岩体渗流的理论模型及其渗流参数确定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,研究较好的岩土体渗流计算模型,以及这些模型相应的参数的优选还较为困难,是制约其发展的重要因素之一。因此,研究简易与方便的计算模型及参数优化方法,对于岩土体渗流研究具有重要的意义。本文基于理论分析,采用拉普拉氏变换,最小二乘法,模拟试验细、微观分析,断裂力学理论等对岩土体渗流进行了较为全面的研究,并用新型混合遗传算法对岩土体渗流模型参数进行了优化分析,得到了一些有益的结论。
    (1) 以立方定律为基础,从理论上推导了岩体裂隙渗透系数变化量与卸荷量之间的关系公式,并以试验进行了验证,结果吻合良好。
    (2) 对试验前后的试样裂隙的发展进行了细、微观的分析,认为岩体卸荷后,岩体内部的裂纹会合并、发展、汇合,并最终形成大的裂隙,该裂隙与岩体的卸荷方向基本垂直,形成一条主控的单裂隙,亦即岩体渗流的通道,导致了岩体渗透系数的大幅度增加,是影响岩体渗流特性的重要原因之一。
    (3) 通过卸荷渗流试验,探讨了渗透系数与卸荷量之间的关系。研究表明,随着岩体的卸荷,岩体的渗透系数与卸荷量近似成一双曲线关系。随着卸荷量的增加,在达到有效卸荷量80%左右的时候,岩石的渗透系数将会产生较大增加,其结果与本文所建立的理论模型计算结果吻合良好。试验还表明,在卸荷量一定的情况下,随着孔隙水压力的加-卸循环变化,其渗透系数逐渐变小。初始有效应力越大,渗透系数下降越大。
    (4) 以立方定律为基础,在假设裂隙表面为光滑表面的同时,推导出光滑非平行裂隙中的水头分布公式,并以实例证明了本公式的实用性。
    (5) 通过拉氏变换,建立了以误差函数表示的固结方程的解,有效地消除了太沙基固结方程级数计算中的Gibbs 振荡现象。通过对比分析,得到了固结度的平方根法公式原型。采用工程上通用的最小二乘法,得到了固结系数与试验测量数据之间的关系式,为用计算机进行固结初值、终值以及固结系数的计算提供了一个较好的方法。
    (6) 针对目前各种参数优化算法易于陷入局域解的缺点,以简单遗传算法为基础,将BFGS 算法嵌入到AGA 算法中,形成了新型混合遗传算法,并对本文提出的卸荷量与渗透系数变化量关系公式中的参数进行了优化研究,取得了较好的结果。
At present, the study on the permeability model and theory, and the choice of parameters have a important effect for the development. Based theoretial studies and laboratory tests, the unloading effects on rock permeability have been depicted. Parameter optimization with a new GA algorithm. The main conclusions are as follows:
    (1) On the basic of the cubic law, a relation between permeability and the unloading stresses is suggested and is testified by triaxial experiments.
    (2) Observation on intact and cracked rock samples has been done by using SEM, microscopic method and CT technique. A single nearly axial fracture has been found in most cases.
    (3) The test shows that the relationship between the permeability and the effective normal stress is hingly nonlinear when the unloading normal stress reaches 80% of its initial valve.
    (4) By applying the cubic law and to a nonparallel smooth wedge-shape walled fracture, the distribution of pore pressure along the walls is derived and its effects testified by computing the stability of a rock slope.
    (5) The error function solutions of the one dimensional consolidation theory can eliminate the Gibbs phenomenon when the time factor is small.The time-square method is shown to be derived from this solution. It has also been shown that by means of the least square method to evalvate the coefficient of consolidation will be more appropriate.
    (6) A new GA method is suggested by the integration of the BFGS operators with AGA method and the defects of some parameter optimization method are largely eliminated. It is adopted to the parameter optimization for the permeability and ocnsolidation problem with satistactory result.
引文
[1] R. de Boer; W. Ehlers.The development of the concept of effective stresses Acta Mechanica (Acta Mech) 1990,83, pp77 -92
    [2] John A.Hudson and John P.Harrison ,Engineering Rock Mechanics, Elsevier Science Ltd, Second impression 2000.
