睫状神经营养因子联合复光颗粒对外伤性视神经损伤修复作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过实验研究睫状神经营养因子(ciliary neurotrophic factor,CNTF)联合中药复光颗粒对白兔外伤性视神经病变(traumatic optic neuropathy,TON)治疗的病理形态学、超微结构、视觉电生理及生物力学特性的影响,探讨睫状神经营养因子和复光颗粒对TON可能的保护机制,为临床治疗TON提供一定的理论依据。
     首先建立了轻、中、重不同程度的钳夹伤白兔视神经损伤模型,观察不同程度损伤后不同时间视神经视网膜组织学的变化,结果表明应用蚊式血管钳可制作白兔不同程度的视神经钳夹损伤模型,模型重复性好,致伤程度稳定,可用于临床研究。轻度损伤组视网膜及视神经损伤后病理形态改变不显著,视网膜神经节细胞(retinal ganglioncell,RGC)数量变化不明显,视神经结构和功能可大部分自行修复。中度损伤组视网膜及视神经病理形态改变明显,损伤时间越长,病理变化越明显。重度损伤组视网膜及视神经病理形态不可逆性改变,正常结构几乎完全消失,视网膜及视神经功能丧失。证明白兔中度损伤视神经模型可以作为TON发病机制及药物治疗效果研究的良好的动物模型。
     在确定致伤程度稳定、重复性好的白兔TON中度钳夹伤模型后,建立正常对照组、损伤组、CNTF治疗组、复光颗粒治疗组、CNTF和复光颗粒联合治疗组。通过实验观察中度视神经钳夹伤白兔模型的病理形态学、超微结构、视觉电生理学及生物力学特性的变化,得出以下结论:视神经损伤后病理形态学改变包括RGC和神经纤维数目不断减少,出现RGC肿胀,核固缩、染色加深,染色质边聚、空化、变性,细胞核碎裂等细胞凋亡现象。视神经纤维水肿,胶质细胞肿胀,神经纤维断裂、结构模糊,坏死灶增多、扩大,各层神经组织明显变薄、萎缩。视神经损伤超微结构改变主要包括视神经和视网膜的神经纤维层线粒体肿胀、嵴变宽甚至空泡化,微丝和微管数目减少、结构异常,轴突数目减少,RGC细胞凋亡等结构的改变,损伤随时间的延长逐渐加重。视神经损伤后闪光刺激诱发电位变化包括P1波潜伏期延长,振幅降低,传导能力减弱。损伤后视神经生物力学改变包括抗拉伸承载能力减弱,拉伸最大载荷、最大应力、最大应变、弹性限度载荷、弹性限度应变、弹性限度应力明显小于正常神经。CNTF和复光颗粒能够在一定程度上减缓RGC和神经纤维的凋亡时间和数量,促进RGC和神经纤维的再生,阻止轴突的变性坏死,从而阻断RGC的死亡,保护视神经超微结构,为轴浆运输功能的恢复提供物质基础和载体,促进神经纤维再生,缩短视神经P1波的潜伏期,增加振幅,增强传导能力,增强视神经抗拉伸承载能力,促进视神经的修复,CNTF和复光颗粒联合应用效果更佳。
     本文的创新点如下:
     1、从病理形态学、超微结构、视觉电生理学及生物力学多角度观察兔视神经损伤模型的视神经及视网膜的改变。
     2、建立了不同程度的钳夹伤兔视神经损伤模型,根据病理形态学变化筛选出可作为TON发病机制及药物治疗效果研究的有效动物模型。
     3、采用纵向拉伸实验,分别获取正常对照组、损伤组、CNTF治疗组、复光颗粒治疗组、CNTF和复光颗粒联合治疗组兔视神经的最大载荷、最大应力、最大应变、弹性限度载荷、弹性限度应变、弹性限度应力等,利用回归分析方法建立视神经应力-应变关系表达式,绘制应力-应变曲线,并进行定量分析。
     4、从病理形态学、超微结构、视觉电生理学及生物力学角度分别观察CNTF、复光颗粒以及CNTF和复光颗粒联合对兔视神经损伤的修复程度,结果证明CNTF和复光颗粒联合治疗效果更佳。
Traumatic optic neuropathy (TON) is the injury-induced damage of the optic nervefunction that results in sudden loss of vision and can occur after direct or indirect injury.Ophthalmologically, TONs result in changes of virtually all optic nerve functions includingvisual acuity, visual fields, pupillary reflexes and funduscopically detectable morphologicalchanges. Retrograde degeneration of the RGCs is the final common outcome underlyingTON.The axon injury initiates ganglion cell disease and death. The failure of the optic nerveto regenerate after injury remains a major clinical and scientific problem. TON will directlydamage the retinal ganglion cells, lead to the degeneration and apoptosis, and ultimatelycause the loss of visual function.Improving the survival ratio of RGCs,maintaining orbuilding the structures,accelerating transportation of axonal plasm,and improving themicroenvironment for optic nerve fiber to survive or regenerate, saving the visual function ofpatients is a major issue in the contemporary nerve biomedical field.
     The optic nerve is composed of retinal ganglion cells (RGCs), axons and glia. Damagecan occur to any part of the optic nerve, causing partial or complete loss of visual function.Therefore, the protection of optic nerves is one of the main focuses of research in the field ofmodern visual science. Increasing attention has been paid to the diagnosis and treatment ofoptic nerve injury, and the protection of optic nerves. This study aimed to verify the effectsof ciliary neurotrophic factor (CNTF) and/or compound light granules in the treatment ofoptic nerve injury in experimental rabbit models by morphological,ultrastructure,F-VEP andbiomechanical analyses, in a broader attempt to provide biomechanical basis for clinicalpractice.
     1. Establishment and evaluation of TON models of rabbits
     Establishing animal models of optic nerve injury is fundamental for nerve injuryresearch. Stable and reproducible animal model of mild, medium and severe optic nervecrush was established by using the mosquito clamp.This method was very simpleand convenient. In mild injury group, changes of morphology were slight, and visual functionwas fine. In medium injury group, pathological changes of optic nerve were obvious, and theinjury deteriorated gradually within4w observing time, however, part visual functionremained. With the lapse of time, pathological changes deteriorated quickly.In severe injurygroup, changes of morphology were irreversible sooner after injury, and the visual functionlost completely.The medium optic nerve crush model can be used to observe the therapyeffect of different treatment methods of TON.
