Sonic hedgehog基因对对植体周围骨缺损修复的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于肿瘤、外伤、先天性疾病或严重的牙周炎等造成的牙槽骨缺损直接影响口腔修复重建。在牙槽骨骨缺损修复过程中,新生骨形成的速度、质量和长期稳定性与口腔种植义齿修复息息相关。自体骨或异体骨移植、屏障膜技术等传统的治疗策略,在修复牙槽骨缺损方面颇有成效。然而,新生骨组织仍然难以与原始骨相提并论。基因增强型骨组织工程策略因其高效、稳定的促进骨再生,而受到越来越多的关注。骨代谢作用主要通过全身或局部的生长因子的调控。作为众多成骨因子之中的一员,音猬因子(Sonic hedgehog,Shh)能够通过骨形成蛋白(BMP)及甲状旁腺激素蛋白(PTHrP)等信号通路诱导间充质干细胞向成骨细胞分化,并在骨再生修复过程中发挥着重要的作用。本研究拟通过基因增强型骨组织工程方法,利用Shh修饰的骨髓间充质干细胞与磷酸三钙骨移植材料复合于犬牙槽骨缺损模型中,评价Shh基因在牙槽骨缺损修复中的骨再生能力。方法是构建携带Shh基因的慢病毒载体,犬骨髓间充质干细胞常规分离培养后转导Shh慢病毒载体。荧光实时定量聚合酶链式反应、蛋白免疫印迹方法检测外源Shh基因的表达情况,并通过检测碱性磷酸酶活性及成骨相关因子的表达,体外评价Shh基因促骨髓间充质干细胞成骨分化的能力。继而将转基因细胞与β-磷酸三钙材料复合,体外检测三维培养条件对细胞生物学性状、胞内成骨因子水平的影响。最终将Shh基因增强型组织工程骨移植到犬下颌骨种植体周围骨缺损区,分别于术后4周和12周通过影像学及组织形态学方法观察Shh基因增强型组织工程骨对牙槽骨缺损修复的影响。研究结果显示,Shh基因能够有效地促进牙槽骨缺损区新骨形成及血管再生,组织形态学定量分析也证实Shh处理组的新骨形成显著高于其他对照组。本研究证明利用基因增强型骨组织工程原理将Shh基因传递到骨缺损区域能够显著的促进骨再生修复,进一步推进了Shh介导的基因增强型骨组织工程方法在骨再生研究中的发展。
Alveolar bone defects resulting from trauma, tumor, congenital deformities or serious periodontitis present a challenge to prosthetic reconstruction. The speed, quality and long-term stability of new bone formation in repair of alveolar bone defects are closely related to dental implantation. Autogenous bone, allograft bone, guided bone regeneration and other traditional methods for treatment of alveolar defects have achieved acceptable outcomes. However, the new generated bone can not be compared with the original bone. Gene-enhanced tissue engineering method as an alterative has attracted more and more attention. Bone metabolism is mainly mediated through local or systemic factors. Among these factors, Sonic hedgehog (Shh) is involved in osteoblast differentiation through BMP and PTHrP signal pathways, and may play an important role in bone formation. In this study, a gene-enhanced tissue-engineering approach was used to assess bone regenerative capacity of Sonic hedgehog (Shh) - transduced mesenchymal stem cells delivered to canine alveolar bone defects in beta-tricalcium phosphate (β-TCP) matrix. The lentiviral vector-mediated Shh gene (Lenti-Shh) was constructed in this study. Canine bone marrow-derived mesenchymal stem cells (MSCs) were transduced with the Lenti-Shh vector after routine isolation and culture in vitro. The exogenous Shh gene was assessed by the reverse transcriptase-polymerase chain reaction analysis and western blot detection. Osteogenic potential of Shh-transduced MSCs was evaluated in terms of the activity of alkaline phosphatase and the mRNA expression levels of osteogenic marker genes in vitro. Thereafter, the transduced MSCs were seeded on the biodegradableβ-TCP scaffold, and this composite was cultured in a three-dimensional culture system in vitro. The canine alveolar bone defects were surgically created following implant beds preparation in beagle dogs. Finally, the gene-enhanced tissue engineering bone was introduced into the alveolar defects around dental implants. The bone regenerative capacity of the gene-enhanced tissue engineering bone was assessed radiographically and histologically at 4 and 12 weeks postimplantation. The results showed that the increased bone formation accompanied with angiogenesis was induced by Shh transgene delivery in vivo. Quantitative analysis of histological sections confirmed statistically significant amounts of bone regeneration in Shh-enhanced groups compared to controls. Our study demonstrated that Shh gene delivery to bone defects, in this case through a gene-enhanced tissue-engineering approach, resulted in significant bone regeneration. This encourages further development of the Shh gene-enhanced tissue-engineering approach for bone regeneration.
