热敏液晶测温技术及其在平板气膜冷却实验中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种有效测温手段,热敏液晶测温技术在国外已被大量应用于传热领域的研究。在国内这项技术处于起步阶段。热敏液晶测温技术具有测量精度高、响应速度快、适合对流换热面温度测量等优点。在本文中,以美国Hallcrest公司生产的SPN/R35C10W型可喷涂热敏液晶材料为基础,建立了基于色调技术的热敏液晶定量测温系统,并把其应用于平板气膜冷却实验中。
     热敏液晶所呈现色彩的色调与温度之间的关系可以用六次多项式进行拟合。经误差分析测量精度在95%置信区间内可达0.8℃。实验研究表明相机轴线和待测平面法线之间夹角是影响标定数据分布的重要因素,在央角小于30°的条件下,可以忽略其带来的影响。在有效测温区间内,不同的光强条件对标定数据的影响可以忽略,光强设定应以取得良好色彩呈现效果为佳。热敏液晶在重新喷涂或者放置一段时间后,为提高测量精度应对其进行重新标定。
     气膜冷却是燃气轮机涡轮叶片的一种重要冷却方法。在建立平板气膜冷却实验台的基础上,应用热敏液晶测量技术测量射流孔下游的壁面温度分布。本文中讨论了不同吹风比、不同射流孔长径比、不同射流注入角、不同复合角条件等因素对射流孔下游冷却特性的影响。绝热气膜冷却效率被作为衡量不同条件下气膜冷却性能优劣的重要参数。
     在低吹风比条件下,与主流相比,射流动量较低。受主流影响,射流容易贴附在射流孔下游表面,射流孔近孔区域取得良好的冷却效果。高吹风比条件下,由于射流动量较高,在冷却孔下游容易发生“吹离”和“再附”现象。在低射流孔长径比条件下(L/D=2),由于射流未能在孔内充分发展,不同吹风比条件下射流孔下游冷却效率等值线的分布特点相似。通过设置不同的射流注入角条件来考察不同垂直方向速度分量对射流孔下游冷却特性的影响。即使在只有垂直方向速度的条件下,低吹风比时冷却孔下游近孔区域等值线依然呈现锥形分布的特点。高吹风比条件下,等值线近似直线分布。通过引入不同复合角考察在存在横向速度分量的条件下对射流孔下游冷却特性的影响。实验结果显示复合角条件下的冷却性能要优于简单角条件,孔间区域获得了较好的冷却效果。
As an effective method of temperature measurement, liquid crystal thermography has been widely used in the field of heat transfer in many developed countries. This technique is just at the beginning of its applications in our country. It has the following advantages: high accuracy, fast response to temperature variations, suitable for temperature measurement on convective surface, etc. In this paper, a system of quantitative temperature measurement is based on the definition of hue. The type of the sprayable thermo-chromic liquid crystal for the experiment is SPN/R35C10W, made by Hallcrest Company in USA. This temperature measurement system is applied in the experiments of film cooling on flat plates for the first time interiorly.The relation between the hue of the color of the thermo-chromic liquid crystal and the temperature can be fitted with a six-order poly-nominal function. An error analysis shows that the measurement accuracy can be 0.8° C in the 95% confidence region. The calibration data show that the visual angle is an important factor to influence the calibration curve, however, this effect can be neglected when the visual angel is smaller than 30°. In the valid measurement region of temperature, light intensity has little effect on the calibration data, thus it can be set to achieve the best color appearance. The thermochromic liquid crystal should be re-calibrated when it is re-sprayed or deposited for a period of time.Film cooling is an important measure used to protect the blade in gas turbines. We configure our experimental setup of film cooling on flat plates, and utilize thermo-chromic liquid crystal to measure the temperature distributions downstream of the injection holes. In the thesis, we discuss the influences on film cooling brought by different blowing ratio, different injection hole length to diameter ratios, different injection angles and different compound angles. The adiabatic film cooling effectiveness is regarded as an important parameter to weigh the cooling performance at different experimental conditions.At a low blowing ratio, the secondary injection flow has low momentum
    compared to the mainstream, so it is easily suppressed by the mainstream to a region near the cooper plate surface. Better cooling performance can be achieved in the region immediately out of the injection holes. When the blowing ratio increases, the phenomenon of "blowing off' and "re-attachment" happen downstream of the injection holes. At a low hole length to diameter ratio (L/D=2), the air flow cannot fully develop in the hole. The distribution characteristics of the adiabatic film cooling effectiveness are similar at different blowing ratios. The effect on the cooling performance due to different vertical velocity component is considered through experiments with different injection angles. The results show that the isolines still appear in a taper shape in the nearby region of the injection hole at a low blowing ratio when only vertical velocity exists, and the isolines change to near beelines at high blowing ratios. Different lateral velocity component can be produced through the introduction of compound angles. Its effect on film cooling is studied through experiments at three compound angles. The results indicate that a proper compound angle can yield better cooling performance than that of a simple angle. The regions between holes receive better cooling.