    [3] 仵彦卿,张倬元. 岩体水力学导论. 成都:西南交通大学出版社,1995
    [4] 晏同珍. 水文工程地质与环境保护。北京:中国地质大学出版社,1994。
    [5] 张金才,张玉卓,刘天泉. 岩体渗流与煤层底板突水. 北京:地质出版社.
    [6] 景国勋. 张强. 周爱桃. 基于灰色系统理论的煤与瓦斯突出预测,中国安全科学学报,2004,14(8):18-21
    [7] 毕忠伟. 丁德馨. 地下开采对地表的破坏与防治. 安全与环境工程.2003,10(3):54-57
    [8] U.S.National committee for rock mechanics et al. Conceptual models of flow and transport in the fractured vadose zone. National academy press, 2003
    [9] 李建国,李新生,李军伟. 预测地基沉降量的新方法。土工基础,2002,16(3), pp18-20
    [10] J.Bear.李竞生等译.多孔介质流体动力学.北京:中国建筑工业出版社,1983
    [11] 陈后金. 信号与系统. 北京:北方交通大学出版社,2003.3
    [12] Edward Kamen, Bonnie Heck. 应用 Web 和 MATLAB 的信号与系统基础(第二版), 北京:电子工业出版社,2002.6
    [13] http://www.sosmath.com/fourier/fourier3/gibbs.html,2002.10.2
    [14] BRAJA M.DAS.Principles of foundation engineering (third edition). Pws publishing company, 1995
    [15] 龚晓南。高等土力学. 杭州:浙江大学出版社, 1996
    [16] 钱家欢.殷宗泽. 土工原理与计算[第二版].北京:水利电力出版社,1994
    [17] K.太沙基. 徐志英译,理论土力学. 北京:地质出版社,1960
    [18] Engineer Manual:Laboratory Soils Testing. Headguarters, Department Of The Army Office Of The Chief Of Engineers,1986
    [19] Cour F.R., Inflection point method for computed cv. Proc. ASCE,1971.No.5
    [20] Sivaram B.et al. A computation method for consolidation –coefficient. Soils and foundations, 1977, No.2
    [21] Ronald f.Scott. New method of consolidation coefficient evaluation.Joural of the soil mechnaicals and foundations division proceedings of the Americal in Society of Civil Engineers. 1961, 87(1), pp29-39
    [22] P.Habib. The Malpasset Dam failure. Engineering Geology. 1987,24,331-338
    [23] Snow, D.T,.A parallel plate model of frctured permeable media,PH.D,Thesis, Univ, Calif.Berkeley,1965
    [24] Iwai, K. 1976. Fundamental studies of fluid flow through a single fracture. Ph.D. thesis, University of California, Berkeley.
    [25] Jones, F. O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. Journal of Petroleum Technology, 1975.1, pp21–27.
    [26] Snow, D.T,.A parallel plate model of frctured permeable media,PH.D,Thesis, Univ, Calif.Berkeley,1965
    [27] Romm,E.S,. Flow characteristics of fractured rocks,Nedra,Moscow,1966
    [28] Cook N. G. W. Natural joints in rocks: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1992,29(3), pp198-223.
    [29] Maini Y. N. T. In situ hydraulic parameters in jointed rock -their measurement and interpretation. PhD thesis, University of London (Imperial College), UK,1971.
    [30] Tsang Y. W., Witherspoon P. A. Hydromechanical behaviour of a deformable rock fracture subject to normal stress. Journal of Geophysics Research, 1981, 86, pp9287-9298
    [31] Wei L. L. Numerical studies of the hydro-mechanical behaviour of jointed rocks. PhD thesis, Imperial College, University of London, UK,1992.
    [32] Louis C., Maini Y.NT., Determination of in situ hydraulic parameters in jointed rock, Rroc. 2nd Congr. ISRM, 1970, 1,pp235-245
    [33] Louis C.. Introduction a l'hydraulique desroches. Orleans, Bureau Recherches Geologique Miniers, 1974.
