含不同离子的液晶离聚物及其PBT/PP共混物的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于液晶聚合物(Liquid crystalline polymer, LCP)具有高模量、高强度、良好的化学稳定性和尺寸稳定性、较低的热膨胀系数等优良性能,因而在复合材料方面得到广泛应用。但大部分LCP与热塑性聚合物属于不相容体系,这种不相容导致了两相之间的界面粘结力较差,共混物的力学性能不如预期的理想,因此,通常可以通过共聚引入极性基团、化学改性引入极性基团、接枝、嵌段共聚-共混、加入增容剂、形成IPN结构、形成氢键等途径来改善共混体系的相容性。
     本文采用了加入含有离子基团的液晶离聚物来改善共混体系相容性的方法。液晶离聚物是指含有离子基团的液晶聚合物,它可以通过离子的相互作用使液晶聚合物与其他热塑性聚合物的相互作用增强,相容性得以改善,同时由于液晶中刚性基元的存在,在共混体系中起到了微纤增强作用,大大改善加工性能、降低了加工温度和粘度。它综合离聚物和液晶聚合物两方面的内容,是一种新型的功能高分子,是目前液晶聚合物研究领域的前沿课题之一,不仅具有重要的理论意义,而且在与其他热塑性聚合物共混制备性能优良的复合材料方面具有广阔的应用前景。
     本论文设计并合成了互变向列相液晶单体对苯二甲酸二-(4-羧基苯)酯(M1),将其与1,10-癸二醇、1,12-十二烷二醇和亮黄(BY)按不同比例进行溶液缩聚反应,制备了一系列含有磺酸离子的主链液晶离聚物(MLCl-Sn)。结果表明:随着BY含量的增加,MLCI-Sn的Tg逐渐增加:MLCI-Sn的Tm出现了先增加后降低的趋势;MLCI-Sn的液晶区间先增加后变窄;MLCI-Sn的热分解温度在300℃以上,具有良好的热稳定性;MLCI-Sn的织构为向列相。
     将合成的液晶单体对苯二甲酸二-(4-羧基苯)酯(M1)与1,10-癸二醇、1,12-十二烷二醇和2,5-二羟基苯甲酸按比例进行溶液缩聚反应,制备了一种含有羧酸离子的主链液晶离聚物(MLCI-C5)。MLCl-C5液晶离聚物的液晶类型为向列相,其液晶区间为172℃,热稳定性良好。
     合成了一种互变向列相液晶单体4-乙氧基苯甲酸-4'-烯丙氧基联苯单酯(M2),离子单体4-烯丙氧基苯甲酸(M3),将液晶单体和离子单体接枝共聚到含氢聚硅氧烷主链上,合成了含有羧酸离子的侧链液晶离聚物(SLCI-C5)。液晶离聚物SLCI-C5的液晶类型为向列相,其液晶区间为149℃,具有良好的热稳定性。
     合成的液晶单体4-乙氧基苯甲酸-4'-烯丙氧基联苯单酯(M2),离子单体N-烯丙基溴化吡啶(M4),将液晶单体和离子单体接枝共聚到含氢聚硅氧烷主链上,合成了含有铵离子的侧链液晶离聚物(SLCI-N5).液晶离聚物SLCI-N5的液晶类型为向列相,其液晶区间为251℃。
     将合成的液晶离聚物MLCI-S5和MLCI-C5分别与PBT.PP进行了熔融共混制备了PBT/PP/MLCI-S5和PBT/PP/MLCI-C5共混物。在升温过程中,MLCI-S5的加入,降低了PBT的Tg,改善了PBT和PP之间的相容性;随着MLCI-S5含量的增加,PP的Tc没有发生变化,PBT的Tc向低温移动。MLCI-C5的加入,使PBT和PP的熔融温度均略有升高;而对PBT和PP(降温)结晶行为的影响则不尽相同,MLCI-C5的存在使PP的结晶温度略有升高,但升高幅度基本不受液晶离聚物含量的影响;与之相反,PBT的结晶温度则因液晶离聚物的存在而降低,DSC曲线中观察到的PP和PBT的结晶峰相互靠近,证实了MLCI-C5的加入起到了增容的作用。SEM和红外图像系统结果证实了当MLCI-S5的加入5wt%时,共混体系的分散得到了改善,PP分散相的相区尺寸变小,MLCI-S5介于PBT和PP两相界面之间,增加了PBT和PP之间的界面粘结力,改善了二者之间的相容性;过量MLCI-S5的加入,由于液晶离聚物的聚集,使分散效果变差。当MLCI-C5加入9wt%时,共混体系的分散效果最好,PP分散相的相区尺寸变小;过量的MLCI-C5加入,分散变差。力学性能结果表明:当加入适量的MLCI-S5(5wt%),共混物的拉伸强度和断裂伸长率达到最大值;当MLCI-C5含量为9wt%时,共混物的拉伸强度达到最大值;当MLCI-C5含量为15wt%时,共混物的断裂伸长率达到最大值。
     将合成的液晶离聚物SLCI-C5和SLCI-N5分别与PBT.PP进行了熔融共混制备了PBT/PP/SLCI-C5和PBT/PP/SLCI-N5共混物。SLCI-C5和SLCI-N5对共混体系热力学性能的影响与MLCI-C5对共混体系的影响结果相似,证实了SLCI-C5和SLCI-N5的加入起到了增容的作用。SEM和红外图像系统结果表明:当SLCI-C5加入7wt%时,共混体系的分散得到了改善,增加了二者之间的相容性;过量SLCI-C5的加入,分散效果变差。当SLCI-N5的含量也加入到7wt%时,由于液晶离聚物与PBT的离子-偶极作用使共混体系的分散得到了改善;加入过量的SLCI-N5,由于液晶离聚物中离子的聚集作用,使分散效果变差。力学性能结果表明:随之SLCI-C5含量的增加,共混物的拉伸强度和断裂伸长率也随之增加,当含量为7wt%时,共混物的力学性能达到最大值;当SLCI-N5含量为7wt%时,共混物的力学性能达到最大值。而加入过量的液晶离聚物,共混物的拉伸强度和断裂伸长率有不同程度的降低。
Recently, Liquid crystalline polymers (LCPs) with high strength and stiffness, high chemical resistance, good dimensional stability and low linear thermal expansion coefficient are attractive high performance engineering materials. Most LCPs and thermoplastic are immiscible at the molecular level. The incompatibility between the matrix polymers and dispersed LCP phase leads to poor interfacial adhesion. Accordingly, the mechanical strength of the LCP/thermoplastic blends is considerably lower than that expected from theoretical calculation. Therefore, compatibilization with appropriate agents is required to improve the adhesion between the LCP fibril and thermoplastic blends interface, for example copolymer induced polar groups, chemistrical modify induced polar group, graft, block copolymer-blend, adding compotibilizer, forming IPN network, and hydrogen bond.
