结构参数选择对测角精度的影响,进行参数选择,优化发射站结构。
     2、分析了轴系瞬时状态对扫描角测量精度的影响,指出发射站旋转部件性能的重要性。对发射站轴系进行了转子动力学模型推导,并对转子完成了平衡设计,通过有限元分析仿真比较了各参数改变时轴系的动力学性能,为轴系设计提供理论支持。
     3、研究了基于方位角交会,以及基于多平面约束两种坐标计算方法。针对基本测量系统提出了一种基于辅助仪器的一体化校准系统的方法,并分析了误差来源。在一体化校准的系统基础上,研究了一种基于数据融合的测量网络构建方法,将多个基本的小型系统的坐标系统一,形成大型测量系统。
     4、为进一步完善系统及提高实用性和精度,研究了分步式系统校准方法。建立了精确的平差模型,规范校准参数,分为内参数和外参数。针对初始位置光平面内参数标定方法的缺陷,提出了优化平差模型的方法,研究了任意位置光平面内参数标定方法,采用基于共面约束的全局平差定向方法对外参数进行标定,并研究了平差初值的获取方法。
Precision measurement and position for large scale workpieces is the basis of equipment manufacturing represented by aerospace and traffic equipment manufac-ture, and the indispensable process technology assurance means for improving preci-sion and efficiency and ensuring quality. In the process of precision measurement and position with traditional instruments, conflict between measuring range and accuracy is prominent. Integral performance of the instruments can not meet requires of large scale equipment manufacture. The type of network structure for measuring system provides support in theory for solving the problem. Indoor measurement positioning system is such a system. The system is composed of multiple measuring stations, combining with independent receivers, can measure the whole object with high real-time and better concurrency. It can balance accuracy and large measuring space via increasing stations. The station, which determines the performance of system hardware, is the core of network measuring system’s hardware framework. In addi-tion,precision calibration of station’s parameters, accurate description of system model and system calibration are the key technology in the software aspect. This pa-per is focus on station optimization and system calibration of the indoor measurement positioning system. The main work is as follow:
     1、On the basis of analyzing system composition and measuring principle, geo-metrical principle of transmitter’s angle measurement is deduced. With designing scanning laser plane, and studying on influence of transmitter’s geometry structure parameters on angle measuring precision, the parameters are selected to optimize transmitter’s structure.
     2、With analyzing influence of transient state of shaft system on scanning angle measuring accuracy, importance of working performance of transmitter’s rotating parts is indicated. Rotor dynamic model of transmitter shafting is deduced, balance design for rotor is finished, and dynamic performance of several shafting with differ-ent parameters are compared by finite element simulation analyzing, all of these pro-vide theoretical support for shafting design.
     3、Two system coordinate calculating methods based on azimuth intersection and multi-plane constraint are studied. An integrated calibrating method for fundamental measuring system based on auxiliary instrument is proposed, and the error sources are analyzed. Measuring network construction method based on data fusion is applied in the integrated calibrated systems, so that coordinate systems of them can be unified and large measuring system is formed.
     4、For perfecting system and improving practicality and accuracy, a step-by-step system calibration method is studied. An accurate adjustment model is established, calibration parameters are classified into intrinsic and extrinsic parameters. In view of the defect of initial position laser plane calibrating method for intrinsic parameters calibration, the model is improved, and arbitrary position laser plane intrinsic pa-rameters calibration method is studied. For extrinsic parameters calibration, a global adjustment orientation approach based on coplanar constraint is presented,the methods for acquiring adjustment initial estimates are studied.