    [34] K.Pruess, B.Faybishenko, G.S.Bodvarsson. Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rock. Journal of Contaminant Hydrology 1999,38, pp281-322
    [35] Kelsall,P.C.Kesall, J.B.Cass, C.R.Chabannes. Evaluation of excavation-induced changes in rock permeability. Int. J. Rock Mech. Min. Sci. &Geomech. 1984,21(3), pp123-135,
    [36] Oda.M.. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses, Water research, 1986,13(22), pp1845-1856
    [37] Erichsen,C., Gekoppctlte Spannungs-Sickerstr?mungsberechnungcn von Bauwetken inklüftigem fels unter Berucksichtigung dcs Nichtilinearcn Spannung_sverschicbungsverhaltens von Trennflachen, Ver?ffentlichungen dcs Institutes f ürGrundbau, Bodcnmechanik, Felsmechanik und Verkchswasscrbau der RWTH Aachen,1987
    [38] Jakubick, A. T. and Franz, T., “Vacuum Testing of The Permeability of The Excavation Damaged Zone, “Rock Mechanics and Rock Engineering, 1993,26(2), pp.165-182.
    [39] L.J. Pyrak-Nolte, J.P. Morris. Single fractures under normal stress: The relation between fracture specfic stiness and fluid flow. International Journal of Rock Mechanics and Mining Sciences ,2000,37,pp245-262
    [40] Agust Gudmundsson. Fracture dimensions, displacements and ˉuid transport Journal of Structural Geology,2000,22, pp1221-1231
    [41] B.Indraratna, P.G.Ranjith,,J.R.Price. Two phase(air and water) flow through rock joins: analytical and experimental study. Journal of Geotechnical and geoenvironmental engineering,2003,129(10),pp918-928
    [42] 刘继山.单裂隙受正压力作用时的渗流公式。水文地质与工程地质,1987(2),pp32-33
    [43] 刘继山. 结构面力学参数与水力参数耦合关系及其应用,水文地质与工程地质,1988(2),pp7-12
    [44] 郭雪莽. 岩体的变形、稳定和渗流及其相互作用研究, 大连理工大学博士学位论文,1990
    [45] 仵彦卿. 裂隙岩体应力与渗流关系研究. 水文地质工程地质,1995,12(2),pp30-35
    [46] 窦铁生,陶振宇. 裂隙岩体水力特性的研究. 武汉水利电力大学学报.1995,28(2), pp132-136,
    [47] 陶振宇,窦铁生.关于岩石水力模型. 力学进展.1994,24(3), pp 409-417
    [48] 周瑞光, 成彬芳. 水岩相互作用下金川露天矿F1 断层泥破坏特征. 工程勘察,1996.3, pp26-29
    [49] 耿克勤, 刘光廷,陈兴华. 节理岩体的渗透系数与应变、应力的关系. 清华大学学报(自然科学版),1996,36(1),pp107-112
    [50] 耿克勤,陈风翔等. 岩体裂隙渗流水力特性的实验研究. 清华大学学报(自然科学版), 1996,36(1),pp102-106
    [51] 郑少河, 赵阳升. 三维应力作用下天然裂隙渗流规律的实验研究. 岩石力学与工程学报. 1999,18(2),pp133~136
    [52] 赵阳升,杨栋,郑少河等. 三维应力作用下岩石裂缝水渗流物性规律的实验研究. 中国科学(E辑),1999.2 pp 82-86
    [53] 赵阳升,段康廉,胡耀青等. 块裂介质岩石流体力学研究新进展. 辽宁工程技术大学学报(自然科学版)1999,18(5), pp 459-462
    [54] 刘才华,陈从新,付少兰. 二维应力作用下岩石单裂隙渗流规律的实验研究. 岩石力学与工程学报. 2002,21(8),pp1194—1198
    [55] 彭苏萍, 孟召平, 王虎等. 不同围压下砂岩孔渗规律试验研究. 岩石力学与工程学报, 2003,22(5),pp742-746
    [56] M.Oda, T.Tdakemura. Damage growth and permeability change in triaxial compresion tests of indda granite.Mechanics of Materials, 2002,34(2),pp313-331
    [57] 哈秋舲, 张永兴. 长江三峡工程岩石边坡各向异性岩体卸荷非线性力学研究. 北京:中国建筑工业出版社,1997