     2. The effects of CNTF and compound light granules on the pathological changes ofinjured optic nerve in rabbits.
     The rabbits were randomly divided into Group A(normal control),B(injury group),C(CNTF group),D(compound light granules group) and E(CNTF and compound lightgranules group) following traumatic optic nerve injury.The morphological changes in thelongitudinal profiles of the optic nerve were observed by hematoxylin-eosin staining andoptical microscopy. In normal control group, optic nerve fibers were arranged in a regularand parallel manner, the staining was uniform, axons and other contents were clearly seenand the glia were of similar sizes. In the injury group, optic nerve fibers were thin, tortuous,irregularly arrange, and the nuclei were not uniform. At3d after injury, nucleus pyknosis ofRGC was seen in injury group, then RGC loss were seen within2w, and the thickness ofretina become thin. With the lapse of time, these changes deteriorated quickly.In the CNTFgroup, optic nerve fibers were disordered, and the optic nerve appeared healthier and thedegree of injury was lighter than the model group.In the compound light granule group, aportion of optic nerve fibers were in a disordered arrangement, there was no thinning of theoptic nerve and glial nuclei were not uniform. These pathological changes of CNTF andcompound light granules group were more obvious in injury group at each point. In theCNTF+compound light granule group, optic nerve fibers were disordered, glial nuclei weresignificantly increased and were mostly in an ordered arrangement (a small amount were stillirregular), there was no thinning of the optic nerve and the degree of optic nerve injury waslighter than the CNTF and compound light granule groups. Compound light granules andciliary neurotrophic factor can prevent retinal tissue edema and alleviate optic nerve injury at the histological level, and the combined treatment is more effective than either treatmentalone.
     3. The effects of CNTF and compound light granules on the ultrastructure of traumaticoptic neuropathy in rabbits at different times.
     Axon injury disrupts the connections of RGCs to their target, resulting in a loss oftarget-derived neurotrophic support. The molecular responses at the site of axon injuryinvolve an interruption of axonal transport. Retinal ganglion cell (RGC) axons coursethrough the optic nerve and carry all the visual information to the brain, but after injury, theyfail to regrow through the optic nerve and RGC cell bodies typically die, leading topermanent loss of vision. Retrograde degeneration of the RGCs is the final common outcomeunderlying TON.The axon injury initiates ganglion cell disease and death.
     In injury control group,Lamellar separation of myelin can be seen.The numberof axons reduced, and parts of them collapse.The numbers of microfilaments andmicrotubules were both reduced significantly.The mitochondrions were swelled, crest gapwidened,or totally collapsed and disappeared. With the lapse of time, these changesdeteriorated quickly.Compound light granules and ciliary neurotrophic factor can acceleratetransportation of axonal plasm and protect the microstructures of optic nerve,which isvaluable for restorating the transportation of axonal plasm. Compound light granules andciliary neurotrophic factor can alleviate optic nerve injury at the ultrastrucure level, and thecombined treatment is more effective than either treatment alone.
     4. The effects of CNTF and compound light granules on the Flash visual evobepotentials of traumatic optic neuropathy in rabbits at different times.
     The bright flash VEP uses full-field illumination and elicits a mass response from theanterior visual pathway. Thus, responses from abnormal regions of the field are summedwith those from normal regions.
     In normal group, the latency of P1wave was32.19±1.88ms,and the amplitude of P1wave was21.24±1.78μv. F-VEP of the healthy rabbits revealed typical PNP contours, whilethe waves in the injureded groups were low and flat.The latency period of P1waves waslengthened and the amplitude reduced. The delay of P1wave latency was found in injury group at3days、1week、2weeks and4weeks after injury compared with normal group,CNTF,compound light granule and CNTF+compound light granule groups and the amplitude waslower than normal group(P<0.05).
     5. The effects of CNTF and compound light granules on the biomechanical changes ofinjured optic nerve in rabbits.
     Under normal physiological conditions imposed by posture and movement, nerves areexposed to various mechanical stresses. Optic nerves extremity need toaccommodate a vastarray of mechanical stresses associated with the diverse repertoire of human movementrelated to function and participation in daily activities. The structural elements of optic nervemust support the ultimate function of conduction of electrical impulses through myriadpositions, postures, and movements that often stress the nerves over multiple limb segmentsand joints simultaneously. At a point, the amount of applied load starts to permanentlydeform particular elements of the nerve.
     Tensile test showed that the maximum tensile load, stress and strain, and the elasticlimit load, stress and strain of the optic nerve in the normal control group were significantlyhigher than those in the model, CNTF, compound light granule and CNTF+compound lightgranule groups (P <0.05). Compared with model group, the above indexes were increased inthe CNTF, compound light granule and CNTF+compound light granule groups, with themost significant difference in the CNTF+compound light granule group (P<0.05). Wecould see that the normal optic nerve had the strongest tensile bearing capacity, followed bythe injured optic nerve in the CNTF+compound light granule group, the injured optic nervein the compound light granule group, and the injured optic nerve in the CNTF group. Theinjured optic nerve in the model group without any treatment had the weakest tensile bearingcapacity. These experimental findings indicate that compound light granules and ciliaryneurotrophic factor can alleviate optic nerve injury at the biochemical level, and thecombined treatment is more effective than either treatment alone.
     This experiment study the effects of ciliary neurotrophic factor (CNTF) and/orcompound light granules in the treatment of optic nerve injury in experimental rabbit modelsby morphological、ultrastructure、F-VEP and biomechanical analyses. The present study found that CNTF and compound light granules play an important role in neural activity.CNTF and compound light granules can promote the survival of a variety of retinal ganglioncells and nerve fibers,and is important for nervous system development, differentiation andrestoration after clamp injury. CNTF and compound light granule promote RGCs survivaland growth in vitro, significantly delay RGCs death after optic nerve crush injury, andimprove survival rate. In summary,these studies detecte the relevant factors using animalmodel to prove that CNTF and compound light granules can increase the activity of RGCsand promote the growth of processes,and protect the injured RGCs with anti-apoptoticpathways and increase the amount of growth associated protein to promote the regenerationof processes. Provide a better experimental basis and theoretical basis for more in-depthstudy of traumatic optic neuropathy, also provide a new direction and possibilities for itstreatment.
引文
[1]血府逐瘀汤对外伤性视神经病变神经节细胞作用的实验研究[D].博士学位论文,北京:中国中医科学院,2009.
    [2] Walsh FB,Hoyt WF.Clinical Neuro-Ophthalmology[M].3rd ed.Baltimore:Williams andWilkins.1969.2380.
    [3] Seiff SR.High does corticosteroids for treatment of vision loss due to indirect injury tothe optic nerve[J].Ophthalmic Surg,1990.21:389-395.
    [4] Swanson KJ,Schlieve CR,Lieven CJ,et al.Neuroprotective effect of sulfhydrylreduction in a rat optic nerve crush modek[J].Invest Ophthalmol VisSci,2005,46,(10):3737-3741.
    [5] Kountakis SE,Maillard AA,EI-Harazi SM,et al.Endoscopic optic nerve decompressionfor traumatic blindness [J].Otolaryngol Head Neck Surg,2000,123(1):34-37.
    [6] VAGEFI MR,SEIFF SR.Traumatic optic neuropathy[J].ContemporaryOphthalmology,2005,4(14):1-7.
    [7]韦以存.外伤性视神经损伤的外科治疗现状[J].右江民族医学院学报.2006,5:848-849.
    [8] Radius RL, Anderson DR.Retinal ganglion cell degeneration in experimental opticatrophy[J]. Am J Ophthalmol,1978,86:673-679.
    [9] Quiqley HA, Davis EB, Anderson DR.Descending optic atrophy in primates[J]. InvestOphthalmol Vis Sci,1977,16:841-849.