     In this paper, the compatibilizing method is adding liquid crystalline ionomer containing ion group in blend. Liquid crystalline ionomers (LCIs) are liquid crystalline polymers containing ionic groups and the properties of LCIs are superior to the LCPs because of the compatibilization in composites by the function of ionic groups between the molecule chains. Moreover, the mesogenic phase has high degree of long-range order that enabling them to orient along the flow direction during processing. This leads to the formation of fine fibrils at an appropriate range of LCP concentration under certain processing conditions. The fine fibrils reinforce the matrix of thermoplastics effectively, giving rise to the development of polymer composites that commonly known as in situ composites. Therefore, LCIs are one new kind of function polymer materials and have been one of important research project in the field of LCPs. It is necessary and interesting to study LCIs, which provides theoretical basis and novel thought to synthesize and prepare the composites with other polymers, especially in the fields of the blends with advantageous properties.
     In this paper, a series of main-chain liquid crystalline ionomers containing sulfonic ion (MLCI-Sns) are prepared by an interfacial condensation reaction of enantiotropic nematic mesogenic monomer (1,4-phenylene-dicarbonic acid bis (4-carboxyl phenyl) ester,1,10-sebacoyl dihydroxy,1,12-dodecanedioyl dihydroxy and brittle yellow (BY content between 0 and 8%). For MLCI-Sns, the glass transition temperature increases slightly with increasing the sulfonate group content. However, the melt temperature becomes increase first and then decrease with increasing the sulfonate group content. The liquid crystalline mesogenic regions of the MLCI-Sns become broad first and then narrow with increasing sulfonate group content. The decomposed temperature is up to 300℃, so the MLCI-Sns exhibited good thermal stability. They are main-chain liquid crystalline ionomers with nematic schlieren textures.
     A main-chain liquid crystalline ionomer containing carboxylic ion (MLCI-C5) by use of an interfacial condensation reaction from 4-phenylene-dicarbonic acid bis (4-carboxyl phenyl) ester,1,10-sebacoyl dihydroxy,1,12-dodecanedioyl dihydroxy and 2,5-dihydroxybenzoic acid is synthesized. It is main-chain liquid crystalline ionomers with nematic schlieren textures. The liquid crystalline mesogenic region of the MLCI-C5 is 172℃. The MLCI-C5 exhibits good thermal stability.
     The MLCI-S5 and MLCI-C5 has been blended with PBT and PP, respectivley. DSC result shows the Tg of PBT decreased with the increase of MLCI-S5 content. It can be explained to improve interphase adhesion between a PBT-rich phase and PP-rich phase by adding the MLCI-S5. DSC result shows that some specific interaction is occurred between PBT (and PP) and MLCI-C5, which increase the Tm of PBT (and PP) component in the polymer blends. The crystallization rate of PBT is retarded due to hydrogen-bonding interactions between the MLCI-C5 and PBT in the blend. SEM and FTIR analysis identifies the intermolecular interaction between MLCI-S5 and PBT/PP phase, and the interaction results in a stronger interfacial adhesion between PBT and PP phase, and a much finer dispersion of the PP in PBT matrix, while excess of MLCI-S5 leads to coagulation of MLCI-S5 and PP phase. The addition of MLCI-C5 (9wt%) lead to finer and better dispersed of PP polymer in the blends relative to the blends with no MLCI-C5 added. A small amount of added MLCI-S5 will improve tensile strength and elongation at break, but MLCI-S5-rich domains form with excess MLCI-S5 addition will impair the mechanical performances. The mechanical properties are improved when the proper amount of MLCI-C5 is added, which enable improve adhesion at the interface.
     The SLCI-C5 containing 4-(4-ethoxybenzyloxy)-4'-allyloxybiphenyl as enantiotropic nematic mesogenic monomer M2 and 4-allyoxybenzoic acids as ionic monomer M3 is synthesized by graft copolymerization upon polymethylhydrosiloxane. It is side-chain liquid crystalline ionomers with nematic schlieren textures. The liquid crystalline mesogenic regions of the SLCI-C5 are 149℃. The SLCI-C5 exhibits good thermal stability.
     The SLCI-N5 containing 4-(4-ethoxybenzyloxy)-4'-allyloxybiphenyl as mesogenic monomer M2 and allytriethlammonium bromide as ionic monomer M4 is synthesized by graft copolymerization upon polymethylhydrosiloxane. The liquid crystalline mesogenic regions of the SLCI-N5 are 251℃. The SLCI-N5 exhibits good thermal stability. It is side-chain liquid crystalline ionomers with nematic schlieren textures.
     The side-chain liquid crystalline ionomer containing carboxylic ion (SLCI-C5) and the side-chain liquid crystalline ionomer containing ammonium ion (SLCI-N5) are used in the blends of PBT and PP by melt-mixing, respectivly. DSC results of PBT/PP/SLCI-C5 and PBT/PP/SLCI-C5 blends are the same to the results of PBT/PP/MLCI-C5 blends.SEM and FTIR observation shows that the addition of SLCI-C5 and SLCI-N5significantly reduces the size of the dispersed phase and improves PP dispersion within the PBT matrix. The utilization of SLCI-C5 results in a stronger interfacial adhesion between PP and PBT phases and improves the mechanical performances of PBT/PP/SLCI-C5 blends. The mechanical properties of PBT/PP/SLCI-N5 blendsalso increase with the addition of SLCI-N5. When the SLCI-N5 content is 7wt%, the mechanic properties are best. The utilization of SLCI-N5 results in a stronger interfacial adhesion between PP and PBT phases and improves the mechanical performances of PBT/PP/SLCI-N5 blends. However, when the content of SLCI being added to the blends is surplus, the mechanical performances of blends are decreasing.
引文
1.周其凤,王新久.液晶高分子[M],北京:科学出版社,1994,1-56.
    2.谢毓章.液晶物理学[M],北京:科学出版社,1987,3-15.
    3.何天白,胡汉杰.功能高分子与新技术[M],北京:化学工业出版社,2001,241-256.
    4.吴大诚,谢新光,徐建军.高分子液晶[M],成都:四川教育出版社,1988,10-150.
    5.王良御,廖松生.液晶化学[M],北京:科学出版社,1988,5-58.
    6.施善定,黄嘉华.液晶与显示应用[M],上海:华东化工学院出版社,1993,1-33.
    7. Jbrienne M. Macroscopic expression of molecular recognition supermolecular liquid crystalline phase induce by association of complementary hetercyclic compents [J], J Chem Soc Chem. Commun,1989,35:1869-1976.