引文
1 Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes follolowing single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative 2003; 23 (4): 313-23
    2 Veis AA, Tsirlis AT, Parisis NA. Effect of autogenous harvest site location on the outcome of ridge augmentation for implant dehiscences. Int J Periodontics Restorative Dent 2004, 24 (2): 155-63.
    3 Feuille F, Knapp CI, Brunsvold MA, et al. Clinical and histologic evaluation of bone-replacement grafts in the treatment of localized alveolar ridge defects. Part 1: Mineralized freeze-dried bone allograft. Int J Periodontics Restorative Dent 2003; 23 (1): 29-35.
    4 Von Arx T, Cochran DL, Hermann JS, et al. Lateral ridge augmentation and implant placement: an experimental study evaluating implant osseointegration in different augmentation materials in the canine mandible. Int J Oral Maxillofac Implants 2001; 16 (3): 343-354.
    5 Lima LA, Fuchs-Wehrle AM, Lang NP, et al. Surface characteristics of implants influence their bone integration after simultaneous placement of implant and GBR membrane. Clin Oral Implants Res 2003, 14 (6): 669-679.
    6 Walker DA. Mandibular distraction osteogenesis for endosseous dental implants. J Can Dent Assoc 2005; 71 (3): 171-175.
    7 Kahn A, Shlomi B, Levy Y, et al. The use of autogenous block graft for augmentation of the atrophic alveolar ridge. Refuat Hapeh Vehashinayim 2003, 20 (3): 54-64.
    8 Kneser U, Schaefer DJ, Polykandriotis E, et al. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 2006; 10 (1): 7-19.
    9 Drosse I, Volkmer E, Capanna R, et al. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 2008; 39 Suppl 2: S9-20.
    10 Morris HE, Ochi S, Crum P, et al. Bone density: its influence on implant stability after uncovering. J Oral Implantol 2003, 29 (6): 263-269.
    11 Schlegel KA, Kloss FR, Kessler P, et al. Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants 2003; 18 (4): 505-511.
    12 Betz VM, Betz OB, Harris MB, et al. Bone tissue engineering and repair by gene therapy. Front Biosci 2008; 13: 833-41.
    13 Hao J, Varshney RR, Wang DA. Engineering osteogenesis and chondrogenesis with gene-enhanced therapeutic cells. Curr Opin Mol Ther 2009; 11 (4): 404-10.
    14 Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998; 16 (3): 247-52
    15 Dunn CA, Jin Q, Taba M, et al. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther 2005; 11 (2): 294-9.
    16 Spinella-Jaegle S, Rawadi G, Kawai S, et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 2001; 114 (11): 2085-94.
    17 Jemtland R, Divieti P, Lee K, et al. Hedgehogpromotes primary osteoblast differentiation and increases PTHrP mRNA expression and iPTHrP secretion. Bone 2003; 32 (6): 611–620.
    18 Levi B, James AW, Nelson ER, et al. Role of Indian hedgehog signaling in palatal osteogenesis. Plast Reconstr Surg 2011; 127 (3): 1182-90.
    19 Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 2000; 21 (4): 393-411.
    20 Bitgood MJ, McMahon AP. Hedgehog and BMP genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Dev Biol 1995; 172 (1): 126–138.