    [10] Prokosch V, Spieker T, Merte RL, et al. Concomitant cellular reactions in optic nervesiderosis existing for30years[J]. Opthalmologe,2011,108:372-377.
    [11] Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is aNogo receptor ligand that inhibits neurite outgrowth. Nature[J],2002,417:941-944.
    [12] Sherman LS, Back SA.A “GAG” reflex prevents repair of the damaged CNS[J].Trends Neurosci,2007,31:44-51.
    [13] Busch SA, Silver J.The role of extracellular matrix in CNS regeneration[J]. CurrOpin Neurobiol,2007,17:120-127.
    [14] Thanos S, Mey J, Wild M.Treatment of the adult retina with microglia-suppressingfactors retards axotomy-induced neuronal degradation and enhances axonal regeneration invivo and in vitro[J]. J Neurosci,1993,13:455-466.
    [15] Tsai HH, Jeng SF, Lin TS, et al. Predictive value of computed tomography in visualoutcome in indirect traumatic optic neuropathy complicated with periorbital facial bonefracture[J]. Clin Neurol Neurosurg,2005,107:200-206.
    [16] Leung DY, Kwong YY, Lam DS.The outcome of48eyes with indirect traumaticoptic neuropathy and periorbital facial bone fracture[J]. J Trauma,2006,60:685.
    [17] Yeh S, Foroozan R. Orbital apex syndrome[J]. Curr Opin Ophthalmol,2006,15:490-498.
    [18] Acheson JF.Optic nerve disorders: role of canal and nerve sheath decompressionsurgery[J]. Eye,2004)18:1169-1174.
    [19] Levin LA, Beck RW, Joseph MP,et al.The treatment of traumatic optic neuropathy:the International Optic Nerve Trauma Study[J]. Ophthalmology,1999,106:1268-1277.
    [20] Isenmann S, Kretz A, Cellerino A.Molecular determinants of retinal ganglion celldevelopment, survival, and regeneration[J]. Prog Ret Eye Res,2003,22:483-543.
    [21] Heiduschka P, Fischer D, Thanos S.Recovery of visual evoked potentials afterregeneration of cut retinal ganglion cell axons within the ascending visual pathway in adultrats[J]. Restor Neurol Neurosci,2005,23:303-312.
    [22]朱豫,盛艳娟.大剂量甲基泼尼松龙对大鼠视神经挤压伤后RGC凋亡的影响[J].眼科研究,2003,21:582-584.
    [23] Hurlbert RJ. Strategies of medical intervention in the management of acute spinalcord injury[J]. Spine,2006,31:16-21.
    [24] Levin LA, Beck RW, Joseph MP, et al. The treatment of traumatic optic neuropathy:the International Optic Nerve Trauma Study[J]. Ophthalmology,1999,106:1268-1277.
    [25] Steinsapir KD, Goldberg RA, Sinha S, et al.Methylprednisolone exacerbates axonalloss following optic nerve trauma in rats[J]. Restor Neurol Neurosci,2000,17:157-163.
    [26]张峪涵,杨磊,黄瑾.神经营养囚子用于治疗中枢神经系统疾病[J].中国综合临床,2005,21:283-285.
    [27]修阳晖,林发森,朱益华.视神经损伤后影响轴突再生的因素[J].福建医药杂志,2006,28(3):113-115.
    [28] Yoles E,Schwartz M. Elevation of intraocular glutamate levels in rats with partiallesion of the optic nerve[J].Arch phthalmol,1998,116(7):906-910.
    [29] Yamazaki H,Ohguro I,et al.Study of retinal morphology and functions in royalcollege surgeons rat by nilvadipine,a Ca(2+) antagonist [J].Invest Ophthalmol Vis Sci,2002,43:919-926.
    [30]李晓双,鞠学红.视神经损伤药物治疗的新进展[J].中华眼底病杂志.2006,22(6):431-433.
    [31] LaVail MM,Unoki K,Yasumura,et al.Multiple growth factors, cytokines andneurotrophins rescue photoreceptors from the damaging effects of constant light[J]. ProcNatl Acad Sci USA,1992,89:11249-11253.
    [32] Liang FQ, Aleman TS, Dejneka, NS, et al. Long-term protection of retinal structurebut not function using RAAV.CNTF in animal models of retinitis pigmentosa[J]. Mol Ther,2001,4:461-472.
    [33] Liang FQ, Dejneka NS, Cohen, DR, et al. AAV-mediated delivery of ciliaryneurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse[J].Mol Ther,2001,3:241-248.
    [34] Bok D, Yasumura D, Matthes MT, et al. Effects of adeno-associated virus-vectoredciliary neurotrophic factor on retinal structure and function in mice with a P216Lrds/peripherin mutation[J]. Exp Eye Res,2002,74:719-735.
    [35] Schlichtenbrede FC, MacNeil A, Bainbridge JW, et al. Intraocular gene delivery ofciliary neurotrophic factor results in significant loss of retinal function in normal mice and inthe Prph2Rd2/Rd2model of retinal degeneration[J]. Gene Ther,2003,10:523-527.
    [36] Tao W, Wen, R, Goddard MB, et al. Encapsulated cell-based delivery of CNTFreduces photoreceptor degeneration in animal models of retinitis pigmentosa[J].InvestOphthalmol Vis Sci,2002,43:3292-3298.
    [37] Li Y, Tao W, Luo L, et al.CNTF induces regeneration of cone outer segments in a ratmodel of retinal degeneration[J]. PLoS One,2010,5:94-95.
    [38] Meyer-Franke A, Kaplan MR, Pfrieger FW, et al.Characterization of the signalinginteractions that promote the survival and growth of developing retinal ganglion cells inculture[J]. Neuron,1995,15:805-819.
    [39] Adler R,Landa KB,Manthorpe M,et al.Cholinergic neuronotrophic factors:intraoculardistribution of trophic activity for ciliary neurons[J].Science,1979,204:1434-1436.
    [40] Murakami M, Kamimura D, Hirano T.New IL-6(gp130) family cytokine members,CLC/NNT1/BSF3and IL-27[J]. Growth Factors,2004,22:75-77.
    [41] Zhang JG,Zhang Y.Identification and characterization of two distinct truncated formsof gp130and a soluble form of leukermia inhibitory factor receptor alpha-chain in normalhuman urine and plasma[J].J Biol Chem,1998,273(17):10798-10805.
    [42] Sleeman MW, Anderson KD, Lambert PD, et al.The ciliary neurotrophic factor andits receptor, CNTFR alpha[J]. Pharm Acta Helv,2000,74:265-272.
    [43] Lambert PD, Anderson KD, Sleeman MW, et al. Ciliary neurotrophic factor activatesleptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even inleptin-resistant obesity[J]. Proc Natl Acad Sci USA,2001,98:4652-4657.
    [44] Ettinger MP, Littlejohn TW, Schwartz SL, et al.Recombinant variant of ciliaryneurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study[J]. JAm Med Assoc,2003,289:1826-1832.