    8. Kato T K, Lchn J M. New approch to mesophase stabilization through hydrogen-bonding molecular interactings in binary mixtures [J], J Am Chem Soc, 1989,111:8534-8544.
    9.黄锡珉,黄辉光.液晶显示器件[M],北京:航空工业出版社,1992,1-8.
    10.赵文元,王亦军.功能高分子材料化学[M],北京:化学工业出版社,1996,126-159.
    11.殷敬华.现代高分子物理学[M],北京:科学出版社,2001,328-329.
    12. Ritcey A M, Gray D G. Circular reflection from the cholesteric liquid crystalline phase of (2-ethoxypropyl)cellulose [J], Macromolecules,1988,21: 251-260.
    13.陈寿羲,宋文辉,钱人元.高分子液晶向列相向错结构[J],高分子通报,1994,(4):1-7.
    14.王新久.液晶的结构、缺陷与织构[J],液晶与显示,1996,11:1-16.
    15.董炎明.两种分子量B-N的趋向态织构研究[J],高分子材料科学与工程,1992,(1):79-84.
    16.高家武,雷渭媛,张复盛,等.高分子材料近代测试技术[M],北京:北京航空航大学出版社,1993,245-278.
    17.董炎明.高分子材料使用剖析技术[M],北京:中国石化出版社,1997,366-395.
    18.佐佐木昭夫著,赵静安,郑仁元,杨青基译.液晶电子学基础和应用[M],北京:科学技术出版社,1985,20-55.
    19. Salamone J C, Li C K, Clough S B et al. A liquid crystalline ionomer [J], Polym Prepr,1988,29:273-274.
    20. Zhang B Y, Weiss R A. Liquid crystalline ionomers. Ⅰ. Main chain liquid crystalline polymer containing pendant sulfonate groups [J], J Polym Sci, Part A: Polym chem,1992,30:91-97.
    21. Zhang B Y, Weiss R A. Liquid Crystalline Ionomers. Ⅱ. Main Chain Liquid Crystalline Polymers with Terminal Sulfonate Group [J], J Polym Sci, Part A: Polym chem,1992,30:989-996.
    22. Blumstein A, Cheng P W, Subramanyam S D et al. Ion containing LCPs: ionmers based on trans-1,2-bis(4-pyridyl) ethylene[J], Makromol Chem, Rapid
    Commun,1992,13:67-74. 23. Jegal J G, Blumstein A. Main chain ionic polymers with thermotropoc and lyotropic mesophases [J], J Polym Sci, Part A:Polym chem,1995,33:2673-2680.
    24. Pilati F, Manaresi P, G.Ruperto M, et al. Ion-containing polymers:1. Synthesis and properties of poly (1,4-butylene) isophthalate containing sodium sulfonate groups[J], Polymer,1993,34:2413-2419.
    25. Xue Y P, Hara M. Ionic naphthalene thermotropic copolymers:Effect of ionic content [J], Macromolecules,1997,30:3803-3812.
    26. Lin Q, Pasatta J, Long T E. Synthesis and characterization of sulfonated liquid crystalline polyesters [J], Polym Prepr,2000,41:248-249.
    27. Bhowmik P K, Molla A H, Han H, et al. Lyotropic liquid cystalline main-chain viologen polymers:Homopolymer of 4,4'-bipyridyl with the ditosylate of trans-1,4-cyclohexanedimethanol and its copolymers with the ditosylate of 1, 8-octanediol[J], Macromolecules,1998,31:621-630.
    28. Jegal J G, Blumstein A. Synthesis and characterization of semiflexible main chain thermotropic liquid crystalline ionogenic polymers[J], Polym Prepr,1992, 33:120-121.
    29. PaBmann M, Wilbert G, Cochin D, et al. Nematic ionomers as materials for the build-up of multilayers[J], Macromol Chem Phys,1998,199:179-189.
    30. Dias F B, Batty S V, Gupta A, et al. Ionic conduction of lithium, sodium and magnesium salts within organised smectic liquid crystal polymer electrolytes[J], Electrochimica Acta,1998,43:1217-1224.
    31. Hubbard A, Sills S A, Davies G R, et al. Anisotropic ionic conduction in a magnetically aligned liquid crystalline polymer electrolyte[J], Electrochimica Acta, 1998,43:1239-1245.
    32. Gohy J, Jerome R, Bossche G V, et al. Supramolecular organization of model liquid crystalline Ionomers [J], Macromol Chem Phys,1998,199:1791-1799.
    33. Salah A. Synthesis and properties of liquid-crystalline polyetherurethane cationomers [J], Acta Polym,1998,49:465-470.
    34. Merta J, Stenius P, Pirttinen E. Interactions between cationic starch and anionic surfacants [J], J Disper Sci Tech,1999,20:677-697.
    35.何汉宏,梁伯润,王庆瑞.含磺酸基聚酯类液晶离聚物的合成与表征[J],高分子材料科学与工程,2000,16:74-77.
    36. Pispas S, Hadjichristidis N. Synthesis and dilute solution properties of styrene-isoprene diblock copolymers with mesogenic-zwitterionic end groups [J], Macromolecules,2000,33,6396-6401.
    37. Son Y G, Weiss R A. Compatibilization of syndiotactic polystyrene and a thermotropic liquid-crystalline polymer blend with a zinc salt of a sulfonated polystyrene ionomer[J], J Appl Polym Sci,2003,87:564-568.
    38. Zhou W, Gin D L. Synthesis and characterization of novel nanostructured polymers enhanced by hydrogen-bonding using liquid crystal monomers[J], Polym Prepr,2000,41:1330-1331.
    39. Reppy M A, Gray D H, Gin D L. A new class of modular polymerizable lyotropic liquid crystals for the preparation of nanostructured materials [J], Polym Prepr,1999,40:510-511.
    40. Zhi J G, Zhang B Y, Wu Y Y. Study on a Series of Main-Chain Liquid-Crystalline Ionomers Containing Sulfonate Groups [J], J Appl Polym Sci, 2001,81:2210-2218.
    41. Wiesemann A, Zentel R. Redox-active liquid-crystalline ionomers [J], Polymer, 1992,33:5315-5320.
    42. Lei H L, Zhao Y. An easy way of preparing side-chain liquid crystalline ionomers[J], Polym Bull,1993,31:645-64
    43. Yuan G X, Zhao Y. Side-chain liquid crystalline ionomers:3. Stress-induced orientation in blends with poly(vinyl chloride) as matrix[J], Polymer,1995,36: 2725-2732.
    44. Barmatov E B, Pebalk D A, Barmatov M V, et al. Side-chain functionalized liquid crystalline polymers and blends. Ⅸ. Phase behavior and structure of comb-shaped liquid crystalline ionomers containing calcium ions [J], J Polym Sci, Part A:Polym chem,2001,39:3953-3959.