引文
1.黄文华,世界范围内燃气轮机发电技术的发展趋势,中国电机工程学会燃气轮机发电专业委员会成立大会论文集,1998年6月。
    2.糜洪元 徐文军 吕水森,国内外燃气轮机发电现状和21世纪展望,中国能源网,http://www.china5e.com/dissertation/gasturbines/20030801142345.html。
    3.倪维斗,焦树建,我国发展燃气轮机的可行道路,清华大学研究通讯,第28期,2000。
    4.林汝谋 蔡睿贤,工业燃气轮机的发展趋势和特点,中国电机学会燃气轮机发电专业委员会成立大会论文集,1998年6月。
    5.薛福培,我国工业燃气轮机的现状与前景,中国能源网,http://www.china5e.com/dissertation/gasturbines/20030731132939.html。
    6.葛绍岩,刘登瀛,徐靖中,李静,气膜冷却,1985年,北京:科学出版社。
    7. Je-Chin Han, S. Dutta, S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, Taylor & Francis, USA, 2000.
    8.凌善康等,温度测量基础,中国标准出版社,北京,1998。
    9.游伯坤等,温度测量与仪表,热电偶和热电阻,科学技术文献出版社,北京.1990。
    10.周书铨,红外辐射测量基础,上海交通大学出版社,上海,1991。
    11.刘迎春等,现代新型传感器原理与应用,国防工业出版社,北京,1999。
    12.周其凤,王新久,液晶高分子,科学出版社,北京,1994。
    13.程定海,山桂云,高分子液晶及其应用,四川师范学院学报(自然科学版),2001(6):151-154。
    14.俞书宏,张康林,钱逸泰,热变色胆甾相液晶的制备及微囊化技术的研究,高分子材料科学与工程,1999(9):151-153。
    15. J.A. Stasiek, T.A. Kowalewski, Thermochromic Liquid Crystals Applied for Heat Transfer Research, Opto-Electronics Review, 2002(10): 1-10.
    16.封文娟,张素杰,窦臻,周爱娟,液晶热性能的研究,辽宁化工,2000(9):261-263。
    17. J.W. Baughn, P.T. Ireland, T.V. Johns, and Saniei, N., A Comparison of the Transient and Heated-Coating Methods for the Measurement of Local Heat Transfer Coefficients on a Pin Fin, Journal of Heat Transfer, 1989 (111): 877-881.
    18. N. Kasagi, M. Hirata, and M. Kumada, Studies of Full Coverage Film Cooling: Part I: Cooling Effectiveness of Thermally Conductive Wall, ASME Paper No, 81-GT-37.1981.
    19. R.S. Bunker, D.E. Metzger, and S. Witting, Local Heat Transfer in Turbine Disk-Cavities. Part I: Rotor and Stator Cooling with Hub Injection of Coolant, ASME Paper, No. 90-GT-25.