引文
[1]雷源忠,我国机械工程研究进展与展望,机械工程学报,2009,45(5):1~11
    [2]中华人民共和国国务院,国家中长期科学和技术发展规划纲要(2006~2020)
    [3]许国康,大型飞机自动化装配技术,航空学报,2008,29(3):734~740
    [4]郭恩明,国外飞机柔性装配技术,航空制造技术,2005,(9):29~32
    [5]战翌婷,刘玉君,邓燕萍,船体结构分段装配研究,造船技术,2009,(6):22~24
    [6]李占营,年雪山,魏迎旺,论轿车车身柔性焊装线的规划及应用,汽车工艺与材料,2010,(9):17~20
    [7]韩清华,郑保,郭宏利,王鸿翔,采用激光跟踪仪测量飞机外形,航空计测技术,2004,24(1):15~16,33
    [8]李晓光,王兆楠,王智,等,一种目标位置解算方法,光学精密工程,2006,14(6):1076~1081
    [9]尤红建,张世强,组合CCD图像和稀疏激光测距数据的建筑物三维信息提取,光学精密工程,2006,14(2):297~302
    [10]梅中义,范玉青,基于激光跟踪定位的部件对接柔性装配技术,北京航空航天大学学报,2009, 435(1):65~69
    [11]邹方,薛汉杰,周万勇,等,飞机数字化柔性装配关键技术及其发展,航空制造技术,2006,(9):30~35
    [12] Zetu D, Banerjee P, Thomp son D,Extended-range hybrid tracker and applica-tions to motion and camera tracking in manufacturing systems,IEEE Transac-tions on Robotics and Automation, 2000, 16 (3) : 281~293
    [13]刘江省,从Control 2008看精密测量技术的发展,机械工程师,2009,(5):21~23
    [14]张国雄,裘祖荣,测试技术的作用与发展方向,现代切削与测量工程(国际)研讨会,成都:2004
    [15]黄桂平,钦桂勤,大尺寸三坐标测量方法与系统,宇航计测技术,2007,27(4):15~19
    [16]李广云,非正交系坐标测量系统原理及进展,测绘信息与工程,2003,28(1):4~10
    [17]李广云,非正交系坐标测量系统的原理、检定及应用研究:硕士学位论文,郑州:中国人民解放军信息工程大学,2003
    [18]马骊群,王立鼎,靳书元,等,工业大尺寸测量仪器的溯源现状及发展趋势,计测技术,2006,26(6):1~5
    [19]叶声华,王仲,曲兴华,精密测试技术展望,中国机械工程,2000,11(3): 262~263
    [20] ZHU J G, YE S H, YANG X Y, et al,On-Line Industrial 3D measurement tech-niques for large volume, Key Engineering Materials(S1013-9826) , 2005, 295-296:423-428
    [21] Francois Blais, A review of 20 years of range sensor development. Proc. SPIE, v5013, 2003:62~76
    [22]张国雄,三坐标测量机的发展趋势,中国工程机械,2000,11(1-2):222~227
    [23]吴晓峰,现代大尺寸空间测量方法,航空制造技术,2006,(10):68~70
    [24]马琛,工程测量技术的发展与展望研究,科技创新导报,2009,(8):69~69
    [25]张国雄,坐标测量技术发展方向,红外与激光工程,2008,37(增刊):1~5
    [26] CUYPERS W, VAN GESTEL N, VOET A, et al, Optical measurement techniques for mobile and large-scale dimensional metrology, Opt Laser Eng, 47(3-4): 292~300.
    [27]李杏华,激光跟踪系统的设计:博士学位论文,天津:天津大学,2003
    [28]赵树忠,提高激光跟踪三维坐标测量精度的研究:博士学位论文,天津:天津大学,2007
    [29]张国雄,李杏华,林永兵,等,激光跟踪伺服系统设计与误差分析,中国机械工程,2003,14(6):501~504
    [30]张国雄,林永兵,李杏华,等,四路激光跟踪干涉三维坐标测量系统,光学学报,2003, 23(9): 1030~1036
    [31]周春艳,激光跟踪控制系统的设计:硕士学位论文,天津:天津大学,2007
    [32]张国雄,李杏华,林永兵,多路法激光跟踪干涉测量系统的研究,天津大学学报,2003,36(1):33~37
    [33] Carl-Thomas Schneider, Lasertracer– A new type of self tracking laser inter-ferometer, IWAA2004, CERN, Geneva, 4-7 October 2004:1~6
    [34] Kenta Umetsu, Ryosyu Furutnani, Sonko Osawa, et al, Geometric calibration of a coordinate measuring machine using a laser tracking system, Meas. Sci. Tech-nol. ,2005,(16): 2466–2472
    [35] Gabriel Pieter Greeff, A Study for the Development of a Laser Tracking System Utilizing Multilateration for High Accuracy Dimensional Metrology, South Af-rica: Stellenbosch University, 2010