    45. Barmatov E B, Pebalk D A, Barmatov M V, et al. Side-chain functionalized liquid crystalline polymers and blends,10:phase behavior and structure of side-chain liquid crystalline ionomers containing ions of d-metals [J], Polymer, 2002,43:2875-2880.
    46. Zhao Y, Lei H L. Side-chain liquid crystalline ionomers.1. Preparation through alkaline hydrolysis and characterization [J], Macromolecules,1994,27: 4525-4529.
    47. Lin C L, Blumstein A. Synthesis and characterization of side chain liquid crystalline ionic polymers [J], Polym Prepr,1992,33:118-119.
    48. Kijima M, Setoh K, Shirakawa H. Synthesis of a novel ionic liquid crystalline polythiophene having viologen side chain [J], Chem Lett,2000:936-937.
    49. Ujiie S, Iimura K. Thermotropic liquid crystalline ionic polymers [J], Chem Lett,1991:411-414.
    50. Barmatov E, Prosvirin A, Barmatova M. Side-chain functionalized liquid crystalline polymers and blends,6a phase behavior, structure and magnetic properties of Cu(Ⅱ) containing liquid crystalline ionomers[J], Macromol Rapid Commun,2000,21:281-286.
    51.邵兵,张宝砚,胡建设.侧链含偶氮基的聚硅氧烷类液晶高分子及其离聚 物的合成与表征,高分子材料科学与工程[J],2002,18:70-73.
    52. Percec V, Heck J. Molecular design of externally regulated self-assembled supramolecular ionic channels [J], Polymer Preprints,1992,33:217-218.
    53. Ujiie S, Takagi S, Sato M. A lamellar mesophases formed by thermotropic liquid crystalline ionic polymer systems without mesogenic units [J], High Perform Polym,1998,10:139-146.
    54. Kato T, Kihara H, Uryu T. Molecular self-assembly of liquid crystalline side-chain polymers through intermolecular hydrogen bonding polymeric complexes built from a polyacrylate and stilbazoles[J], Macromolecules,1992,25: 6836-6841.
    55. Bazuin C G, Tork A. Generation of liquid crystalline polymeric materials from non liquid crystalline components via ionic complexation[J], Macromolecules, 1995,28:8877-8880.
    56. Kato T, Ihata O, Ujiie S. Self-assembly of liquid-crystalline polyamide complexes through the formation of double hydrogen bonds between a 2,6-bis(amino)pyridine moiety and benzoic acids[J], Macromolecules,1998,31: 3551-3555.
    57. Gohy J F, Robert J, Bossche G V. Supramolecular organization of model liquid crystalline ionomers[J], Macromol.Chem.Phys,1999,199:1791-1799.
    58. Lin H C, Lin Y S, Lin Y S. Supramolecular side-chain liquid crystalline polymers with various kinked pendant groups [J], Macromolecules,1998,31: 7298-7311.
    59. Gohy J F, Jerome R. Ionic end-capping of (semi) telechelic polymer by mesogens:a novel route to liquid crystalline polymers [J], Prog Polym Sci,2001, 26:1061-1099.
    60. Ujiie S, Iimura K. Ammonium halide type thermotropic liquid crystalline ionic polymers [J], Chem Lett,1990:955-998.
    61. Ujiie S, Iimura K. Thermal properties and ferroelectric like behavior of liquid-crystalline ionic polyethylenimine derivative [J], Chem Lett,1991: 1969-1972.
    62. Ujiie S, Tanaka Y, Iimura K. Thermotropic liquid-crystalline copolymers containing ionic group [J], Chem Lett,1991:1037-1040.
    63. Ujiie S, Imura K. Formation of smectic orientational order in an ionic thermotropic liquid-crystalline side-chain polymer [J], Polym J,1993,25: 347-354.
    64. Ujiie S, Imura K. Thermal properties and orientational behavior of a liquid-crystalline ion complex polymer [J], Macromolecules,1992,25:3174-3178.
    65. Ujiie S, Tanaka Y, Iimura K. Thermal and liquid crystalline properties of liquid crystalline polymethacrylates with ammonium units and their non-ionic family [J], Polym Adv Technol,2000,11:450-455.
    66.佟斌.含季铵盐侧链液晶离聚物的合成及性能研究[D],东北大学博士学位论文,2003,20-38.
    67. Tong B, Zhang B Y, Hu J S, Dai R Ji. Synthesis and characterization of side-chain liquid crystalline ionomers containing quaternary ammonium salt groups[J], J Appl Polym Sci,2003,90:2879-2886.
    68. Tong B, Yu Y, Zhang B Y, Deng Y L. Synthesis and properties of side chain liquid crystalline ionomers containing quaternary ammonium salt groups[J], Liq Cryst,2004,31:509-518.
    69.佟斌,戴荣继,付若农,张宝砚.含苯甲醚基团的液晶离聚物的合成与表征[J],中央民族大学学报,2003,12:111-116.
    70. Zhao Y, Yuan G. X. Interpentrating liquid crystalline polymer networks[J], Macromolecules,1996,29:1067-1069.
    71. Roche P, Zhao Y. Side-chain liquid crystalline ionomers.2. Orientation in a magnetic field [J], Macromolecules,1995,28:2819-2824.
    72. Zhao Y, Yuan G X, Roche P. Blends of side-chain liquid crystalline polymers: towards self-assembled interpenetrating networks [J], Polymer,1999,40: 3025-3031.
    73.夏和生,张宝砚,赵国君,王沪生.聚丙烯酸酯类侧链液晶聚合物的合成与表征[J],合成树脂与塑料,1998,15:19-21.
    74.夏和生.含羧基的侧链液晶离聚物的合成与表征[D],东北大学硕士学位论文,1997,30-61.
    75.邵兵.侧链含偶氮基聚硅氧烷液晶离聚物的合成与表征[D],东北大学硕 士学位论文,1998,26-45.
    76.张宝砚,王铭群,陈新.磺酸基苄叉类遥爪液晶聚合物的合成[J],东北大学学报,1998,19:29-31.
    77.胡建设.含手性碳原子的聚硅氧烷类液晶高分子的合成与表征[D],东北大学硕士学位论文,1998,32-56.
    78.支俊格.含有磺酸离子的液晶离聚物的合成与性能研究[D],东北大学硕士学位论文,1999,24-43.
    79.丛越华.带有手性基团的聚硅氧烷类侧链液晶高分子的合成与表征[D],东北大学硕士学位论文,2000,33-44.
    80.丛越华,张宝砚,王宏光,封文娟.液晶离聚物—分子设计与热性能[J],高分子通报,2000,1:61-65.