    21 Kato M, Seki N, Suqano S, et al. Identification of Sonic Hedgehog-responsive genesusing cDNA microarray. Biochem Biophys Res Comm 2001; 298 (2): 472-78.
    22 Foppiano S, Hu D, Marcucio RS. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Dev Biol 2007; 312 (1): 103-14.
    23 Benazet JD, Bischofberger M, Tiecke E, et al. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 2009; 323 (5917): 1050-3.
    24 Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 2001; 19 (3): 180-92.
    25 Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007; 11 (4): 654-69.
    26 Zippel N, Schulze M, Tobiasch E. Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotechnol 2010; 4(1): 1-22
    27 Franceschi RT. Biological approaches to bone regeneration by gene therapy. J Dent Res 2005; 84 (12): 1093-103.
    28 Sinn PL, Sauter SL, McCray PB Jr. Gene therapy progress and prospects: Development of improved lentiviral and retroviral vectors– design, biosafety, and production. Gene Ther 2005; 12(14):1089-1098.
    29 Dai J, Rabie AB, Hagg U, et al. Alternative gene therapy strategies for the repair of craniofacial bone defects. Curr Gene Ther 2004; 4 (4): 469-85.
    30 Jiang ZL, Reay D, Kreppel F, et al. Local high-capacity adenovirus-mediated mCTLA4Ig and mCD40Ig expression prolongs recombinant gene expression in skeletal muscle. Mol Ther 2001; 3 (6): 892-900.
    31 Buning H, Perabo L, Coutelle O, et al. Recent developments in adeno-associated virus vector technology. J Gene Med 2008; 10 (7): 717-33
    32 Kuznetsov YG, Victoria JG, Low A, et al. Atomic force microscopy imaging of retroviruses: human immunodeficiency virus and murine leukemia virus. Scanning2004; 26 (5): 209-16.
    33 Wiznerowicz, M, Trono, D. Harnessing HIV for therapy, basic research and biotechnology. Trends in Biotechnology 2005; 23 (1): 42-7.
    34 Cockrell, AS, Kafri, T. HIV-1 vectors: Fulfillment of expectations, further advancements, and still a way to go. Current HIV Research 2003; 1 (4), 419-39.
    35 Naldini, L. Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272 (5259): 263-7.
    36 Kafri, T, Blomer, U, Peterson, DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genetics 1997; 17 (3): 314-7.
    37 Mayoral RJ, Monticelli S. Stable overexpression of miRNA in bone marrow- derived murine mast cells using lentiviral expression vectors. Methods Mol Biol 2010; 667: 205-14.
    38 Lai Z, Brady RO. Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector. J Neurosci Res 2002; 67 (3):363-71.
    39 Blomer U, Naldini L, Kafri T, et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71 (9): 6641-9.
    40 Moreno R, Rosal M, Martinez I, et al. Restricted transgene persistence after lentiviral vector-mediated fetal gene transfer in the pregnant rabbit model. J Gene Med 2008; 10 (9): 951-64.
    41 Rossi GR, Mautino MR, Morgan RA. High-efficiency lentiviral vector-mediated gene transfer into murine macrophages and activated splentic B lymphocytes. Hum Gene Ther 2003; 14 (4): 385-91.
    42 Zhang J, Zou L, Liu Q, et al. Rapid generation of dendritic cell specific transgenic mice by lentiviral vectors. Transgenic Res 2009; 18 (6): 921-31.
    43 Ehlen HW, Buelens LA, Vortkamp A. Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 2006; 78 (3): 267-79.
    44 McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance ofhedgehog signaling. Curr Top Dev Biol 2003; 53:1-114.
    45 Edwards PC, Ruggiero S, Fantasia J, et al. Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 2005; 12 (1): 75-86.
    46 Hildebrand KA, Hiraoka H, Hart DA, et al. Exogenous transforming growth factor beta 1 alone does not improve early healing of medial collateral ligament in rabbits. Can J surg 2002; 45(5): 330-336.