    [36] Nakamura O,Goto M,Four-beam laser interferometry for three-dimensional microscopic coordinate measurement.Appl. Opt . , 1994 , 33 (1) :31~36
    [37] Takatsuji T, Goto M, Kurosawa T,et al,The first measurement of a three-dimensional coordinate by use of a laser tracking interferometer system based on trilateration, Measurement Science and Technology , 1998 , 9 (1) :38~41
    [38]黄桂平,多台电子经纬仪/全站仪构成混合测量系统的研究与开发,郑州:解放军测绘学院,1999
    [39]谭振江,多传感器信息融合技术在光电经纬仪系统中的应用研究,吉林师范大学学报(自然科学版),2003,(2):7~9
    [40]胡红春,多经纬仪测量系统(MTM)的建立,电子工程,2004,(2):34~37
    [41]于起峰,尚洋,摄像测量学原理与应用研究,北京:科学出版社,2009
    [42]王之卓,摄影测量学,北京:测绘出版社,1982
    [43]李德仁,基础摄影测量学,武汉:武汉大学出版社,2003
    [44]颜树华,叶湘滨,王跃科,等,多个CCD交汇测量系统的理论研究,光学技术,1999,(6):26~29
    [45]艾莉莉,袁峰,丁振良,应用线阵CCD的空间目标外姿态测量系统.光学精密工程,2008,16(1):161~163
    [46]王颖,张广军,王建林,等,基于共面参照物的多立体视觉传感器标定方法,光电子·激光,2008,19(6):754~757
    [47]徐巧玉,王恒迪,车仁生,立体视觉测量系统中三维拼接技术的研究,光电子·激光,2009,10 (20):1333~1336.
    [48]黄桂平,钦桂勤,卢成静,数字近景摄影大尺寸三坐标测量系统V-STARS的测试与应用,宇航计测技术,2009,(2):5~9,22
    [49]李东明,V-STARS摄影测量系统的原理与应用,华电技术,2006,(10):26~27
    [50]卢成静,黄桂平,李广云,V-STARS工业摄影三坐标测量系统精度测试及应用,红外与激光工程,2007,36增刊:245~249
    [51]孙军华,杨珍,刘谦哲,等,三维测量数据同步自动配准方法,光电子·激光,2009, 6 (20):789~792
    [52]屈玉福,浦昭邦,王亚爱,等,多传感器三维运动坐标测量技术研究,光电子·激光,2004,15(9):1091~1094
    [53]张福民,曲兴华,叶声华,大尺寸测量中多传感器的融合,光学精密工程,2008,16(7):1236~1240
    [54] Arc Second Inc,Error Budget and Specifications_ White Paper,2002
    [55] Arc Second Inc’web site -http://www.arcsecond.com
    [56] Metris Inc’s web site -http://www.metris.com /
    [57]王伟,李锡文,刘继双,室内GPS的原理与应用,测绘与空间地理信息,2010,33(3):116~119
    [58]王玉振,张建军,尚延生,局域GPS技术应用于工业测量,北京测绘,2006,(3):38~40
    [59]吴晓峰,张国雄,室内GPS测量系统及其在飞机装配中的应用,航空精密制造技术,2006,42(5):1~5
    [60] Liu Zhongzheng,Liu Zhigang,Lu Bingheng,Error compensation of indoor GPS measurement,ICIRA 2008, Proceedings,5315 LNAI(PART 2):612~619
    [61] Mautz.R, Ochieng. W Y, Brodin.G, et al, 3D Wireless Network Localization from Inconsistent Distance Observations, Ad Hoc&Sensor Wireless Networks, 2007
    [62] Mautz.R, The Challenges of Indoor Environments and Specification on some Alternative Positioning Systems, Proceedings of the 6th workshop on positioning, Navigation and commnication 2009
    [63] Rainer Mautz, Washington Y. Ochieng, A Robust Indoor Positioning and Auto-Localisation Algorithm, Journal of Global Positioning System 2007,6(3):38~46
    [64] Muelaner, J. E., Z. Wang, et al,iGPS - An Initial Assessment Of Technical And Deployment Capability,3rd International Conference on Manufacturing Engi-neering. Kassandra-Chalkidiki, Greece 2008 : 805~810.