    20. Z. Wang, P.T. Ireland, and T.V. Johns, A Technique for Measruring Convective Heat Transfer at Rough Surfaces, ASME paper, No.90-GT-300.
    21. Z. Wang, P.T. Ireland, T.V. Jones and R.A. Davenport, A Color Image Processing System for Transient Liquid Crystal Heat Transfer Experiments, Journal of. Turbomachinery, 1994(118):421-427..
    22. G. Millerson, The Technique of Lighting for Television and Film, third ed., Focal Press, UK, 1991:283-294.
    23. P.T. Ireland and T.V. Jones, Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress, Measurement Science and Technology, 2000( 11): 969-986.
    24. C. Camic, K. Kim and S.A. Hippensteele, A New Hue Capturing Technique for Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies, J.Turbomachinery 114 765-75,1992
    25. T.L. Chan, S. Ashforth-Frost, K.Jambunathan, Calibrating for viewing angle effect during heat transfer measurements on a curved surface, International Journal of Heat & Mass Transfer 2001(44): 2209-2223.
    26. L. Mizell, Liquid Crystals: a New Technique for Thermal Mapping of Electronic Components, in: Microelectrics 4: Fourth International Congress, Munich, 1970: 450-475.
    27. J.L. Hay, D.K. Hollingsworth, Calibration of Micro-encapsulated Liquid Crystals Using Hue Angle and a Dimensionless Temperature. Experimental Thermal and Fluid Science, 1998(18): 251-257.
    28. J.W. Baughn, M.R. Anderson, J.E. Mayhew, J.D. Wolf, Hysteresis of
    ??Thermochromic Liquid Crystal Temperature Measurement Based on Hue. Journal of Heat Transfer November 1999, vol.121 1067-1072.
    29. D. Vennemann and K.A. Butefisch, The Electron Beam Technique in Hypersonic Rarefied Gas Dynamics, European Space Agency, ESRO-RR-77.
    30. O.C. Den and C.J. Hoogendorn, Heat Transfer in Flooded Shell and Tube Evaporators, Proceedings of 5th International Heat Transfer Conference, 1997a(5): 242-248.
    31. S.V. Ekkad and J.C. Han, Detailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators, International Journal of. Heat Mass Transfer, 1997(40): 2525-37.
    32. Y. Huang, S.V. Ekkad and J.C. Han, Impingement Heat Transfer on a Target Plate with Film Holes, AIAA Journal of Thermophysics and Heat Transfer, 1998(12): 73-78.
    33. R.J. Goldstein, E.R.G. Eckert, and J.W. Ramsey, Film Cooling with Injection through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole, ASME Journal of Energy for Power, 1968(90): 384-393.
    34. R.J. Goldstein, E.R.G. Eckert, Heat Transfer and Film Cooling Following Injection through Inclined Circular Tubes, ASME Journal of Heat Transfer, 1974(122): 239-245.
    35. R.J. Goldstein, E.R.G. Eckert, V.L. Eriksen, and J.W. Ramsey, Film Cooling Following Injection through Inclined Circular Tubes, Israel Journal of Technology, 1970(8): 145-154.
    36. D.R Pedersen, E.R.G. Eckert, and R.J. Goldstein, Film Cooling with Large Density Differences between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy, ASME J. Heat Transfer, 1977(99): 620-627.
    37. H.H. Cho, B.G. Kim, and D.H. Rhee, Effect of Hole Geometry on Heat (Mass) Transfer and Film Cooling Effectiveness, Proceedings of 11th IHTC, 1998(6): 499-504.
    38. S.V. Ekkad and J.C. Han, A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements, Measurement Science and
     Technology, 2000(11): 957-968.
    39. D.N. Licu, M.J. Findlay, S. Gartshore, and M. Salcudean, Measurements of Heat Transfer Characteristics from Film Cooling Applications. ASME Paper, NO.99-GT-167.