    47 Sykaras N, Iacopino AM, Triplett RG, et al. Effect of recombinant human bone morphogenetic protein-2 on the osseointegration of dental implants: a biomechanics study. Clin Oral Investig 2004; 8(4): 196-205.
    48 Song K, Rao NJ, Chen ML, Huang ZJ, Cao YG. Enhanced bone regeneration with sequential delivery of basic fibroblast growth factor and sonic hedgehog. Injury 2011.
    49 Jacome A, Navarro S, Rio P, et al. Lentiviral-mediated genetic correction of hematopoietic and mesenchymal progenitor cells from Fanconi anemia patients. Mol Ther 2009; 17 (6): 1083-92.
    50 Menzel O, Birraux J, Wildhaber BE, et al. Biosafety in ex vivo gene therapy and conditional ablation of lentivirally transduced hepatocytes in nonhuman primates. Mol Ther 2009; 17 (10): 1754-60.
    51 White SM, Renda M, Nam NY, et al. Lentivirus vectors using human and simian immunode?ciency virus elements. J Virol 1999; 73 (4): 2832-40.
    52 Kaye JF, Lever AM. Nonreciprocal packaging of human immunode?ciency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation. J Virol 1998; 72 (7): 5877-85.
    53 Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93 (21):11382-8.
    54 Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1996; 15:871-5.
    55 Gruber A, Kan-Mitchell J, Kuhen K, et al. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000; 96 (4): 1327-33.
    56 Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72 (11): 8463-71.
    57 Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol 2009; 157 (2): 153-65.
    58 Barry, SC, Harder, B, Brzezinski, M, et al. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 2001; 12(9): 1103-8.
    59 Brown CY, Sadlon T, Gargett T, et al. Robust reversible gene knockdown using a single lentiviral short hairpin RNA vector. Hum Gene Ther 2010; 21(8) 1005-17.
    60 Segura, MM, Kamen, A., Garnier, A. Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 2006; 24 (3): 321-37.
    61 Karolewski, BA, Watson, DJ, Parente, MK, et al. Comparison of transfection conditions for a lentivirus vector produced in large volumes. Hum Gene Ther 2003; 14 (14): 1287-96.
    62 Loqan AC, Niqhtinqale SJ, Haas DL, et al. Factors influencing the titer and infectivity of lentiviral vectors. Hum Gene Ther 2004; 1 5(10): 976-88.
    63 Sastry, L, Johnson, T, Hobson, MJ, et al. Titering lentiviral vectors: Comparison of DNA, RNA and marker expression methods. Gene Ther 2002; 9 (17): 1155-62.
    64 Geraerts M, Willems S, Baekelandt V, et al. Comparison of lentiviral vecter titration methods. BMC Biotechnol 2006; 12(6): 34.
    65 Lizee G, Aerts, JL, Gonzales, MI, et al. Real-time quantitative reverse transcription-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 2003; 14(6): 497-507.
    66 Rochet N, Loubat A, Laugier JP, et al. Modification of gene expression induced inhuman osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute. Bone 2003; 32 (6): 602-10.
    67 Logeart-Avramoglou D, Anagnostou F, Bizios R, et al. Engineering bone: challenges and obstacles. J Cell Mol Med 2005; 9 (1): 72-84.
    68 Karnieli O, Izhar-Prato Y, Bulvik S, et al. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic modification. Stem Cells 2007; 25: 2837-44.
    69 Lee JY, Zhou Z, Taub PJ, et al. BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLos One 2011; 6 (3): e17531.
    70 70 Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2009; 218 (2): 237-45.
    71 Bennett JH, Joyner CJ, Triffitt JT, et al. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 1991; 99 ( Pt 1): 131-9.
    72 Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238 (1): 265-72.
    73 Ohgushi H, Dohi Y, Katuda T, et al. In vitro bone formation by rat marrow cell culture. J Biomed Mater Res 1996; 32 (3): 333-40.
    74 Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7 (5): 393-5.
    75 Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4): 315-7.