    [58] 哈秋舲.陈洪凯。长江三峡工程岩石边坡地下水渗流及排水研究。北京:中国建筑工业出版社,1997
    [59] 哈秋舲, 张永兴.岩石边坡工程。重庆:重庆大学出版社,1997
    [60] 哈秋舲.李建林. 长江三峡工程岩石边坡卸荷岩体宏观力学参数研究,北京:中国建筑工业出版社,1996
    [61] Jun-NO KIM,R.R.PARIZEK. Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining. International Journal of Rock Mechanics and Mining Sciences, 1997,34(8),pp1187-1199
    [62] Myer, L.. Hydromechanical and seismic properties of fractures. Proceedings of the 7th International Rock Mechanics Congress, 1991, 1,pp397–409
    [63] Gale, J. E.. The effects of fracture type (induced versus natural) on the stress-fracture closure fracture permeability relationships. Pp. 290–298 in Issues in Rock Mechanics, Proceedings of the 23rd U.S. Symposium on Rock Mechanics, R. Goodman and F. Henze, eds. New York: Society of Mining Engineers of AIME, 1982
    [64] Cook, A. M., L. R. Myer, N. G. W. Cook, and F. M. Doyle. The effect of tortuosity on flow through a natural fracture. Rock Mechanics Contributions and Challenges, Proceedings of the 31st U.S. Symposium on Rock Mechanics, W. A. Hustrulid and G. A. Johnson, eds. Rotterdam: A. A. Balkema 1990,pp:371–378
    [65] 孙培德. Sun 模型及其应用-煤层气越流气固耦合模型及可视化模拟. 杭州:浙江大学出版社,2002
    [66] 杨天鸿.岩石破裂过程的渗透特性—理论、模型与应用. 北京:科学出版社,2004
    [67] J. Liu, D. Elsworth, B.H. Brady. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. International Journal of Rock Mechanics and Mining Sciences 1999,36(3),pp581-596,
    [68] 曹树刚. 煤岩的蠕变损伤、瓦斯渗流和煤与瓦斯突出关系的研究. 重庆大学,2000
    [69] 仵彦卿.专题讲座:岩体水力学基础(二)---岩体水力学的基础理论. 水文地质工程地质,1997.1 pp24-28
    [70] 周维垣. 高等岩石力学. 北京:水利水电出出版社,1993
    [71] 张倬元,王士天,王兰生。工程地质分析原理(第二版)。北京:地质出版社,1997.11
    [72] Z.Chen, S,P.Narayan, Z.Ynag, S.S.Rahman. An experimental investigation of hydraulic brhaviour of fractures and joints in granitic rock. International Journal of rock mechanics & mining sciences. 2000,37,pp1061-1071
    [73] 哈秋舲,李建林,张永兴,刘国霖. 节理岩体卸荷非线性岩体力学. 北京:中国建筑工业出版社,1998
    [74] 陶振宇,潘别桐. 岩石力学原理与方法. 武汉:中国地质大学出版社,1991
    [75] 陈洪凯. 三峡工程永久船闸岩体渗流与排水机理研究. 重庆建筑大学博士学位论文,1996
    [76] 许光祥. 裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究。重庆大学博士学位论文,2001
    [77] 吴洪词,包太,陈华兴. 钢筋混凝土结构体系的模态遗传辩识. 工程力学增刊,2003,Vol.20(Ⅱ),pp1-5
    [78] Integrating GA with Fuzzy Rule-based System for Site Layout in Building Construction. 贵州工业大学学报,2002,31(1),pp88-93
    [79] 吴洪词,张小彬,包太.边坡开挖步序的遗传算法排定. 岩石力学与工程学报, 1998,17(5),pp565-570
    [80] 吴洪词, 包太, 张小彬, 胡兴.土本构模型的有限元—神经网络耦合模拟. 贵州工业大学学报,1999,28(2),pp95-99
    [81] 吴洪词,张小彬,包太. 岩土类材料的本构关系与计算机数值流形法模拟. 贵州工业大学学报,1998,19(2),pp23-31
    [82] Wu, Hong-Ci; Bao, Tai; Chen, Hua-Xing, etc. Updated evolutionary computation for parameter identification of RC structures. Proceedings of the 2004 Structures Congress -Building on the Past: Securing the Future. American Society of Civil Engineers, Reston, United States: 2004,pp1583-1592