    [45] Beltran WA, Rohrer H, Aguirre GD.Immunolocalization of ciliary neurotrophicfactor receptor alpha (CNTFRalpha) in mammalian photoreceptor cells[J].Mol Vis,2005,11:232-244.
    [46] Cronin T,Léveillard T,Sahel JA.Retinal degenerations: from cell signaling to celltherapy; preclinical and clinical issues[J].Curr Gene Ther,2007,7:121-129.
    [47] Kun DR,Alberto R,Jacque L. Molecular and cellular alterations induced by sustainedexpression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa[J].InvestOphthalmol Vis Sci,2007,48:1389-1400.
    [48] Hirano T, Nakajima K, Hibi M. Signaling mechanisms through gp130: a model of thecytokine system[J]. Cytokine Growth Factor Rev,1997,8:241-252.
    [49] Hirano T, Ishihara K, Hibi M. Roles of STAT3in mediating the cell growth,differentiation and survival signals relayed through the IL-6family of cytokine receptors[J].Oncogene,2000,19:2548-2556.
    [50] Tomida M.Structural and functional studies on the leukemia inhibitory factor receptor(LIF-R): gene and soluble form of LIF-R, and cytoplasmic domain of LIF-R required fordifferentiation and growth arrest of myeloid leukemic cells[J]. Leuk Lymphoma,2000,37:517-525.
    [51] Lutticken C, Wegenka UM, Yuan J, et al.Association of transcription factor APRFand protein kinase Jak1with the interleukin-6signal transducer gp130[J]. Science,1994,263:89-92.
    [52] Raz R, Durbin JE, Levy DE. Acute phase response factor and additional members ofthe interferon-stimulated gene factor3family integrate diverse signals from cytokines,interferons and growth factors[J]. J Biol Chem,1994,269:24391-24395.
    [53] Heinrich PC, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokinesignalling through the gp130/Jak/STAT pathway[J]. Biochem J.1998,334:297-314.
    [54] Meyer-Franke A, Kaplan MR, Pfrieger FW, et al. Characterization of the signalinginteractions that promote the survival and growth of developing retinal ganglion cells inculture[J]. Neuron,1995,15:805-819.
    [55] Segal RA, Greenberg ME.Intracellular signaling pathways activated by neurotrophicfactors[J]. Annu Rev Neurosci,1996,19:463-489.
    [56] Weng G, Bhalla US, Iyengar R.Complexity in biological signalingsystems[J].Science,1999,284:92-96.
    [57] Harada T,Harada C,Kohsaka S. Microglia-Müller glia cell interactions controlneurotrophic factor production during light-induced retinal degeneration[J].JNeurosi,2002,22:9228-9236.
    [58] Beltran WA. On the role of CNTF as a potential therapy for retinaldegeneration[J].Adv Exp Med Biol,2008,61345-61351.
    [59] MacDonald IM,Sauve Y,Sieving PA.Preventing blindness in retinal disease:ciliaryneurotrophic factor intraocular implant[J].Can J Ophthalmol,2007,42:399-402.
    [60] Meyer-Franke A, Kaplan MR, Pfrieger FW, et al.Characterization of the signalinginteractions that promote the survival and growth of developing retinal ganglion cells inculture[J]. Neuron,1995,15:805-819.
    [61] Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death inexperimental glaucoma and after axotomy occurs by apoptosis[J]. lnvest Ophthalmol Vis Sci,1995,36:774-786.
    [62] Levin LA, Louhab A. Apoptosis of retinal ganglion cells in anteriorischemic opticneuropathy[J]. Arch Ophthalmol,1996,114:488-491.
    [63] Nickells R. Retinal ganglion cell death in glaucoma: the how, the why, and themaybe[J]. J Glaucoma,1996,5:345-356.
    [64] Kerrigan LA, Zack DJ, Quigley HA, et al. TUNEL positive ganglion cells in humanprimary open-angle glaucoma[J]. Arch Ophthalmol,1997,115:1031-1035.
    [65] Barher AJ, Leith E, Khin SA, et al. Neural apoptosis in the retina during experimentaland human diabetes: early onset and effect of insulin[J]. J Clin lnvest,1998,102:783-791.
    [66] Villegas-Perez MP, Lawrence JM, Vidal-Sanz M, et al. Ganglion cell loss in RCS ratretina: a result of compression of axons by contracting intraretinal vessels linked to thepigment epithelium[J]. J Comp Neurol,1998,392:58-74.
    [67] Buch PK,MacLaren RE,Ali RR. Neuroprotective gene therapy for the treatment ofinherited retinal degeneration[J].Curr Gene Ther,2007,7:434-445.
    [68] Spencer WH. Ophthalmic Pathology: An Atlas and Textbook,1st edition.Philadelphia, PA: W.B. Saunders Co.1996.
    [69] Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Axotomy results indelayed death and apoptosis of retinal ganglion cells in adult rats[J]. J Neurosci.1994,14:4368-4374.
    [70] Hull M, Bahr M. Differential regulation of c-JUN expression in rat retinal ganglioncells after proximal and distal optic nerve transection[J]. Neurosci Lett,1994,178:39-42.
    [71] Bernstein-Goral H, Bregman BS. Axotomized rubrospinal neurons rescued by fetalspinal cord transplants maintain axon collaterals to rostral CNS targets[J]. Exp Neurol.1997,148:13-25.
    [72] Lingor P, Koeberle P, Kügler S, B hr M. Down-regulation of apoptosis mediators byRNAi inhibits axotomy-induced retinal ganglion cell death in vivo[J]. Brain,2005,128:550-558.
    [73] Homma K, Koriyama Y, Mawatari K, Higuchi Y, Kosaka J, Kato S. Earlydownregulation of IGF-I decides the fate of rat retinal ganglion cells after optic nerveinjury[J]. Neurochem Int.2007,50:741-748.
    [74] Whitmore AV, Libby RT, John SW. Glaucoma: thinking in new ways-a role forautonomous axonal self-destruction and other compartmentalised processes[J].Prog RetinEye Res.2005,24:639-662.
    [75] Riccio A, Pierchala BA, Ciarallo CL, Ginty DD. An NGFTrkA-mediated retrogradesignal to transcription factor CREB in sympathetic neurons[J]. Science.1997,277:1097-1100.
    [76] Senger DL, Campenot RB. Rapid retrograde tyrosine phosphorylation of trkA andother proteins in rat sympathetic neurons in compartmented cultures[J]. J Cell Biol.1997,138:411-421.
    [77] Yip HK, So KF. Axonal regeneration of retinal ganglion cells: effect of trophicfactors[J]. Prog Retin Eye Res.2000,19:559-575.
    [78] Meyer-Franke A, Kaplan MR, Pfrieger FW, et al. Characterization of the signalinginteractions that promote the survival and growth of developing retinal ganglion cells inculture[J]. Neuron.1995,15:805-819.
    [79] Nakazawa T, Tamai M, Mori N. Brain-derived neurotrophic factor preventsaxotomized retinal ganglion cell death through MAPK and PI3K signaling pathways[J].Invest Ophthalmol Vis Sci.2002,43:3319-3326.