    76 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143-7.
    77 Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28(8):875-84.
    78 Friedenstein AJ, Piatetzky II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16 (3): 381-90.
    79 Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med 2001; 226 (6): 507-520.
    80 Caplan AI. Why the MSCs therapeutic? New data: new insight. J Pathol 2009; 217(2): 318-24.
    81 Kim SJ, Kim MR, Oh JS, et al.Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Med J 2009; 50(6):825-31.
    82 Seeger, FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007; 28 (6): 766-72.
    83 Lisignoli G, Remiddi G, Cattini L, et al. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res 2001; 42 (1): 49-58.
    84 Zhang B, Wang F, Deng L, et al. [Isolating and culturing rat marrow mesenchymal stem cells and studying their phenotypical and functional properties]. Sichuan Da Xue Xue Bao Yi Xue Ban 2003; 34 (4): 738-41.
    85 Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest 1999; 79 (4): 449-57.
    86 Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood 1997; 90 (9): 3471-81.
    87 Hinney DG, Kopen G,Isaacson RI, et al.Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice:variations in yield, growth,and differentiation. J Cell Biochem,1999; 72 (4): 570.
    88都义日,付小兵,李存保.骨髓间充质干细胞的研究进展.中国危重病急救医学2004; 16 (8): 499-501.
    89 Fortier, LA, Nixon, AJ, Williams, J. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J vet Res 1998; 59 (9): 1182-7.
    90 Pountos, I, Corscadden, D, Emery, P, et al. Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 2007; 38 Suppl 4: S23-33.
    91 Lennon, DP and Caplan, AI. Isolation of human marrow-derived mesenchymal stem cells. Exp Hematol 2006; 34(11): 1604-5.
    92 Bourzac C, Smith LC, Vincent P, et al. Isolation of equine bone marrow-derived mesenchymal stem cells: a comparison between three protocols. Equine Vet J 2010; 42 (6): 519-27.
    93 Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy 2004; 6 (4): 372-79.
    94 Tondreau T, Dejeneffe M, Meuleman N, et al. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 2008; 9: 11.
    95 Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005; 7 (6): 509-19.
    96 Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17 (1): 160-70.
    97 Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2): 211- 28.
    98 Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibity testing. Part 2:effect of ascorbic acid.β-glycerophosphate and dexamethasone on ostoeblast differentiation. Biomaterials 2000; 21 (11): 1095-1102.
    99 Jaiswal N, Haynesworth SE, Caplan A I, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997; 64 (2): 295-312.
    100 Bancroft GN, Sikavitas VI, Mikos AG. Bone tissue engineering by cell transplantation. Tissue Eng 2003; 9(3): 549-54.
    101 Caplan AI, Bruder SP. Mesenchymal stem cell: building blocks for molecular medicine in the 21st centry. Trends Mol Med 2001; 7 (6): 259-64.
    102 Babensee JE, Mclntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000; 17(5): 497-504.
    103 Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000; 21(5): 431-40.
    104 Bowen-Pope DF, Malpass TW, Foster DM, et al. Platelet-derived growth factor in vivo: levels, activity, and rate of clearance. Blood 1984; 64(2): 458-69.
    105 Mselli-Lakhal L, Guiguen F, Greenland T, et al. Gene transfer system derived from the caprine arthritis-encephalitis lentivirus. J Virol Methods2006; 136 (1-2), 177-84.
    106 Vigna E, Cavalieri S, Ailles L, et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 2002; 5 (3): 252-261.
    107 Cockrell AS, Kafri T. Gene delivery by lentivirus vector. Mol Biotechnol 2007; 36 (3): 184-204.
    108 Ohsaki K, Osumi N, Nakamura S. Altered whisker patterns induced by ectopic expression of Shh are topographically represented by barrels. Dev Brain Res 2002; 137(2): 159-70.
    109 Au P, Tam J, Fukumura D, et al. Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008; 111 (9):4551-8.
    110 Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106 (22): 2781-6.