    [83] Naylor,A.H, Doran,I.G.Precise determination of primary consolidation, Proc.2nd international Conf. On soil mechanics and foundation engineering, 1948,1,34,
    [84] Teves,A.S. and Moh,ZC. Compressibility of soft and medium Bangkok clays, Research report No.4, Asian institute of technology, Thailand,1968,p.117
    [85] 飞思科技产品研发中心编著. Matlab 6.5 辅助优化计算与设计.北京:电子工业出版社,2003
    [86] 王小平,曹立明. 遗传算法——理论、应有与软件实现.西安:西安交通大学出版社,2002.1
    [87] 李敏强. 遗传算法的基本理论与应用. 北京: 科学出版社, 2002.3
    [88] 玄光男, 程润伟. 遗传算法与工程优化. 北京: 清华大学出版社, 2004
    [89] 陈国良. 遗传算法及其应用. 北京: 人民邮电出版社, 1996
    [90] 李守巨,刘迎曦.王登刚.基于人工神经网络的岩体渗透系数反演方法及其工程应用。岩石力学与工程学报2002,21(4),pp479-483
    [91] 刘杰,王嫒,流体变参数反演的加速遗传算法. 坝观测与土工测试, 2001,25(6),pp24-27
    [92] 王媛.王学潮.刘杰. 裂隙岩体渗流场与应力场全耦合参数反问题. 第八次全国岩石力学与工程学术大会论文集.2004,pp376-380
    [93] RUEL V.CHURCHILL. Modern Operational Mathematics in Engineering. Mcgaw-hill book company, Inc,1944
    [94] 南京工学院数学教研组编. 工程数学.积分变换第三版) 北京:高等教育出版社,1997
    [95] Sheory, P.R. A theory for in situ stresses in isotropic and transversely isotropic rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1994,31(1), pp23-34
    [96] Everk Hoek. Rock Engineering[M]. A.A.Balkema Publishers, 2000.
    [97] 郭东屏,张石峰.渗流理论基础.西安:陕西科学技术出版社,1994
    [98] Altman, S. J., B. W. Arnold, R. W. Barnard, G. E. Barr, C. K. Ho, S. A. McKenna, and R. R. Eaton,. Flow Calculations for Yucca Mountain Groundwater Travel Time (GWTT-95). Albuquerque, N. Mex.: Sandia National Laboratories. 1996, SAND96-0819
    [99] John A.Franklin and Maurice B.Dusseault. Rock Engineering Application. Printed and bound by R.R.Donnelley & Sons Company. 1991.
    [100] 王恩志等.裂隙网络及地下水网络流数值方法研究,勘察科学技术,1991(4),pp12-16
    [101] Wittke, W., Louis, Zur, C, Berechnung des einfluses der Bergwasser-str?mung auf die Standsicherheit von B?schungen und Bauwerken in zer kluftetem Fels, proc.Intl. Cong. ISRM.,1966
    [102] Witherspoon,P.A.,Wilson,C,R.,steady state flow in rigid networks of fracture, water Resources Research,1974(2), 328-339
    [103] Lomize G. 1951. Fluid flow in fissured formation. (In Russian). In Louis, 1969
    [104] Nick Barton, Eda F. de Quadros. Joint Aperture And Roughness In The Prediction Of Flow And Groutability Of Rock Masses. Int. J. Rock Mech. & Min. Sci. 1997,34:3–4, Paper No. 2-52
    [105] Long J.C.S, Gilmour P. and Witherspoon P.A. A Model For Steady Fluid In Random Three Dimensional Networks Of Disc-Shaped Fractures. Water Resource Research.1985,21(8), 1105-1115
    [106] 万力,李定方,李吉庆. 三维渗流的多边形单元渗流模型. 水利水运科学研究,1993,4, pp347-352.