    [80] Wu N, Yin ZQ, Wang Y. Traumatic optic neuropathy therapy: an update of clinicaland experimental studies[J].J Int Med Res.2008,36:883-889.
    [81] Hayreh SS. Ischemic optic neuropathy[J]. Prog Retin Eye Res.2009,28:34-62.
    [82] Meyer R, Weissert R, Diem R, et al.Acute neuronal apoptosis in a rat model ofmultiple sclerosis[J]. J Neurosci.2001,21:6214-6220.
    [83] Guy J. Optic nerve degeneration in experimental autoimmune encephalomyelitis[J].Ophthalmic Res.2008,40:212-216.
    [84] Lebrun-Julien F, Di Polo A. Molecular and cell-based approaches for neuroprotectionin glaucoma[J]. Optom Vis Sci.2008,85:417-424.
    [85] Levin LA. Axonal loss and neuroprotection in optic neuropathies[J]. Can JOphthalmol.2007,42:403-408.
    [86] Peinado-Ramo′n P, Salvador M, Villegas-Pe′rez MP, et al.Effects of axotomy andintraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on thesurvival of adult rat retinal ganglion cells. A quantitative in vivo study[J]. Invest OphthalmolVis Sci.1996,37:489-500.
    [87] Zhang CW, Lu Q, You SW, et al. CNTF and BDNF have similar effects on retinalganglion cell survival but differential effects on nitric oxide synthase expression soon afteroptic nerve injury[J]. Invest Ophthalmol Vis Sci.2005,46:1497-1503.
    [88] Zhi Y, Lu Q, Zhang CW, et al. Different optic nerve injury sites result in differentresponses of retinal ganglion cells to brain-derived neurotrophic factor but notneurotrophin-4/5[J]. Brain Res.2005,1047:224-232.
    [89] Di Polo A, Aigner LJ, Dunn RJ, et al. Prolonged delivery of brain-derivedneurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinalganglion cells[J]. Proc Natl Acad Sci U S A.1998,95:3978-3983.
    [90] Cui Q, Yip HK, Zhao RC, et al.Intraocular elevation of cyclic AMP potentiatesciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons[J].Mol Cell Neurosci.2003,22:49-61.
    [91] Lingor P, To¨nges L, Pieper N, Bermel C, Barski E, Planchamp V, Ba¨hr M. ROCKinhibition and CNTF interact on intrinsic signalling pathways and differentially regulatesurvival and regeneration in retinal ganglion cells[J]. Brain.2008,131:250-263.
    [92] Dezawa M, Kawana K, Negishi H, et al. Glial cells in degenerating and regeneratingoptic nerve of the adult rat[J]. Brain Res Bull.1999,48:573-579.
    [93] Girard C, Bemelmans AP, Dufour N, Mallet J, Bachelin C, Nait-Oumesmar B,Baron-Van Evercooren A, Lachapelle F. Grafts of brain-derived neurotrophic factor andneurotrophin3-transduced primate Schwann cells lead to functional recovery of thedemyelinated mouse spinal cord[J]. J Neurosci.2005,25:7924-7933.
    [94] Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secreteneurotrophic factors and promote extensive host axonal growth after spinal cord injury[J].Exp Neurol.2003,181:115-129.
    [95] Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells supportextensive axonal growth at sites of spinal cord injury. Exp Neurol[J].2005,191:344-360.
    [96] Negishi H, Dezawa M, Oshitari T, Adachi-Usami E. Optic nerve regeneration withinartificial Schwann cell graft in the adult rat[J]. Brain Res Bull.2001,55:409-419.
    [97] Plant GW, Harvey AR. A new type of biocompatible bridging structure supports axonregrowth after implantation into the lesioned rat optic tract[J]. Cell Transplant.2000,9:759-772.
    [98] Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu XM. Glial cell line-derivedneurotrophic factor-enriched bridging transplants promote propriospinal axonal regenerationand enhance myelination after spinal cord injury[J]. Exp Neurol.2003,183:379-393.
    [99] Cui Q, Pollett MA, Symons NA, Plant GW, Harvey AR. A new approach to CNSrepair using chimeric peripheral nerve grafts[J]. J Neurotrauma.2003,20:17-31.
    [100] Yiu G, He Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci.2006,7:617-627.
    [101] Rhodes KE, Fawcett JW. Chondroitin sulphate proteoglycans: preventing plasticity orprotecting the CNS[J]. J Anat.2004,204:33-48.
    [102] Bovolenta P, Fernaud-Espinosa I. Nervous system proteoglycans as modulators ofneurite outgrowth[J]. Prog Neurobiol.2000,61:113-132.
    [103] Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, Flanagan JG,Yamaguchi Y, Sretavan DW,Giger RJ, Kolodkin AL. Semaphorin5A is a bifunctional axonguidance cue regulated by heparan and chondroitin sulfate proteoglycans[J]. Neuron.2004,44:961-975.
    [104] Goldberg JL, Vargas ME, Wang JT, Mandemakers W, Oster SF, Sretavan DW, BarresBA. An oligodendrocyte lineagespecific semaphorin, Sema5A, inhibits axon growth byretinal ganglion cells[J]. J Neurosci.2004,24:4989-4999.
    [105] Kaneko S, Iwanami A, Nakamura M, et al. A selective Sema3A inhibitor enhancesregenerative responses and functional recovery of the injured spinal cord[J]. Nat Med.2006,12:1380-1389.
    [106] Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse andparalysis of neuronal growth cones[J]. Cell.1993,75:217-227.
    [107] Pasterkamp RJ, Giger RJ, Ruitenberg MJ, et al. Expression of the gene encoding thechemorepellent semaphorin III is induced in the fibroblast component of neural scar tissueformed following injuries of adult but not neonatal CNS[J]. Mol Cell Neurosci.1999,13:143-166.
    [108] Nitzan A, Kermer P, Shirvan A, Ba¨hrM, Barzilai A, Solomon AS.Examination ofcellular and molecular events associated with optic nerve axotomy[J]. Glia.2006,54:545-556.
    [109] Wong EV, David S, Jacob MH, Jay DG. Inactivation of myelin-associatedglycoprotein enhances optic nerve regeneration[J]. J Neurosci.2003,23:3112-3117.
    [110] Bartsch U, Bandtlow CE, Schnell L, Bartsch S, Spillmann AA, Rubin BP,Hillenbrand R, Montag D, Schwab ME, Schachner M. Lack of evidence thatmyelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS[J].Neuron.1995,15:1375-1381.
    [111] Buchli AD, Schwab ME. Inhibition of Nogo: a key strategy to increase regeneration,plasticity and functional recovery of the lesioned central nervous system[J]. Ann Med.2005,37:556-567.
    [112] Teng FY, Tang BL. Why do Nogo/Nogo-66receptor gene knockouts result in inferiorregeneration compared to treatment with neutralizing agents[J]. J Neurochem.2005,94:865-874.