    [65] Muelaner.J.E, Wang.Z, Jamshidi.J, Uncertainty of Angle Measurement for a Ro-tary-Laser Automatic Theodolite(R-LAT), IMechE, Part B:J. Engineering Manu-facture, 2008,223(B3):217~229
    [66] Muelner. J. E., Wang.Z O Martin, et al, Estumation of uncertainty in three di-mensional coordinate measurement by comparision with calibrated points, Me-chanical Engineering. 2010
    [67] Maisano DA, Jamshidi J, Franceschini, et al. Indoor GPS: system functionality and initial performance evaluation. International Journal Manufacturing Re-search,2008. 3(3): 335~349
    [68] Mautz.R, Ochieng.W Y, Walsh.D, et al, Low-cost intelligent pervasive location and tracking (iPLOT) for the management of crime, Journal of Navigation, 2006, 2(59)
    [69]刘志刚,许耀中,王民刚,等,基于双旋转激光平面发射机网络的空间定位方法,中国,发明专利,200810150383,2009年12月30日
    [70]刘志刚,王民刚,许耀中,等,局部空间测量定位系统的光电传感器装置,中国,发明专利,200820222273,2009年08月19日
    [71]刘志刚,刘中正,许耀中,等,基于双旋转激光平面发射机网络的定位系统误差补偿方法,中国,发明专利,200810231910
    [72]张滋黎,邾继贵,耿娜,等,双经纬仪三维坐标测量系统设计,传感技术学报,2010,23(5):660~664
    [73]黄桂平,李广云,赵东印,等,经纬仪工业测量系统定向及单点计算,测绘科学技术学报,2010,(2):93~95
    [74]吴斌,薛婷,邾继贵,等,任意位姿平面靶标实现立体视觉传感器标定,光电子·激光,2006,17(11)
    [75]王永强,吕乃光,邓文怡等,大尺寸视觉测量系统在线标定的新方法,光学技术,2007,33(1):86~88
    [76]王永强,基于约束算法的大尺寸三维视觉测量方法研究:博士学位论文,北京:北京邮电大学,2006
    [77]张广军,机器视觉,北京:科学出版社,2005
    [78] Liu Zhigang,Xu Yaozhong,Liu Zhongzheng,et al,A large scale 3D positioning method based on a network of rotating laser automatic theodolites,IEEE Int. Conf. Inf. Autom., ICIA, 2010:513~518
    [79] Liu Zhigang,Liu, Zhongzheng,Wu, Jianwei,et al, Mobile large scale 3D co-ordinate measuring system based on network of rotating laser automatic theodolites, Proc SPIE Int Soc Opt Eng,2010,7544
    [80]费业泰,误差理论与数据处理(第四版),北京:机械工业出版社,2000
    [81]武汉大学测绘学院测量平差学科组,误差理论与测量平差基础,武汉:武汉大学出版社,2003
    [82]丁振良,误差理论与数据处理,哈尔滨:哈尔滨工业大学出版社,2002
    [83] J.W.Demmel,应用数值线代数,王国荣译,北京:人民邮电出版社,2007
    [84]姚健康,由方程组确定的隐函数求导问题,贵阳学院学报:自然科学版,2006,(1):1~2,6
    [85]雷安平,求隐函数偏导数的几种方法,贵州大学学报:自然科学版,2010,27(5):7~10,15
    [86]虞烈,刘恒,轴承-转子系统动力学,西安:西安交通大学出版社,2003
    [87]张文,转子动力学理论基础,北京:科学出版社,1990
    [88]闻邦椿,武新华,丁千,等,故障旋转机械非线性动力学的理论与试验,北京:科学出版社,2004
    [89]徐龙祥,高速旋转机械轴系动力学设计,北京:国防工业出版社,1994
    [90]王焕定,吴得伦,有限单元法及计算程序(第四版),北京:中国建筑工业出版社,2004
    [91]田晓丽,陈国光,辛长范,有限元方法与工程应用,北京:兵器工业出版社,2009
    [92]孙保苍,轴承-转子系统非线性动力学若干问题研究:博士学位论文,南京:南京航空航天大学,2007
    [93] Rao S S,工程中的有限元法,傅子智译,北京:科学出版社,1991
    [94]王勖成,劭敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1997
    [95]宫玉才,周洪伟,陈璞,等,快速子空间迭代法、迭代Ritz向量法于迭代Lanczos法的比较,振动工程学报,2005,18(2):227~232
    [96]范志毅,任勇生,刘立厚,等,力边界条件对瑞利-李兹法求梁固有频率的影响,上海工程技术大学学报,2005,19(1):9~11
    [97]刘习军,贾启芳,张文德,工程振动和测试技术,天津:天津大学出版社,1999.