    111 Nakamura T, Aikawa T, Iwamoto-Enomoto M, et al. Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun 1997; 237(2), 465-9.
    112 Kinto N, Iwamoto M, Enomoto-Iwamoto M, et al. Fibroblasts expressing sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Lett 1997; 404 (2-3): 319-23.
    113 Yuasa T, Kataoka H, Kinto N, et al. Sonic Hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol 2002; 193(2): 225-32.
    114 Alborzi A,Mac-K G,Lackin CA,et al. Endochondral and intramembranous fetal bone development:osteoblastic cell proliferation, and expression of alkaline phosphatase, m-twist, and histone H4. J Craniofac Genet Dev Biol 1996; 16 (2): 94-101.
    115栗向东,胡蕴玉. PcDNA3-hBMP2转染对成纤维细胞生物学性状的影响.中华外科杂志2001;39(4):320-324.
    116 Hirata K, Tsukazaki T, Kadowaki A, et al. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone 2003; 32 (5): 502-12.
    117 Jung MR, Shim IK, Kim ES, et al. Controlled release of cell-permeable gene complex from poly (ls-lactide) scaffold for enhanced stem cell tissue engineering. J Control Release 2011.
    118 Goldstein SA. Tissue engineering: functional assessment and clinical outcome. Ann N Y Acad Sci 2002; 961: 183-92.
    119 Xie C, Reynolds D, Awad H, et al. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering.Tissue Eng 2007; 13:435-445.
    120韩祥永,张富强,傅远飞,陈德敏.用于犬剩余牙槽嵴重建的个性化β-磷酸三钙支架的制备与性能研究.上海口腔医学2008; 17 (1): 51-54.
    121周爽英,沙月琴,张刚.应用纯相β-磷酸三钙治疗牙周炎骨病损的临床观察.现代口腔医学杂志2005; 19 (1): 29-30.
    122 Lange T, Schilling AF, Peter F, et al. Size dependent induction of proinflammatory cytotoxicity of particulate beta-tricalciumphosphate in vitro. Biomaterials 2011; 32 (17): 4067-75.
    123 Artzi Z, Weinreb M, Givol N, et al. Biomaterial resorption rate and healing site morphology of inorganic bovine bone and beta-tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants 2004; 19 (3): 357-68.
    124 Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004; 25 (6): 987-94.
    125 Zerbo IR, Bronckers AL, Lange G, et al. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 2005; 26 (12): 1445-51
    126 Plenk H, Lederer J. Histomorphology of bone regeneration after sinus floor elevation with two types of TCP granulate - a case report. Zeitschrift Fur Orale Implantologie 2005; 32-38.
    127 Soucacos PN, Johnson EO, Babis G. An update on recent advances in bone regeneration. Injury 2008; 39 Suppl 2: S1-4.
    128 Breibart AS, Grande DA, Mason JM, et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced rerovirally with the BMP-7 gene. Ann plast surg 1999; 42 (5): 488-95
    129 Steinert AF, Palmer GD, Capito R, et al. Genetically enhanced engineering of meniscustissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng 2007; 13 (9): 2227-37
    130 Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 2005; 94: 1-22.
    131 Doll B, Sfeir C, Winn S, et al. Critical aspects of tissueengineered therapy for bone regeneration. Crit Rev Eukaryot Gene Expr 2001; 11(1-3):173 -198.
    132 Alden, TD, Beres EJ, Laurent JS, et al. The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J Craniofacial Surg 2000; 11(1): 24-30.
    133 Hao W, Dong J, Jiang M, et al. Enhanced bone formation in large segment radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int Orthop 2010; 34(8): 1341-9.
    134 Cohen MM. The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 2006; 140 (23): 2646-706.
    135 Rudert M. Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs 2002; 171 (4): 229-40.
    136 Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990; 1 (1): 60-8.
    137 Schwarz F, Rothamel D, Herten M, et al. Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs. Clin Oral Implant Res 2008; 19(4): 402-15.
    138 UW Jung, HI Moon, C Kim, et al. Evaluation of different grafting materials in three-wall intra-bony defects around dental implants in beagle dogs. Current Applied Physics 2005; 507-511.