    81.张宝砚,王宏光,丛越华,刘鲁梅.液晶离聚物-液晶行为的研究[J],高分子通报,2000,4:59-64.
    82. Hu J S, Zhang B Y, Feng Z L, Wang H G, Zhou A J. Synthesis and Characterization of Chiral Smectic Side-Chain Liquid Crystalline Polysiloxanes and Ionomers Containing Sulfonic Acid Groups[J], J Appl Polym Sci,2001,80: 2335-2340.
    83.臧宝岭,刘鲁梅,张宝砚,周爱娟.带有磺酸基团侧链液晶离聚物的液晶性能研究[J],东北大学学报,2003,24:190-193.
    84.佟斌,臧宝岭,戴荣继,张宝砚.液晶离聚物的合成[J],高分子通报,2003,5:57-63.
    85.孙秋菊,臧宝岭,张宝砚,王业翔.含磺酸离子的侧链液晶聚硅氧烷的合成与表征[J],东北大学学报,2005,26(4):377-380.
    86. Meng F B, Zhang B Y, Jia Y G, Yao D S. Effect of ionic aggregates of sulfonate groups on the liquid crystalline behaviours of liquid crystalline elastomers [J], Liq Cryst,2005,32(2):183-189.
    87. Meng F B, Cheng C S, Zhang B Y, He X Z. Synthesis and characterization of a novel liquid crystal- bearing ionic mesogen [J], Liq Cryst,2005,32(2):191-195.
    88. Zhang B Y, Tian M, Meng F B, He X Z. Synthesis and Characterization of main-chain liquid-crystalline ionomers containing sulfonate groups [J], Liq Cryst, 2005,32(8):997-1003.
    89. Sun Q J, Zhang B Y, Jia Y G, Yang L. Enhancement of Modified Side-Chain Liquid-Crystalline Polysiloxanes by Copolymerization[J], J Appl Polym Sci,2005, 97(3):1196-1201.
    90. Meng F B, Zhang B Y, Xu Y, Liu Y J. Main-Chain Liquid-Crystalline Ionomers Bearing Potassium Sulfonate Groups [J], J Appl Polym Sci,2005,96:2021-2026.
    91. Tian M, Zhang B Y, Meng F B, Zang B L. Main-chain Chiral Smectic Liquid-Crystalline Ionomers Containing Sulfonic Acid Groups[J], J Appl Polym Sci,2006,99:1254-1263.
    92. Zentel R. Synthesis and properties of functionallzed polymers[J], Polymer, 1992,33:4040-4046.
    93. Yuichiro H, Yoshiharu K, Masato N. Side chain type ionic liquid crystalline polymers having high molecular weight[J], Liq Cryst,2000,27:1393-1397.
    94. Gohy J F, Vanhoorne P, Jerome R. Synthesis and preliminary characterization of model liquid crystalline ionomers[J], Macromolecules,1996,29:3376-3383.
    95. Kim J Y, Cohen C. Consequences of structural differences in ionomer network prepared in different solvents [J], Macromolecules,1998,31:3542-3550.
    96. Xue Y, Hara M. Ionic naphthalene thermotropic copolymers:Divalent salts and tensile mechanical properties [J], Macromolecules,1998,31:7806-7813.
    97. Vuillaume P Y, Galin J C, Bazuin C G. Ionomer and mesomorphic behavior in a tail-end, ionic mesogen-containing comblike copolymer series[J], Macromolecules,2001,34:859-867.
    98. Merta J, Torkkeli M, Ikonen T. Structure of cationic starch(CS)/anionic surfactant complexes studied by small-angle X-ray scattering(SAXS) [J], Macromolecules,2001,34:2937-2946.
    99. Gohy J F, Sobry R, Bossche G V. Ionic end-capping of (semi)telechelic polymers by mesogens[J], Polym Int,2000,49:1293-1301.
    100. Weiss-Lopez B E., Mino G, Ramiro A M. Average orientation and location of benzyl alcohol-d5 and alkyl benzyl-d5 ethers in anionic nematic lyotropic liquid crystals[J], Langmuir,2000,16:4040-4044.
    101. Robila G, Buruiana T, Buruiana E C. Synthesis and properties of some polyurethane anionomers with carboxylate groups[J], Euro Polym J,1999,35: 1305-1311.
    102. Fukui H, Sawamoto M, Higashimura T. Multifunctional coupling agents for living cationic polymerization. I. Sodiomalonate anions for vinyl ethers [J], J Polym Sci:Part A:Polym Chem,1993,31:1531-1542.
    103. Zhang B Y, Meng F B, Hu J S. Liquid-crystalline elastomers containing sulfonic acid groups[J], Macromolecules,2003,36:3320-3326.
    104. Gohy J F, Jerome R, Bossche G V. Restriction of mobility in model liquid crystalline ionomers[J], Macromol Chem Phys,1998,199:2205-2210.
    105. Resel R, Leising G, Markart P. Structural properties of polymerised lyotropic liquid crystals phases of 3,4,5-tris(ω-acryloxyalkoxy)benzoate salts[J], Macromol Chem Phys,2000,201:1128-1133.
    106. Fischer H, Plesnivy T, Ringsdorf H. Induction of liquid crystalline phases in linear polyamines by complexation of transition metal ions [J], J Mater Chem, 1998,8:343-351.
    107. Xu H, Kang N, Xie P. Synthesis and characterization of a hydrogen-bonded nematic network based on 4-propoxybenzoic acid side groups grafted onto a polysiloxane[J], Liq Cryst,2000,27:169-176.
    108. Wan Y, Qi H, Zhang L. Synthesis and mesomorphic properties of Cu-coordinating liquid crystalline polysilsesquioxanes with heptyl side groups [J], Liq Cryst,2000,27:1113-1118.
    109. Lin Q, Pasatta J, Wang Z H. Synthesis and characterization of sulfonated liquid crystalline polyesters [J], Polym Int,2002,51:540-546.
    110. Chovino C, Frere Y, Cuillon D. Effect of smectogenicity of the ionic groups on the thermotropic liquid crystalline behavior of pyridinium and poly(4-Vinylpyridinium) salts quaternized with mesogenic groups[J], J Polym Sci Part A:Polym Chem,1997,35:2569-2577.
    111. Shibaev V P, Barmatov E B, Barmatova M V. Comb-shaped liquid crystalline ionogenic copolymers[J], Colloid Polym Sci,1998,276:662-668.
    112. Tokuhisa H, Yokoyama M, Kimura K. Photoinduced switching of ionic conductivity by metal ion complexes of vinyl copolymers carrying crowned azobenzene and biphenyl moieties at the side chain[J], J Mater Chem,1998,8: 889-891.