    40. Di Ai, Pei-Pei Ding, Ping-Hei Chen, The Selection Sriterion of Injection Temperature Pair for Transient Liquid Crystal Thermography on Film Cooling Measurements, International Journal of Heat and Mass Transfer, 2001(44): 1389-1399.
    41. Ping-Hei, Pei-Pei Ding, Di Ai, An improved data reduction method for transient liquid crystal thermography on film cooling measurements. International Journal of Heat and Mass Transfer, 2001(44): 1379-1387.
    42. G. Engels and R.E. Peck, Investigation of a Quasi-Steady Liquid Crystal Technique for Film Cooling Heat Transfer Measurements. Experimental Heat Transfer, 2001(14): 181-198.
    43. M.K. Harrington, M.A. Mcwaters, etc, Full-Coverage Film Cooling with Short Normal Injections. ASME Paper, No.2001-GT-0130.
    44. A.W. Guile, R. Garwood and J. Ward, The Application of a Hue-based Liquid Crystal Technique to Determine Convective Heat Transfer Downstream of Non-Axisymmetric Circular-to-Square Expansions, Proceedings of the ASME Heat Transfer Division, 1999(HTD-364-1): 101-107.
    45. B.Y. Maiteh, B.A. Jubran, Influence of Mainstream Flow History on Film Cooling and Heat Transfer from Two Rows of Simple and Compound Angle and Compound Angle Holes in Combination, Internal Journal of Heat and Fluid Flow, 1999(20): 158-165.
    46. J.E. Sargison, S.M. Guo, M.L.G. Oldfield, A Converging Slot-Hole Film-Cooling Geometry Part 1: Low Speed Flat-Plate Heat Transfer and Loss, ASME Paper, No.2001-GT-0126.
    47. H. Nasir, S.V. Ekkad, S. Acharya, Effect of Compound Angle Injection on Flat Surface Film Cooling with Large Streamwise Injection Angle, Experimental Thermal and Fluid Science, 2001(25): 23-29.
    48. R.F. Martinez-Botas, C.H.N. Yuen, Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes, ASME Paper, No.2000-GT-243.
    49. Ping-Hei Chen, Min-Sheng Huang and Pei-Pei Ding, A Transient Method Using Liquid Crystal for Film Cooling Over a Convex Surface, International Journal of Rotating Machinery, 2001 (7): 153-164.
    50. C. Camci, B. Glezer, Liquid Crystal Thermography on the Fluid Solid Interface of Rotating Systems, Journal of Heat Transfer, 1997(119): 20-29.
    51.张曦,翁文国,张嘉锋,何世平,液晶测温测速技术在流体实验中的应用,中国科学技术大学学报,2000(30):51-55。
    52.鞠向阳,伍小平,何世平,用胶囊式液晶粒子同时测量流场的温度和速度。力学学报,1996(28):503-506。
    53.张曦,周鹏,何世平,廖光煊,应用热色液晶测量撞击壁面温度分布,实验力学,Vol.11,No.3 Sep.1996(11):245-250。
    54.唐贵明,脉冲风洞油流和液晶热图流动显示技术,宇航学报,1995(16):35-42。
    55.刘鹏,唐贵明,液晶热图技术在脉冲风洞中的应用,气动实验与测量控制,1993(3):65-69。
    56.Rafael C.Gonzalez,Richard E.Woods,阮秋琦,阮宇智等译,数字图像处理,第二版,北京:电子工业出版社,2003:220-256。
    57. D.H. Pritchard, US Color Television Fundamentals-A Review, IEEE Transactions on Consumer Electronics, 1977(CE-23): 467-478.