    139 Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp 2010; 58(2): 107-19.
    140 Senqupta S, Ulasov IV, Thaci B, et al. Enhanced Transduction and Replication ofRGD-Fiber Modified Adenovirus in Primary T Cells. PLos One 2011; 6 (3): e18091.
    141 Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80 (1-2): 148-58.
    142 Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314 (5796): 126-9.
    143 Manilla P, Rebello T, Afable C, et al. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 2005; 16(1):17-25.
    144 Themis M, Waddington SN, Schmidt M, et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 2005; 12 (4): 763-71.
    145 Straface G, Aprahamian T, Flex A, et al. Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med 2008; 13(8): 2424-35.
    146 Pola R, Ling LE, Silver M, et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 2001; 7(6): 706-11.
    147 Lawson, ND, Vogel, AM, and Weinstein, BM. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 2002; 3(1): 127-36.
    148 Dohle E, Fuchs S, Kolbe M, et al. Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A 2010; 16(4): 1235-7.
    149 Fujii T, Kuwano. Sonic Hedgehog Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cell Dev Biol Anim 2010; 46 (6): 487-91.
    150 Soleti R, Benameur T, Porro C, et al. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 2009; 30 (4): 580-8.
    151 Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004; 22 (7): 354-62.
    152 Fujii T, Ueno T, Kagawa T, Sakata Y, Sugahara T. Comparison of bone formation ingrafted periosteum harvested from tibia and calvaria. Microsc Res Tech 2006; 69 (7): 580-4.
    153 Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; 205:299-308.
    154 Blanquaert F, Saffar JL, Colombier ML, et al. Heparan-like molecules induce the repair of skull defects. Bone 1995; 17(6):499-506.
    155 Bosch C, Melsen B, Vargervik K. Importance of the critical-size bone defect in testing bone-regenerating materials. J Craniofac Surg 1998; 9(4): 310-316.
    156 Botticelli D, Berglundh T, Lindhe J. The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants. An experimental study in the dog. Clin Oral Implants Res 2004; 15(3):285-92.
    157 Korbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant 2003; 32 Suppl 1: S23-4
    158 Sylvester KG, Longaker MT. Stem cells: review and update. Arch Surg 2004; 139(1): 93-9.
    159 Jankowski RJ, Deasy BM, Huard J. Muscle-derived stem cells. Gene Ther 2002; 9 (10): 642-7.
    160 Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24 (5): 1294-301.
    161 Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 2001; 3 (4): 449-61.
    162 Mylonas D, Vidal MD, De Kok IJ, Moriarity JD, Cooper LF. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. J Prosthodont 2007; 16 (6): 421-30.
    163 Batorsky A, Liao J, Lund AW et al. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol Bioeng 2005; 92(4): 492-500.
    164 Hao W, Hu YY, Wei YY, et al. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Cells Tissues Organs 2008; 187(2): 89-102.
    165 Murray PE, About I, Franquin JC, et al. Restorative pulpal and repair responses. J Am Dent Assoc 2001; 132(4): 482-91.
    166 Cicconetti A, Sacchetti B, Bartoli A, Michienzi S, Corsi A, Funari A, et al. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104 (5): 618 e1-12.
    167 Sumner DR, Turner TM, Cohen M, et al. Aging does not lessen the effectiveness of TGFβ2-enhanced bone regeneration. Bone Miner Res 2003; 18(4):730-6.
    168 Ellsworth JL, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage2002; 10(4): 08-20.
    169 McCullough KA, Waits CA, Garimella R, et al. Immunohistochemical localization of bone morphogenetic proteins (BMPs) 2, 4, 6, and 7 during induced heterotopic bone formation. J Orthop Res 2007; 25(4):465-72.
    170 Zachos T, Diggs A, Weisbrode S, et al. Mesenchymal stem cell-mediated gene deliveryof bone morphogenetic protein-2 in an articular fracture model. Mol Ther 2007; 15(8):1543-50.