    113. Gillian S M, Corrie T I, Malcolm D I. Ionically conducting side chain liquid crystal polymer electrolytes[J], Electrochimica Acta,1998,43:1151-1154.
    114. Barmatov E B, Pebalk D A, Barmatova M V. Preliminary communication induction of the smectic phase in comb-shaped liquid crystalline ionogenic copolymers by hydrogen bond formation[J], Liq Cryst,1997,23:447-451.
    115. Zang B L, Hu J S, Meng F B, Zhang B Y. New side-chain liquid crystalline ionomers.Ⅰ.Synthesis and characterization of a homopolymers derived from ionic mesogenic group [J], J Appl Polym Sci,2004,93:2511-2516.
    116. Meng F B, Zhang B Y, Liu L. Liquid-crystalline elastomers produced by chemical crosslinking agents containning sulfonic acid groups[J], Polymer,2003, 44:3935-3943.
    117. Hoshino K, Yoshio M, Mukai T. Nanostructured ion-conductive films: Layered assembly of a side-chain liquid crystalline polymer with an imidazolium ionic moiety [J], J Polym Sci Part A:Polym Chem,2003,41:3486-3492.
    118. NIkonorova N A, Borisova T I, Barmatov E B. Molecular mobility of CU(Ⅱ)-containing liquid crystalline ionomers:dielectric relaxation and thermally stimulated depolarizationcurrents[J], Polymer,2004,45:1555-1562.
    119. Pradip K, Haesook H, James J, Ivan K. Synthesis and characterization of ionic thermotropic liquid-crystalline polyester[J], Polym Prepr,2002,43: 1140-1141.
    120. Pradip K, Haesook H, James J, Ivan K. Synthesis and characterization of ionic, thermotropic liquid-crystalline polyesters[J], Polym Prepr,2003,44: 663-664.
    121. Wilson E C, Longworth R. Quantrum chemistry [J], Polym Prepr Am Chem Soc Div Polym Chem,1968,9:505-509.
    122. Longworth R, Vaughan D J. Excited state interactions in macromolecules [J], Polym Prepr Am Chem Soc Div Polym Chem,1968,9:525-527.
    123. Dell B W, Macknight W J. Dewatering a flocculated suspension[J], Macromolecules,1969,2:309-316.
    124. Eisenberg A, Navratill M. Ion clustering and viscoelastic relaxation in styrene based ionomers[J], Macromolecules,1974,7:90-98.
    125. Peiffer D G, Weiss R A. Microphase separation in sulfonated polystyren ionomers [J], J Polym Sci Polym Phys Ed,1982,20:1503-1512.
    126. Weiss R A, Lefelar J A. The influence of thermal history on the small-angle x-ray scattering of sulfonated polystyrene ionomers [J], Polymer,1986,7:3-14.
    127. Yarusso D J, Cooper S L. Microstructure of ionomers:interpratation of small-angle X-ray[J], Macromolecules,1983,16:187-195.
    128. Mauritz K A. Review and critical analysis of theories of aggregation in ionomers [J], J Macromol Sci Rev Macromol Chem Phys,1988, C28:65-73.
    129. Taut M R, and Willis G L. Anomaly in the plasmon dispension of alkaline matels [J], J Macromol Sci Rev Macromol Chem Phys,1988, C28:1-8.
    130. Macknight W J. Microphase separation in organic polymers containing ions [J], J Polym Sci Polym Symp Ed,1974,45:113-120.
    131. Moudden A. X-ray study of telechelis butadiene methyacrylated acid copolymers [J], J Polym Sci,1977,15:1707.
    132. Longworth R. Thermoplastic ionic polymers [M], Ionic Polymers, New York: Halstead,1975.
    133. Dreyfus B. Clustering and hydration in ionomers [J], Macromolecules,1985, 18:284-293.
    134. Eisenberg A, Hird B. A new multiplet-cluster model for the morphology of random ionomers [J], Macromolecules,1990,23:4098-4107.
    135. Eisenberg A. Viscoelasticity of silicate polymer and its structure implications [J], Macromolecules,1970,3:147-156.
    136. Zhang X, Eisenberg A. Ionic miscibility enhancement via microion elimination in sulfonated polystyrene [J], J Polym Sci Polym Phys,1990,28: 1841-1852.
    137. Zhou Z, Eisenberg A. Ionomeric blends:Ⅱ, compatibility and dynamic mechanical properties of sulfonated cis-1,4-polyisoprenes[J], J Polym Sci Polym Phys Ed,1983,21:595-604.
    138. Weiss R A, Beretta C. Miscibility enhencement of polystyrene and poly (alkylene oxide) blends using specific intermolecular interaction[J], J Appl Polym Sci,1990,41:91-99.
    139. Rutkowska M, Eisenberg A. Ion pair-ion pair and ion-dipole interactions in polyurethane-styrene blends[J], J Appl Polym Sci,1985,30:3317-3325.
    140. Eisenberg A, Hara M. A review of miscibility enhancement via ion-dipole interactions [J], Polym Eng Sci,1984,24:1306-1314.
    141. Ohno N, Kumanotain J. Studies on mechanical properties of polymeric electron-donor-acceptor complexes[J], J Polym,1979,11:947-956.
    142. Sen A, Weiss R A. Ionomeric blends using transition metal coordination [J], Polym Prepr,1987,28:220-221.
    143. Lu X Y, Weiss R A. Studies in bath and continuous solvent sublation[J], Macromolecules,1991,24:4381-4390.
    144. Joshi J, Misra A. Iron and allumium homeostasis in neural disorders [J], J Appl Polym Sci,1991,43:311-319.
    145. Willis J M, Favis B D. Reactive processing of polystyrene-co-maleic anhydride/elstomer plastic [J], Polym Eng Sci,1988,28:1416-1423.
    146. Willis J M, Caldas V. Progressing morphology relationships of compatibilized polyolefine/polyamine blends [J], J Mater Sci,1991,26:4742-4751.
    147.杨胜林,梁伯润.液晶离聚物的合成及其原位复合纤维形态研究[J],高分子材料科学与工程,2001,17:86-89.
    148. Wang Y F, Chen T M, Kitamura Masaya et al. Synthesis and properties of a series amphiphic polyacrylamides bearing two long alkyl chains and phosphatidylcholine analogous groups in the side chains[J], J Polym Sci, Part A: Polym chem,1996,34:449-460.
    149. Olabisi O, Robeson L M, Sham M T. Polymer-polymer miscibility [M], New York:Academic Press,1979,88-126.
    150. Nishi T, Wang T T. Melting point depress and kinetic effects of cooling on crystallization in poly (vinylidence fluoride)-poly(methyl methacrylate) mixtures[J], Macromolecules,1975,8:909-915.