    [113] Cai D, Shen Y, De Bellard M, Tang S, Filbin MT. Prior exposure to neurotrophinsblocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependentmechanism[J]. Neuron.1999,22:89-101.
    [114] Cai D, Qiu J, Cao Z, et al.Neuronal cyclic AMP controls the developmental loss inability of axons to regenerate[J]. J Neurosci.2001,21:4731-4739.
    [115] Gross RE, Mei Q, Gutekunst CA, et al. The pivotal role of RhoA GTPase in themolecular signaling of axon growth inhibition after CNS injury and targeted therapeuticstrategies[J]. Cell Transplant.2007,16:245-262.
    [116] Maekawa M, Ishizaki T, Boku S, et al.Signaling from Rho to the actin cytoskeletonthrough protein kinases ROCK and LIM-kinase[J]. Science.1999,285:895-898.
    [117] Fournier AE, Kalb RG, Strittmatter SM. Rho GTPases and axonal growth conecollapse[J]. Methods Enzymol.2000,325:473-482.
    [118] Bertrand J, Di Polo A, McKerracher L. Enhanced survival and regeneration ofaxotomized retinal neurons by repeated delivery of cell-permeable C3-like Rhoantagonists[J]. Neurobiol Dis.2007,25:65-72.
    [119] Bertrand J, Winton MJ, Rodriguez-Hernandez N, et al.Application of Rho antagonistto neuronal cell bodies promotes neurite growth in compartmented cultures and regenerationof retinal ganglion cell axons in the optic nerve of adult rats[J]. J Neurosci.2005,25:1113-1121.
    [120] Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promotespinal cord repair[J]. J Neurosci.2002,22:6570-6577.
    [121] Lehmann M, Fournier A, Selles-Navarro I, et al. Inactivation of Rho signalingpathway promotes CNS axon regeneration[J]. J Neurosci.1999,19:7537-7547.
    [122] Winton MJ, Dubreuil CI, Lasko D, et al. Characterization of new cell permeableC3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitorysubstrates[J]. J Biol Chem.2002,277:32820-32829.
    [123] Hu Y, Cui Q, Harvey AR. Interactive effects of C3, cyclic AMP and ciliaryneurotrophic factor on adult retinal ganglion cell survival and axonal regeneration[J]. MolCell Neurosci.2007,34:88-98.
    [124] Alabed YZ, Pool M, Ong Tone S, et al.Identification of CRMP4as a convergentregulator of axon outgrowth inhibition[J]. J Neurosci.2007,27:1702-1711.
    [125] Lingor P, T nges L, Pieper N, et al.ROCK inhibition and CNTF interact on intrinsicsignalling pathways and differentially regulate survival and regeneration in retinal ganglioncells[J]. Brain.2008,131:250-263.
    [126] Borisoff JF, Chan CC, Hiebert GW, et al. Suppression of Rho-kinase activitypromotes axonal growth on inhibitory CNS substrates[J]. Mol Cell Neurosci.2003,22:405-416.
    [127] Chan CC, Khodarahmi K, Liu J, et al. Dose-dependent beneficial and detrimentaleffects of ROCK inhibitor Y27632on axonal sprouting and functional recovery after ratspinal cord injury[J]. Exp Neurol.2005,196:352-364.
    [128] Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonalregeneration in the injured CNS[J]. J Neurosci.2003,23:1416-1423.
    [129] Sagawa H, Terasaki H, Nakamura M, et al. A novel ROCK inhibitor, Y-39983,promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adultcats[J]. Exp Neurol.2007,205:230-240.
    [130] Lingor P, Teusch N, Schwarz K, et al. Inhibition of Rho kinase (ROCK) increasesneurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration inthe adult optic nerve in vivo[J]. J Neurochem.2007,103:181-189.
    [131] Ichikawa M, Yoshida J, Saito K, et al. Differential effects of two ROCK inhibitors,Fasudil and Y-27632, on optic nerve regeneration in adult cats[J]. Brain Res.2008,1201:23-33.
    [132] Sivasankaran R, Pei J, Wang KC, Zhang YP, Shields CB, Xu XM, He Z. PKCmediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonalregeneration[J]. Nat Neurosci.2004,7:261-268.
    [133] Filbin MT. How inflammation promotes regeneration[J]. NatNeurosci.2006,9:715-717.
    [134] Fischer D, Pavlidis M, Thanos S. Cataractogenic lens injury prevents traumaticganglion cell death and promotes axonal regeneration both in vivo and in culture[J]. InvestOphthalmol Vis Sci.2000,41:3943-3954.
    [135] Leon S, Yin Y, Nguyen J, et al. Lens injury stimulates axon regeneration in themature rat optic nerve[J]. J Neurosci.2000,20:4615-4626.
    [136] Fischer D, Heiduschka P, Thanos S. Lens-injury-stimulated axonal regenerationthroughout the optic pathway of adult rats[J]. Exp Neurol.2001,172:257-272.
    [137] Lorber B, Berry M, Logan A. Lens injury stimulates adult mouse retinal ganglion cellaxon regeneration via both macrophage-and lens-derived factors[J]. Eur JNeurosci.2005,21:2029-2034.
    [138] Yin Y, Cui Q, Li Y, et al. Macrophage-derived factors stimulate optic nerveregeneration[J]. J Neurosci.2003,23:2284-2293.
    [139] Yin Y, Henzl MT, Lorber B, et al. Oncomodulin is a macrophage-derived signal foraxon regeneration in retinal ganglion cells[J]. Nat Neurosci.2006,9:843-852.
    [140] Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E, Schwartz M. Vaccinationwith a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via aT-cell-mediated neuroprotective response: comparison with other myelin antigens[J]. ProcNatl Acad Sci USA.2001,98:15173-15178.
    [141] Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer1confersneuroprotection on the damaged optic nerve: possible therapy for optic neuropathies[J]. ProcNatl Acad Sci USA.2000,97:7446-7451.
    [142] Knoller N, Auerbach G, Fulga V, et al.Clinical experience using incubated autologousmacrophages as a treatment for complete spinal cord injury: phase I study results[J]. JNeurosurg Spine.2005,3:173-181.
    [143] Tello F. La influencia del neurotropismo en la regeneracio′n de los centrosnerviosos[J]. Trab Lab Invest Biol Univ Madrid.1911,9:123-128.
    [144] Aguayo AJ, Vidal-Sanz M, Villegas-Pe′rez MP, Bray GM. Growth and connectivityof axotomized retinal neurons in adult rats with optic nerves substituted by PNS graftslinking the eye and the midbrain[J]. Ann N Y Acad Sci.1987,495:1-9.
    [145] Aguayo AJ, Bray GM, Carter DA, Villegas-Perez MP, Vidal-Sanz M, Rasminsky M.Regrowth and connectivity of injured central nervous system axons in adult rodents[J].ActaNeurobiol Exp (Wars).1990,50:381-389.
    [146] Bray GM, Villegas-Pe′rez MP, Vidal-Sanz M, et al.The use of peripheral nerve graftsto enhance neuronal survival, promote growth and permit terminal reconnections in thecentral nervous system of adult rats[J].J Exp Biol.1987,132:5-19.