    58. G. Wyszecki and W. S. Stiles, Color Science, New York: John Wiley, 1967.
    59. D.E. Pearson, Transmission and Display of Pictorial Information, New York: John Wiley and Sons Inc, 1975.
    60. R. Overheim and D.L. Wagner, Light and Color, New York: John Wiley, 1982.
    61. Y. Ohta, T. Kanade and T. Sakai, Color Information for Region Segmentation in Computer Graphics and Image Processing, New York: Academic Press Inc, 1980.
    62. J. Kender, Saturation, Hue and Normalized Color: Calculation, Digitization Effects and Use, Technical Report, Department of Computer Science, Carnegie-Mellon University, 1976.
    63.DXC-390P型3CCD相机说明书,日本索尼公司,2000。
    64. Matrox Meteor-Ⅱ/Multi Channel: Installation and Hardware Reference, Matrox Electronics Systems Ltd., 2003.
    65. Mil-Lite: User Guide and Command Reference, Matrox Electronics Systems Ltd, 2003.
    66. T. V. Johns, Z. Wang, P.T. Ireland, The Use of Liquid Crystal in Aerodynamic and Heat Transfer Experiments, Optical Methods and Data Processing in Heat and Fluid Flow, 1992(4): 51-65.
    67. T.L. Chan, K. Jambunathan, T.P. Leung, S. Ashforth-frost, A Surface Temperature Calibration Method for Thermochromic Liquid Crystals Using True Color Image Processing, Proceedings of the 10th International Heat Transfer Conference, Brighton, UK, 1994(2): 201-206.
    68. D.K. Hollingsworth, A.L. Boehman, E.G. Smith, R.J. Moffat, Measurement of Temperature and Heat Transfer Coefficient Distributions in a Complex Flow Using Liquid Crystal Thermography and True Color Image Processing, ASME Paper, No. 89-HTD-123.
    69. Z. Wang, P.T. Ireland, T.V. Johns, R. Davenport, A Color Image Processing System for Transient Heat Transfer Experiments, Journal of Turbomachinery, 1996(118): 421-427.
    70. J.L. Fergason, Liquid Crystals in Nondestructive Testing, Applied Optics, 1968(7): 1729-1737.
    71. W. Herold, D. Wiegel, Problems of the Photographic Documentation of Liquid Crystalline Thermographs, Advances in Liquid Crystal Research and Applications, Pergamon Press, Oxford, 1980.
    72. Dino J. Farina, James M. Hacker, Robert J. Moffat and John K. Eaton, Illuminant Invariant Calibration of Thermochromic Liquid Crystals, Journal of Experimental Thermal Fluid Science, 1994(9): 1-12.
    73. Dae-Seong Kim, Soon-Hyun Yoon, Consideration of Oberservation Angles in Thermochromic Liquid Crystal Calibration for the Researches of Heat Transfer, 37th Heat Transfer and Fluid Mechanics Institute, California State University, Sacramento, May 31-June 1,2001.
    74. P.T. Ireland and T.V. Johns, The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals, Journal of Physics E: Instruments, 1987(20): 1195-1199.
    75. N. Akino, T. Kunugi, K. Ichimiya, K. Mitsushiro, M. Ueda, Improved Liquid Crystal Thermometry Excluding Human Color Sensation, Journal of Heat Transfer, 1989(111): 558-565.
    76.朱双东,摄影视角对热敏液晶粒子光学特性测量的影响,抚顺石油学院学报,1996(16):55—58。
    77.赵世红,丁水汀,一种利用色度标定热色液晶的方法,中国工程热物理学会学术会议论文,传热传质学,2003:918-921。
    78. D.L. Schultz, T.V. Johns, Heat Transfer Measurement in Short-Duration Hypersonic Facilities, NATO Advisory Group Aeronautical RD AGARDOGRAPH, 1973: 165.
    79. J.L. Hay, D.K. Hollingsworth, A Comparison of Trichromic Systems for Use in the Calibration of Polymer-dispersed Thermochromic Liquid Crystals, Experimental Thermal Fluid Science. 1996(12): 1-12.