    151. Elmendorf J J, Van V. A study on polymer blend morphology:Part Ⅳ. The influence of coalescene on blend morphology origanation [J], Polym Eng Sci, 1986,26:1332-1338.
    152. Fayt R, Jerome R, Teyssie P. Molecular design of multicomponent polymer system, Ⅱ emulstifying effect of a poly(hydrogenated butadiene-b-styrene) [J], J Polym Sci:Polym Phys Ed,1981,19:1269-1272.
    153. Fayt R, Jerome R, Teyssie P. Molecular design of multicomponent polymer system, Ⅲ comparative behavior of pure and tapered block copolymers in emulsification of blends of low-density polyethylene and polystyrene [J], J Polym Sci:Polym Phys Ed,1982,20:2209-2217.
    154. Kib B K, Lee Y M, Jeong H M. Pysical properties of ABS/SMA/nylon-6 ternary blends:effect of blending sequence [J], Polymer,1993,34:2075-2080.
    155. Tang T, Lei Z L, Huang B T. Studies on morphology and crystallization of Polypropyrene/Polyamide-12 blends [J], Polymer,1996,37:3219-3226.
    156. Chiou K C, Chang F C. Reactive compatibilization of polyamide-6/polybutylene terephalate blends by a multifunctional epoxy resin [J], J Polym Sci:Polym Phys,2000,38:23-33.
    157. Son Y G, Weiss R A. Compatibilizers for thermotropic liquid crystalline polymer/polyolefin blends prepared by reactive mixing:the effect of processing conditions [J], Polym Eng Sci,2001,42:329-340.
    158. Dibenedetto A T. Glass transition temperatures of polymer blends with ionic interaction [J], J Polym Sci:Polym Phys,1987,25:1949-1956.
    159.邱星屏.离子作用对SPS/MMA4VP复合物组成及Tg的影响[J],厦门大学学报,2000,39:84-88.
    160.刘杰,何嘉松,陈士娟.引入离子基团改善聚苯乙烯和热致液晶聚合物的相容性Ⅱ用FTIR研究分子间特殊相互作用[J],高分子学报,1998,276-281.
    161.冯克,曾兆毕,李卓美.含不同金属离子的EPDM磺酸盐离聚物的研究[J],物理化学学报,1992,8:370-375.
    162. Eisenberg A, Hara M. A review of miscibility enhancement via ion-dipole interaction [J]. Polymer Engineering Science,1984,24(17):1306-1311.
    163. Dutta D, Weiss R A. Compatibilization of blends containing thermotropic liquid crystalline polymers with sulfonate ionomers [J]. Polymer,1996,37(3): 429-435.
    164. Weiss R A, Lu X. Phase behaviour of blends of nylon 6 and- lightly sulfonated Polystyrene ionomers [J]. Polymer,1994,35 (9):1963-1969.
    165. Jackson D A, Koberstein J T, Weiss R A. Small-angle X-ray scattering studies of zinc stearate-filled sulfonated poly (ethylene-co-propylene-co-ethylidene norbornene) ionomers [J]. Journal of Polymer Science,1999,37(21):3141-3150.
    166. Weiss R A, Turner S R, et al. Sulfonated polystyrene ionomers prepared by emulsion copolymerization of styrene and sodium styrene sulfonate [J]. Journal of Polymer Science:Polymer Chemistry,1985,23(3):525-533.
    167. Weiss R A, Ghebremeskel Y. Miscible blends of a thermotropic liquid crystalline polymer and sulfonated polystyrene ionomers [J]. Polymer,2000,41(9): 3471.3477.
    168. Lee H S, Weiss R A. Miscible blends of a liquid crystalline polymer and a sulfonated polystyrene ionomer [J]. Polymer Preprints,2000,41(2):1157-1158.
    169. Zhang H, Weiss R A, Kuder J E, Cangiano D. Reactive compatibilization of blends containing liquid crystalline polymers [J]. Polymer,2000,41:3069-3082.
    170. Fitzgerald J J, Weiss R A. Synthesis, properties, and structure of sulfonate Ionomers [J]. J Macromolecular Science, Reviews Macromolecular Chemistry Physics.1988, C28(1),99-185.
    171. Lundberg R D, Phillips R R, Peiffer D G. Solution behavior of sulfonate ionomers interpolymer complexes [J]. J Polymer Science, Part B:Polymer phys.1989,27:245-259.
    172. Lundberg R D, Makowski H S. Solution behaviour of ionomers 1. metal sulfonate ionomers in mixed solvents [J]. J Polymer Science, Polymer phys Edit, 1980,18:1821-1836.
    173. Tharanikkarasu K, Rajalingam P, Radhakrishnan G. Effect of ionic concentration and counterion on properties of poly (vinyloxyacetic acid) [J]. Polymer,1992,33 (17):3643-3646.
    174. Ramesh S, Radhakrishnan G. Synthesis and characterization of polvurethane ionomers using new ionic diol [J]. Macromolecular Reports,1993, A30 (Suppls. 3,4),251-260.
    175. Kakati D K, Godain R, et al. New polyurethane ionomers containing phosphonate groups [J]. Polymer,1994,35(2):398-405.
    176. Tiera M, Neumann M G Brazil. A fluorescence probe study of low molecular weight poly(methallyl sulfonate vinyl acetate) copolymers, J M S Pure Appl Chem, 1992,A29(8):689-698.
    177. Percee V, Wang C S. Synthesis and characterization of polymethacrylates, polyacrylates, and poly (methylsiloxane)s containing 4-[S-)-2-methyl- 1-butoxyt-4,-(co- alkanyl-1 -Oxy)-ix -methylstillbene sid groups [J]. J M S Pure Appl Chem.1992,29(2),99-121.
    178. Eisenberg A, Navratill M. Ion clustering and viscoelastic relaxation in styrene-based ionomers:IV. X-ray and dynamic mechanical studies [J]. Macromolecules,1974,7(1):90-94.
    179.Harand M, Eisenberg A. Miscibility enhancement via ion-dipole interactions. I. polyestyrene ionomer model for the clustering of multiplets in ionomers [J]. Macromolecules,1984,17(7):1335-1340.
    180. Rutkowska M, Eisenberg A. Ion pair-ion pair and ion-dipole interaction in polyurethane-styrene blends [J]. J Applied Polymer Science,1985,30:3317-3323.
    181.Cochin D, Passmann M, WilberT G, Zentel R. Layered nanostructures with LC-polymers, polyelectrolytes, and inorganics [J]. Macromolecules,1997,30: 4775-4779.