    [98]陶利民,转子高精度动平衡测试与自动平衡技术研究:博士学位论文,长沙:国防科技大学,2006
    [99]云峰,施永红,韩中合,汽轮机转子振动试验系统及其动平衡,电站系统工程,2010,26(4):51~53
    [100]安子军,机械原理,北京:国防工业出版社,2009
    [101] Singiresu S.Rao,机械振动,李欣业,张明路译,北京:清华大学出版社,2009
    [102]黄金平,任兴民,邓旺群,利用升速响应振幅进行柔性转子的模态平衡,机械工程学报,2010,46(5):55~62
    [103]邓理博,程礼,李全通,等,转子动平衡影响系数法改进,机械科学与技术,2007,26(5):631~634
    [104]刘文倩,旋转机械自动平衡装置综述,现代制造工程,2011,(3):134~137
    [105]邬立建,影响系数法在现场动平衡中的应用,冶金动力,2005,(1):55~57
    [106]陈云波,关于双平面平衡矢量计算法和影响系数法一致性的论证,南京工业大学学报:自然科学版,2006,28(3):108~110
    [107] http://www.samtech.cc/
    [108] SAMCEF for Rotors-rotor Dynamics Analysis,www.idac.co.uk/products/
    [109] SAMCEF—先进的通用有限元分析软件,CAD/CAM与制造业信息化,2004,(9):82~82
    [110]周传月,SAMCEF有限元分析与应用实例,北京:机械工业出版社,2009
    [111]王娟,冯国全,应用MSC/Patran/Nastran和Samcef/Rotor软件计算转子系统临界转速的对比分析,航空发动机,2007,(z1): 4,10~11
    [112]刘珂,周富强,张广军,半径约束最小二乘圆拟合方法及其误差分析,光电子激光,2006,17(5):605~607
    [113]杨伟,陈家新,李济顺,基于投影的二阶段空间圆线拟合算法,工程设计学报,2009,16(2):117~121
    [114]姚吉利,韩保民,杨元喜,罗德里格矩阵在三维坐标转换严密解算中的应用,武汉大学学报(信息科学版),2006,31(12):1095~1119
    [115]董伟东,三维坐标转换的多元线性回归模型及粗差剔除,测绘工程,2007,16(2):17~26
    [116]董钧祥,杨德宏,测量坐标转换模型及其应用,昆明理工大学学报,2006,31(3):1~4
    [117]陈正宇,刘春,基于多参数正则化的空间坐标转换与精度分析,大地测量与地球动力学,2008,28(1):92~95
    [118]林文惠,刚体运动学的几何研究,力学与实践,2005,27(5):71~72
    [119]哈尔滨工业大学理论力学教研组,理论力学,北京:高等教育出版社,1997
    [120]程云鹏,矩阵论,西安:西北工业大学出版社,2000.
    [121]罗小桂,何雁,矩阵奇异值分解在计算技术中的应用,计算机与现代化,2006,(6):67~68
    [122]董伟东,三维坐标转换的多元线性回归模型及粗差剔除,测绘工程,2007,16(2):17~26
    [123] Triggs Bill, Mclauchlan Peter, Hartley Richard, Bundle Adjustment,A modern Synthesis,Proc of the Int. Workshop on Vision Algorithms: Theory and Practice, Freiburg, Germany: Springer-Verlag, 1999: 298~372.
    [124]张祖勋,数字摄影测量与计算机视觉,武汉大学学报(信息科学版),2004,29(12):1035~1039,1105
    [125]刘国林,非线性最小二乘与测量平差,北京:测绘出版社,2002
    [126] K. Madsen, H.B. Nielsen, O. Tingleff. , Methods for Non-Linear Least Squares Problems, Technical University of Denmark, 2004 Lecture notes, available at http://www.imm.dtu.dk/courses/02611/nllsq.pdf
    [127] Manolis I. A., Lourakis, A Brief Description of the Levenberg-Marquardt Algo-rithm Implemened by levmar, http://www.ics.forth.gr/lourakis/levmar
    [128]谢可新,韩建,林友联,最优化方法,天津:天津大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700