    80. J.E. Sargison, S.M. Guo, M.L.G. Oldfield, A.J. Rawlinson, The Variation of Heat Transfer Coefficient, Adiabatic Effectiveness and Aerodynamic Loss with Film Cooling Hole Shape, Annals New York Academy of Sciences, 2001(934): 361-368.
    81. R.E Martinez-Botas, C.H.N. Yuen, Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes, ASME Paper, No.2000-GT-243.
    82. B.Y. Maiteh, B.A. Jubran, Influence of Mainstream Flow History on Film Cooling and Heat Transfer from Two Rows of Simple and Compound Angle Holes in Combination, Intemational Journal of Heat and Fluid Flow, 1999(20): 158-165.
    83. M. Gritsch, A. Schulz and S. Wittigs, Adiabatic Wall Effectiveness Measurements of Film Cooling Holes with Expanded Exits, ASME Journal of Turbomachinery, 1998(120): 549-556.
    84. A. Kohli, D. Bogard, Adiabatic Effectiveness thermal Fields and Velocity Fields for Film Cooling with Large Angle Injection, ASME Journal of Turbomachinery, 1997(119): 352-358.
    85. J.H. Chin, S.C. Skirvin, L.E. Hayes, and A.H. Silver, Film Cooling with Multiple Slots and Louvers-Part I: Continuous Slots, Journal of Heat Transfer, 1961(83): 281-286.
    86. S.C. Kacker, and J.H. Whitelaw, The Effect of Slot Height and Slot Turbulence Intensity on the Effectiveness of the Uniform Density, International Journal of Heat and Mass Transfer, 1967(10): 1623-1629.
    87. A.E. Samuel and P.N. Joubert, Film Cooling of an Adiabatic Flat Plat in Zero Pressure Gradient in the Presence of a Hot Mainstream and Cold Secondary Injection, ASME Paper, No.64-WA/GT-48.
    88. J.P. Hartnett, R.C. Birkebak, and E.R.G. Eckert, Velocity Distribution, Temperature Distribution, Effectiveness and Heat Transfer in Cooling of a Surface with Pressure Gradient, Journal of Heat Transfer, 1961(83): 293-298.
    89. R.J. Goldstein, E.R.G. Eckert and F. Burgraff, Effects of Hole Geometry and Density on Three Dimensional Film Cooling, International Journal of Heat and Mass Transfer, 1974(17): 595-605.
    90. H.D. Ammari, N. Hay and D. Lampard, The Effect of Density Ratio on the Heat Transfer Coefficient from a Film Cooled Flat Plate, ASME Journal of Turbomachinery, 1990(112): 444-450.
    91. N. Hay, D. Lampard and C.L. Saluja, Effect of Cooling Films on the Heat Transfer Coefficient on a Flat Plate with Zero Pressure Gradient, ASME Journal of Engineering for Gas Turbines and Power, 1985(107): 105-110.
    92. A.K. Sinha, D.G Bogard and M.E. Crawford, Film Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio, ASME Journal of Turbomachinery, 1991(113): 442-449.
    93. P.V. LeBrocq, B.E. Launder and C.H. Priddin, Discrete Hole Injection as a
     Means of Transpiration Cooling: An Experimental Study, Proceedings of the Institution of Mechanical Engineers, 1973(187): 149-157.
    94. P.M. Ligrani, S.L. Joseph, A. Ortiz, and D.L. Evans, Heat Transfer in Film-Cooled Turbulent Boundary Layers at Different Blowing Ratios as Affected by Longitudinal Vortices, Experimental Thermal and Fluid Science, 19889(1): 347-362.
    95. Y. Kamotani and Gerber, I., Experiments on a Turbulent Jet in a Crossflow. Journal of Fluid Mechnics, 1972(306): 111-114.
    96. G Bergles, A.D. Gosman and B.E. Launder, Double-Row Discrete Holes Cooling: Experimental and Numerical Study, ASME Journal of Engineering for Power. 1980(102): 498-503.