    182. Weiss R A, Lefelar J A. The influence of thermal history on the small-Angle X-ray scatting of sulphonated polystryrene ionomers [J]. Polymer,1986,7(1): 3-10.
    183. Peiffer D G, Weiss R A, et al. Microphase separation in sulfonated polystyrene ionomers [J]. J Polymer Science Polymer Physics Ed,1982, 20:1503-1509.
    184. Weiss R A, Beretta C, et al. Miscibility enhancement of polystyrene and poly (aldylene oxide) blends using specific intermolecular interactions [J]. J Polymer Science,1990,41:94-105.
    185.刘杰,何嘉松.引入离子基团改善聚苯乙烯和热致液晶聚合物的相容性I热性能和形态[J],高分子学报,1998:196-202.
    186.刘杰,何嘉松.离聚物对含液晶聚合物聚砜体系的增容作用[J],高分子学 报,1996:506-508
    187.周春林,张中权,江明.离聚物及其共混体系的研究I聚合物链引入同种离子的增容作用[J],高分子学报,1994,4:463-471.
    188.周春林,张中权,江明.离聚物及其共混体系的研究II配位络合和质子转移对共混体系的增容作用[J],高分子学报,1995,3:257-263.
    189.冯克,欧阳巍,李卓美.EPDM磺酸盐离聚体溶液粘度行为的研究[J],中山大学学报(自然科学版),1993,32,(1):58-61.
    190.冯克,欧阳巍,李卓美等.乙丙三元共聚物磺酸锰离聚体溶液中离子的相互作用[J].高等学校化学学报,1993,14,(6):883-885.
    191. Yarusso D J, Cooper S L. Microstructure of ionomers:interpretation of small-angle X-ray scattering data [J]. Macromolecules,1983,16:1871-1879.
    192. Zheng L Z, Eisenberg A. Ionomeric blends Ⅱ compatibility and dynamic mechanical properties of sulfonated cis-1,4-polyisoprenes and styrene/4-vinylpyridine copolymer blends [J]. J Polymer Science Polymer Physics, 1983,21:595-603.
    193. Zhang X, Eisenberg A. NMR and dynamic mechanical studies of miscibility enhancement via ionoc interaction via polystyrene /poly(ethyl acrylate) blends[J]. J Polymer Science Polymer Physics,1990,28:1841-1857.
    194. Zhang H, Kuder J E, Cangiano D, et al. Compatibilization of PP/vectra B "in situ" composites by means of an ionomer [J]. Polymer,2000,41(16):6311-6321.
    195. Peiffer D G, Weiss R A, et al. Microphase separation in sulfonated polystyrene ionomers [J]. J Polymer Science Polymer Physics Ed,1982, 20:1503-1509.
    196. Kiss G. In situ composites:blends of isotropic polymers and thermotropic liquid crystalline polymers [J]. Polymer Engineering and Science,1987; 27(6): 410-423.
    197. Chiou Y P, Chiou K C, Chang F C. In situ sompatibilized polypropylene/liquid crystalline polymer blends [J]. Polymer,1996,37(18): 4099-4106.
    198. Laivins G V. Analysis of the interactions in an situ composite poly (alkytlene terephthates) reinforced with thermotropic liquid crystalline polyesters [J]. Macromolecules,1989,22:3974-3980.
    199. Li R K Y, Tjong S C, Xie C L. The structure and physical properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and poly (butylene terephthalate) [J]. Journal of Polymer Science Part B:Polymer Physics,2000,38(3):403-414.
    200. Seo Y, Kim B, Kim K U. Structure development during flow of ternary blends of a polyamide (nylon 66), a thermotropic liquid crystalline polymer (poly(ester amide)) and a functionalized polypropylene [J]. Polymer 1999,40(6):4483-4492.
    201. Zhang A L, Zhang B Y, Feng Z L. Compatibilization by Main-Chain Thermotropic Liquid Crystalline Ionomer of Blends of PBT/PP [J], Journal of Applied Polymer Science,2002,85:1110-1117.
    202. Isayev A I, Limtasiri T. In:Lee SM, editor. International encyclopedia of composites [M] vol. Ⅲ. New York:VCH Publishers,1990.
    203. Weiss R A, Huh W. Nicholais L. In:Zacharides AE, Porter RS, editors. High modulus polymers [M]. New York:Marcel Dekker 1988.
    204. Seo Y, Hong S M, Kim K U. Structure Development during Flow of Ternary Blends of a Polyamide (Nylon 46), a Thermotropic Liquid Crystalline Polymer (Poly(ester amide)), and a Thermoplastic Elastomer (EPDM)[J], Macromolecules 1997,30:2978-2988.
    205. Klein N, Selivansky D, Maron G. The effects of a nucleating agent and of fibers on the crystallization of nylon 66 matrices [J], Polym Comp 1995,16: 189-197.
    206. Younggon S, Weiss R A. Compatibilizers for thermotropic liquid crystalline polymer/polyethylene blends prepared by reactive mixing [J], Polym Engi Sci 2002,42:1322-1332.
    207.刘盛洲,王烽,陈天禄.高磺化度芳香聚醚醚酮的合成与表征[J].高等学校化学学报,2001,22(3):494-497.
    208. Jia Y G, Zhang B Y, He X Z, et al. Synthesis and Phase Behavior of Nematic Liquid Crystalline Elastomers Derived from Smectic Crosslinking Agent [J], Journal of Applied Polymer Science,2005,98:1712-1719.
    209. Fan-Bao Meng, Chun-Sheng Cheng, Bao-Yan Zhang, et al. Synthesis and characterization of a novel liquid crystal- bearing ionic mesogen, Liquid Crystals, 2005,32(2),191-195.
    210. Kurian T, Datta S, Studies on Blends of Ionomers [J], Polymer, 1996,37:4787-479326.
    211. Zhang B Y, Sun Q U, Li Q Y, Wang Y J. Thermal, morphological, and mechanical characteristics of polypropylene/polybutylene terephthalate blends with a liquid crystalline polymer or ionomer [J], Journal of Applied Polymer Science,2006,102(5):4712-4719.
    212. Li Y M, Zhang B Y, Feng Z L, Zhang A L. Thermotropic, Liquid-Crystalline Ionomers to Blends of Polyamide-1010 and Polypropylene, Journal of Applied Polymer Science,2002,83:2749-2754.
    213. Zhou J S, Yan F Y. Mechanical and tribological behavior of compatibilized ultra-high-molecular-weight polyethylend/liquid crystalline polymer composites [J], Polymer testing,2004,23:827-833.
    214. Xie X L, Li R K Y, Mai Y W, Tjong S C. Effect of thermotropic copolyesteramide of the properties of polyamide-66/liquid crystalline copolyester composites [J], Polymer engineering and science,2002,42:452-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700