    [107] 黎水泉,徐秉业. 非线性双重孔隙介质渗流. 岩石力学与工程学报, 2000, 19(4), pp417-420
    [108] Witherspoon et al. Validity of cubic law flow fluid flow in a deformable rock fracture. Water Resource Res. 1980,16(6), pp1016-1024
    [109] 李树刚,徐精彩. 软煤样渗透特性的电液伺服试验研究. 岩土工程学报. 2001, 23(1), pp68-70
    [110] 杨天鸿,唐春安,朱万成,冯启言. 岩石破裂过程渗流与应力耦合分析. 岩土工程学报. 2001,23(4), pp489-493
    [111] 李树刚, 钱鸣高, 石平五.煤样全应力应变过程中的渗透系数—应变方程. 煤田地质与勘探, 2001,29(1),pp22-24
    [112] 许季军,张家发,徐曾和. 对荷载作用下一维渗流规律的新认识. 长江科学院院报.1999 16(2),pp35-37.
    [113] 白矛,刘天泉. 孔隙裂隙弹性理论及应用导论。北京:石油工业出版社,1999,10
    [114] Goodman, R. E.. Methods of Geological Engineering in Discontinuous Rock, West Publishing Company, St. Paul, MN,1976
    [115] Barton N., Bandis S., Bakhtar K.. Strength, deformation and conductivity coupling of rock fractures, Int. J. of Rock Mech. Min. Sic., 1985,22,pp. 121-140
    [116] Bandis, S. C., Lumsden, A. C. and Barton N. R., “Fundamentals of Rock Joint Deformation,”International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1983,20(6), pp.249-268
    [117] Jing Lanru, Yue Mab, Fang Zulie. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method. International Journal of Rock Mechanics & Mining Sciences 2001,38,pp343–355
    [118] Evert Hoek, John Bray. Rock Slope Engineering. Printed In Great Briitain By Unwin Brothers Limited. The Gresham Press, Old Working Surrey England A Member Of The Staples Printing Group 1974
    [119] Committee on Fracture Characterization and Fluid Flow. Rock fractrues and fluid flow: contemporary understanding and applications.National academy press, Washington,D,C.1996
    [120] 孙广忠. 岩体力学基础.北京:科学出版社,1983
    [121] 吴林高等著.渗流力学.上海:上海科学技术文献出版社出版发行,1996
    [122] 尹双增. 断裂、损伤理论及应用. 北京:清华大学出版社,1992
    [123] Hoek, E., C. Carranza-Torres and B. Corkum. “Hoek-Brown Failure Criterion —2002 Edition,”in NARMS-TAC 2002: Mining and Tunnelling Innovation and Opportunity, Vol. 1, pp. 267-273. R. Hammah et al., Eds. Toronto: University of Toronto Press, 2002.
    [124] 李守巨. 刘迎曦. 周承芳.岩土渗流问题反分析的非线性最小二乘法. 中国有色金属学报,1998,8(sup1),pp726-729
    [125] 王俊. 刘进宝. 韩剑. 基于人工神经网络的混凝土大坝渗透系数反演. 华北水利水电学院学报,2003,24(3),pp9-12
    [126] 魏连伟. 邵景力. 张建立. 模拟退火算法反演水文地质参数算例研究. 吉林大学学报(地球科学版).2004,34(4),pp612-616
    [127] 李庆芬. 断裂力学及其工程应用. 哈尔滨工程大学出版社1998
    [128] 任伯帜. 城市设计暴雨及雨水径流计算模型研究。重庆大学博士学位论文。2004
    [129] 席少霖,非线性最优化方法,北京: 高等教育出版社, 1992.6
    [130] 胡毓达,非线性规划。上海:高等教育出版社,1990.4
    [131] 李先炜. 岩体力学性质. 北京:煤炭工业出版社,1990
    [132] 丁卫华,仵彦卿. 三轴条件下软岩变形破坏过程的CT 图像分析. 煤田地质与勘探.2003,31(3),pp32-34
    [133] B.N.奥西波夫,李生林,张之一译. 粘土类土和岩石的强度与变形性能的本质。北京:地质出出版社,1985.9
    [134] Detournay, E. and Cheng, A.H.-D., “Fundamentals of poroelasticity,”Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, pp. 113-171, 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700