    97. Z.M. Moussa, J.W. Trischka and S. Eskinaza, The Near Field in the Mixing of a Round Jet with a Cross-Stream, Journal of Fluid Mechanics, 1977(80): 49-80.
    98. T.F. Fric, A. Roshko, Vortical Structure in the Wake of a Transverse Jet, Journal of Fluid Mechanics, 1994(279): 1-47.
    99. S.J. Cline and F.A. Mcclintock, Describing Uncertainties in Single-Sample Experiments", Mechanical Engineering, 1953(75): 3-8.
    100.D. Crabb, D.F.G Durao and J.H. Whitelaw, A Round Jet Normal to a Cross-Flow, Journal of Fluids Engineering, 1981(103): 142-155.
    101.J. Andreopoulos and W. Rodi, Experimental Investigation of Jets in a Cross Flow, Journal of Fluid Mechanics, 1984(138): 93-127.
    102.A.K. Sinha, D.G. Bogard and M.E. Crawford, Film Cooling Effectiveness of a Single Row of Holes with Variable Density Ratio, Journal of Turbomachinery, 1991(113): 442-449.
    103.W.B. Steven, W.K. Richard, and W. S. Terrence, Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects, ASME Paper, No.96-WA HT-7.
    104.C.A. Hale, M.W. Plesniak, S. Ramadhyari, Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum, Journal of Turbomachinery, 2000(122): 553-557.
    105.J.W. Ramsey and R.J. Goldstein, Interaction of a Heated Jet with a Deflecting Stream, ASME Journal of Heat Transfer, 1971(93): 365-372.
    106.N.W. Foster and D. Lampard, The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes, ASME Journal of Engineering for Power, 1980(102): 584-588.
    107.H. Kruse, Effects of Hole Geometry, Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row, Heat Transfer and Cooling in Gas Turbines, AGARD-CP-390.
    108.L.D. Stone, Film Cooling of Curved Surfaces at Low Injection Angles, M.S. Thesis, University of Minnesota, Minneapolis, MN.
    109.J.R. Pietrzyk, D.G. Bogard, and M.E. Crawford, Hydrodynamic Measurements of Jets in a Crossflow for Gas Turbine Film Cooling Applications. Journal of Turbomachinery, 1989(111): 139-145.
    110.P.M. Ligrani, S. Ciriello and D.T. Bishop, Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Stagger Rows of Compound Angle Film Cooled Holes, ASME Journal of Turbomachinery, 1992(114): 687-700.
    111.P.M. Ligrani, J.M. Wigle, S. Ciriello, and S.W. Jackson, Film Cooling Form Holes with Compound Angle Orientations: Part 1-Results Downstream of Two Staggered Rows of Holes with 3D Spanwise Spacing, ASME Journal of Heat Transfer, 1994a(116): 341-352.
    112.P.M. Ligrani, J.M. Wigle, S. Ciriello, and S.W. Jackson, Film Cooling Form Holes with Compound Angle Orientations: Part 1-Results Downstream of Two Staggered Rows of Holes with 6D Spanwise Spacing, ASME Journal of Heat Transfer, 1994b(116): 353-362.
    113.B. Sen, D.L. Schmidt, and D.G Bogard, Film Cooling with Compound Angle Holes: Heat Transfer, ASME Journal of Turbomachinery, 1989(111): 57-62.
    114.Hasan N., Acharya S., Ekkad S. V., Film Cooling From a Single Row of Cylindrical Angled Holes With Triangular Tabs Having Different Orientation, International Gas turbine and Aeroengine Congress & Exhibition.2001.
    115.D.L. Schmidt, B. Sen, D.G Bogard, Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, ASME Journal of Turbomachinery, 1996(118): 807-813.
    116.S.V. Ekkad, D. Zapata, and J.C. Han, Film Effectiveness Over a Flat Surface with Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method, ASME Journal of Turbomachinery, 1997( 119): 587-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700