    171 Chung VH, Chen AY, Kwan CC, et al. Mandibular alveolar bony defect repair using bone morphogenetic protein 2-expressing autologous mesenchymal stem cells. J Craniofac Surg 2011; 22 (2): 450-4.
    172 Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. Evaluation of the adeno-associated virus vector in experimental models of articular cartilage disorders, periprosthetic osteolysis and bone healing. Acta Orthop Suppl 2007; 78(325): 1-64.
    173 Pieri F, Lucarelli E, Corinaldesi G, et al. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg 2009; 67 (2): 265-72.
    174 Kleinheinz J, Stratmann U, Joos U, et al. VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg 2005; 63 (9): 1310-6.
    175 Chang PC, Cirelli JA, Jin Q, et al. Adenovirus Encoding Human Platelet-Derived Growth Factor-B Delivered to Alveolar Bone Defects Exhibits Safety and Biodistribution Profiles Favorable for Clinical Use. Hum Gene Ther 2009; 20(5): 486-96.
    176 Yan MN, Dai KR, Tang TT, et al. Reconstruction of peri-implant bone defects using impacted bone allograft and BMP-2 gene-modified bone marrow stromal cells. J Biomed Mater Res A 2010; 93(1): 304-13.
    177 Steinhardt Y, Aslan H, Regev E, et al. Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng Part A 2008; 14 (11): 1763-73.
    178 Zhang Y, Shi B, Li C, et al. The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. J Control Release 2009; 136(3): 172-8.
    179 Chen JC, Winn SR, Gong X, et al. rhBMP-4 gene therapy in a juvenile canine alveolardefect model. Plast Reconstr Surg 2007; 120 (6): 1503-9.
    180 Zhang C, Wang KZ, Qiang H, et al. Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 2010; 31(7):821-30.
    181 Peng H, Usas A, Gearhart B, et al. Development of a self-inactivating tet-on retroviral vector expressing bone morphogenetic protein 4 to achieve regulated bone formation. Mol Ther 2004; 9(6): 885-94.
    182 He N, Xiao Z, Yin T, et al. Inducible expression of Runx2 results in multiorgen abnormalities in mice. J Cell Biochem 2011; 112(2): 653-65.
    183 Potier E, Ferreira E, Andriamanalijaona R, et al. Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 2007; 40(4): 1078-87.
    184 Chang SH, Hsu YM, Wang YJ, et al. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci Mater Med 2009; 20(1): 23-31.
    185 Chesnutt BM, Yuan Y, Buddington K, et al. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 2009; 15(9): 2571-79.
    186 Petrie C, Tholpady S, Ogle R, et al. Proliferative capacity and osteogenic potential of novel dura mater stem cells on poly-lactic-co-glycolic acid. J Biomed Mater Res A 2008; 85(1): 61-71.
    187 Kretlow JD, Young S, Klouda L, et al. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater Deerfield 2009; 21(32-33): 3368-93.
    188 Schek RM, Taboas JM, Hollister SJ, et al. Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofac Res 2005; 8(4): 313-9.
    189 Dhol WS, Reyneke JP, Tompson B, et al. Comparison of titanium and resorbable copolymer fixation after Le Fort I maxillary impaction. Am J Orthod DentofacialOrthop 2008; 134 (1): 67-73.
    190 Martuscelli R, Maltarello MC, Maraldi NM, et al. Histological and clinical survey of polylactic-polyglycolic acid and dextrane copolymer in maxillary sinus lift: a pilot in vivo study. Int J Immunopathol Pharmacol 2008; 21 (3): 687-95.
    191 Sendemir-Urkmez A, Jamison RD: The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res A 2007; 81(3): 624-33.
    192 Hayashi M, Takahashi T, Kawaguchi K, et al. Connexin 43 expression at an early stage in dog mandibles byβ-TCP. Dent Mater J 2011; 30(1): 58-65.
    193 Ciocca L, De Crescenzio F, Fantini M, et al. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph 2009; 33 (1): 58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700