    [147] Vidal-Sanz M, Bray GM, Villegas-Pe′rez MP, et al. Axonal regeneration and synapseformation in the superior colliculus by retinal ganglion cells in the adult rat[J]. J Neurosci.1987,7:2894-2909.
    [148]黄蔚,惠延年.视神经损伤及其再生[J].中华眼底病杂志,2000,16(2):133-135.
    [149]雷季良,陈白羽,栾丽菊.视神经损伤动物模型的建立[J].解剖学杂志,2005,28(1):107-108.
    [150] Levkovitch-VerbinH,QuigleyHA,Martin KR,et al. A model to study differencesbetween primary and secondary degeneration of retinal ganglion cells in rats by partial opticnerve transaction [J]. InvestOphthalmolVis Sci,2003,44(8):3388-3393.
    [151]刘如恩,赵洪祥,周伟等.猫视神经压迫动物模型的建立[J].中华实验外科杂志,2004,5,21(5):627-628.
    [152]史剑波,徐锦堂,夏潮涌.视神经损伤对视网膜结构的形态学研究[J].眼外伤职业眼病杂志.1998,24(4):287-289.
    [153]王一,周继红,许立军,等.间接视神经损伤动物模型的研制[J].中华创伤杂志,1999,15(4):287-289.
    [154] Yoles E,et al.NMDA-recptor antagonize protects neurons from secondarydegeneration after partial optic crush[J].J Neurotrauma,1999,14(9):665-675.
    [155]孙志敏、管怀进、程新梁等.神经生长因子对成年兔视神经夹伤后修复的影响[J].中华眼底病杂志,2005,21(4):253-257.
    [156]王丽,朱豫,李志刚.轻、中、重度视神经损伤动物模型制作和病理学评价[J].眼科新进展,2009,29:739-744.
    [157]施新.医学动物的实验方法[M].北京:人民卫生出版社,1986.108-109.
    [158] Gellrich NC,Schimming R,Zerfowski M,et al. Quantification of histological changesafter calibrated crush of the intraorbital optic nerve in rats[J]. Br J Ophthalmol,2002,86(2):233-237.
    [159]陈二涛,刘勇,冯东福等.人鼠视神经部分损伤模型的建立[J].中华实验外科杂志,2008,25:1514-1516.
    [160]于峰,袁绍纪,张荣伟等.翼点入路在构建视神经损伤动物模型中的应用[J].中国临床神经外科杂志,2010,15:156-159.
    [161]刘丹,杨柳.建立小鼠视神经损伤模型的实验研究[J].现代预防医学,2010,37:3514-3515.
    [162] Klocker N,Cellerino A,Bahr M. Free radical scavenging and inhibition of nitric oxidesynthase potentiates the neurotrophic effects of brain-derived neurotrophic factor onaxotornized retinal ganglion cells In vivo[J].J Neurosci,1998,18(3):1038-1046.
    [163] WANGN L, ZENG M B, RUAN Y W, et al. Protection of retinal ganglion callsagainst glaucomatous neuropathy by neurophirr producing, genetically modified neuralprogenit cells in a rat model [J].J Chin Med,2002,115:1394-1400.
    [164]苏颖,王继群,王峰等.定量大鼠视神经损伤模型的建立[J].中国病理生理杂志,2005,21(6):1242-1245.
    [165] Yoles E,Wheeler LA,Schwartz M. Alpha2-adrenoreceptor agonists are europrotectivein a rat model of optic nerve degeneration [J]. Invest Ophthalmol Vis Sci,1999,40(1):65-73.
    [166] Sugiyama K,Gu ZB,Kawase C,Yamamoto T,Kitazawa Y.Optic nerve andperipapillary choroidal microvasculature of the rat eye[J]. Invest Ophthalmol VisSci,1999,40(13):3084-3090.
    [167] Levin LA,Schlamp CL,Spieldoch RL,Geszvain KM,Nickells RW. Identification ofthe bcl-2family of genes in the rat retina[J]. Invest Ophthalmol VisSci,1997,38(12):2545-2553.
    [168]周洪伟,吴强,宋蓓雯等.睫状神经营养因子对纯化培养大鼠视网膜神经节细胞突起再生的影响[J].眼科新进展,2007,27(9):662-665.
    [169] Cui Q, Pollett MA, Symons NA et al. A new approach to CNS repairusing chimericperipheral nerve grafts[J]. J Neurotrauma,2003,20:17-31.
    [170] Jo SA, Wang E, Benowitz LI. Ciliary neurotrophic factor is and axogenesis factor forretinal ganglion cells[J]. Neuroscience,1999,89(2):579-591.
    [171]王宏,成霄黎.复合神经营养因子应用于大鼠视神经损伤的研究[J].中国药物与临床,2007,7(6):425-428.
    [172]李灿,王一.睫状神经营养因子对大鼠视神经不全损伤后轴浆运输的影响[J].第三军医大学报,2004,26(5):408-411.
    [173] Zhang CW, Lu Q, You SW, et al. CNTF and BDNF have similar effects on retinalganglion cell survival but differential effects on nitric oxide synthase expression soon afteroptic nerve injury[J].lnvest Ophthalmol Vis Sci,2005,46(4):1497-503.
    [174] Yoneda S, Tanaka E, Goto W.Topiramate reduces excitotoxic and ischemic injury inrat retina[J]. Brain Res2003,967(12):257-266.
    [175]孙晓东,张哲,许迅,等.实验性视网膜脱离复位后的视网膜细胞凋亡[J].眼科新进展.2005,25(4):318-320.
    [176]项敏泓,钟一声,张兴儒.灯盏细辛对兔高眼压视网膜神经节细胞活性的作用[J].眼科新进展.2005,25(5):414-416.
    [177]李海龙,李红,韩华云.银杏叶提取物对大鼠慢性高眼压视网膜损伤的保护作用[J].国际眼科杂志.2007,7(2):414-416.
    [178]张亚平.中医辨证治疗间接性视神经损伤[J].眼外伤职业眼病杂志.2000,22:(5):520.
    [179]中药复光颗粒对家兔视神经夹伤后Bcl-2和Bax表达的影响[J].国际眼科杂志.2011,11(5):792-794.
    [180]刘济民.复方樟柳碱治疗视神经萎缩76例临床观察[J].中外医疗,2010,17-18.
    [181]何剑峰,周伟平,仇宜解.川芎嗪对视网膜静脉阻塞患者血浆ET1、TXB2、6KF及血液流变学的影响[J].中国中医眼科杂志,1998,8:153.
    [182]韦企平.灯盏花注射液为主治疗眼底病临床观察[J].中国中医眼科杂志,1999:34.
    [183]李岱等.复方丹参注射液球后注射对大鼠视网膜缺血再灌注损伤防护的试验研究[J].中国中医眼科杂志,2000,10(4):191.
    [184] Sable BA,Aschoff A.Functional Recovery and Morphological Changes after injury tothe Optic nerve[J].Neuropsychobiology,1993,28(1-2):62-65.
    [185]李树宁,仇宜解,刘国军等.氩激光视网膜光凝术对兔视神经轴浆运输和超微结构影响的实验研究[J].中国激光医学杂志,2001,10(3):137-140.
    [186]吴乐正,吴德正.临床视觉电生理[M].北京:科学出版社,1999,275,330-349.
    [187]轻、中、重度视神经挫伤的动物模型制作[D].硕士学位论文,郑州:郑州大学,2007.
    [188] Halliday AM, McDonald WI, Mushin, J. Visual evoked response in diagnosis ofmultiple sclerosis[J]. Br Med J.1973;1:661–664.
    [189]曹春林,马飞.应用视觉诱发电位检测34例弱视患者资料分析[J].医学研究生学报,2006,19(10):955-956.
    [190] Bain AC, Raghupathi R, Meaney DF. Dynamic stretch correlates to bothmorphological abnomalities and electrophysiological inpairment in a model of traumaticaxonal injury[J].J Neurotrauma,2001,18(5):499-511.
    [191] AKABANE A, SAITO K, SUZUKI Y, et al.Monitoring visual evoked potentialsduring retraction of the canine optic nerve: protective effect of unroofing the optic canal [J].JNeurosurg,1995,82:284-287.
    [192] AKABANE A, SAITO K, SUZUKI Y, et al.Monitoring visual evoked potentialsduring retraction of the canine optic nerve: protective effect of unroofing the optic canal [J].JNeurosurg,1995,82:284-287.
    [193] Nakamura A, Akio T, M atsuda F, et al. Pattern visual evolved potentials inmalingering[J].J N euroophthalmol2001,21(1):42-45.
    [194]余志强.视神经创伤预后的相关因素分析[J].中国临床康复,2004,8(17):3288.
    [195] Perez JC,Ruiz BM,Perez AM.Visual evoked potentials produced by monocular flashstimuli in the cerebral cortex of the rabbit[J].Rev Esp Fisiol.1990,46(4):359-364.
    [196]卜博,周定标,许百男等.兔闪光刺激视觉诱发电位正常值测定[J].中国临床康复.2006,10(6):46-47
    [197]赵梅生等,人眼角膜粘弹性实验研究[J].生物医学工程学杂志,2005,22(3):550-554.
    [198] Rydevik B, Lundborg G, Bagge U. Effects of graded compression on intraneuralblood blow. An in vivo study on rabbit tibial nerve[J]. J Hand Surg.1981;6(1):3–12.
    [199] Ogata K, Naito M. Blood flow of peripheral nerve effects of dissection, stretchingand compression[J]. J Hand Surg Br.1986;11(1):10–4.
    [200] Dyck PJ, Lais AC, Giannini C, Engelstad JK. Structural alterations of nerve duringcuff compression[J]. Proc Natl Acad Sci USA.1990;87:9828–32.
    [201] Wall EJ, Massie JB,Kwan MK,Rydevik BL,Myers RR, Garfin SR. Experimentalstretch neuropathy: changes in nerve conduction under tension[J]. J Bone Joint Surg Br.1992;74:126–9.
    [202] Tanoue M, Yamaga M, Ide J, Takagi K. Acute stretching of peripheral nerves inhibitsretrograde axonal transport[J]. J Hand Surg Br.1996;21:358–63.
    [203] Topp KS, Boyd BS. Structure and biomechanics of peripheral nerves: nerveresponses to physical stresses and implications for physical therapist practice[J]. Phys Ther.2006;86(1):92–109.
    [204] Liu CT, Benda, CE, Lewey FH. Tensile strength of human nerve[J]. ArchNeurol Psychiat,1948,8:322-325.
    [205] William LC, Thomas ET,Mark FS,et al.Nerve tension and blood flow in a rat modelof immediate and delayed repairs[J]. J Hand Surg,1992,17:677-683.
    [206] Beel JA. ALterations in the mechanical properties of peripheral nerve followingcrush injury[J].J Biomechanics,1984,17:185-188.
    [207] lkeda K,Tomita K,Tanaka S. Experimental study of peripheral nerve injuryduring gradual limb elongation[J]. J Hand Surg,2000,5:41-47.
    [208]李海,师江明,李国梁.人的周围神经拉伸强度测定[J].解剖学杂志.1991,14(3):187-190.
    [209]蔡力,董心等.视神经拉伸实验研究[J].试验技术与试验机,1999,39:91-92.
    [210] Abrams R, Butler J, Bodine-Fowler S, Botte M. Tensile properties of theneurorrhaphy site in the rat sciatic nerve[J]. J Hand Surg Am.1998,23:465-470.
    [211] Driscoll P, Glasby M, Lawson G. An in vivo study of peripheral nerves in continuity:biomechanical and physiological responses to elongation[J]. J Orthop Res.2002,20:370-375.
    [212] Toby E, Hanesworth D. Ulnar nerve strains at the elbow[J]. J Hand Surg Am.1998,23:992-997.
    [213] Wright T, Glowczewski FJ, Wheeler D, et al. Excursion and strain of the mediannerve[J]. J Bone Joint Surg Am.1996,78:1897-1903.
    [214] Byl C, Puttlitz C, Byl N, et al. Strain in the median and ulnar nerves duringupper-extremity positioning[J]. J Hand Surg Am.2002,27:1032-1040.
    [215] Dilley A, Lynn B, Greening J, DeLeon N. Quantitative in vivo studies of mediannerve sliding in response to wrist, elbow, shoulder and neck movements[J]. Clin Biomech.2003,18:899-907.
    [216] McLellan D, Swash M. Longitudinal sliding of the median nerve during movementsof the upper limb[J]. J Neurol Neurosurg Psychiatry.1976,39:566-570.
    [217] Erel E, Dilley A, Greening J, et al. Longitudinal sliding of the median nerve inpatients with carpal tunnel syndrome[J]. J Hand Surg Br.2003,28:439-443.
    [218] Smith S, Massie J, Chesnut R, Garfin S. Straight leg raise: anatomical effects on thespinal nerve root without and with fusion[J]. Spine.1993,18:992-999.
    [219] Haftek J. Stretch injury of peripheral nerve: acute effects of stretching on rabbitnerve[J]. J Bone Joint Surg Br.1970,52:354-365.
    [220] Kwan M, Wall E, Massie J, Garfin S. Strain, stress and stretch of peripheral nerve:rabbit experiments in vitro and in vivo[J]. Acta Orthop Scand.1992,63:267-272.
    [221] Wall E, Kwan M, Rydevik B, et al. Stress relaxation of a peripheral nerve[J]. J HandSurg Am.1991,16:859-863.
    [222] Grewal R, Xu J, Sotereanos D, Woo S-Y. Biomechanical properties of peripheralnerves[J]. Hand Clin.1996,12:195-204.
    [223] Wall E, Massie J, Kwan M, et al. Experimental stretch neuropathy: changes in nerveconduction under tension[J]. J Bone Joint Surg Br.1992,74:126-129.
    [224]袁毅,赵世洪等.视神经归一化蠕变函数[J].试验技术与试验机,1999,40:94-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700