人牙周膜成纤维细胞对口腔常用抗生素的跨膜转运
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来多项研究表明,牙周致病菌在宿主组织细胞的胞内感染使牙周炎的治疗复杂化。具有合适的细胞内药代动力学和细胞内药效学性质的治疗药物的筛选非常重要。另外,有研究者提出通过根管与牙周组织的通道,使药物进入牙周组织局部以及全身的假说,这需要了解口腔组织、特别是牙周膜组织细胞对各种药物的转运。目前还未见人牙周膜成纤维细胞对抗生素转运的研究的报道,因此本课题系统研究了人牙周膜成纤维细胞对8种口腔常用抗生素的吸收、转运,为局部用药的筛选和通过根管局部及全身给药假说提供实验依据。本研究共分为八部分:
     实验一HPDLF对甲硝唑的跨膜转运
     目的:研究HPDLF对甲硝唑的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:正畸拔除的前磨牙利用组织块法原代培养HPDLF,常规培养MC3T3-E1细胞;采用免疫组化鉴定细胞类型,描绘生长曲线;细胞经甲硝唑孵育,超声破碎,高效液相色谱法测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:成功原代培养HPDLF;HPDLF波形丝蛋白染色阳性,MC3T3-E1细胞骨钙素染色阳性。HPDLF和MC3T3-E1细胞的生长曲线近似“S”形,前者的生长速度慢于后者。20μg/ml的甲硝唑孵育5、10分钟,HPDLF胞内均不能检测出药物存在,而MC3T3-E1细胞药物含量分别是0.165±0.034ng/μg、0.206±0.065ng/μg。结论:HPLC可以用于甲硝唑含量的测定。甲硝唑不存在HPDLF的跨膜转运,MC3T3-E1细胞对甲硝唑则存在跨膜转运。
     实验二HPDLF对替硝唑的跨膜转运
     目的:研究HPDLF对替硝唑的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:替硝唑溶液孵育HPDLF和MC3T3-E1细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:100μg/ml替硝唑孵育1、5、10分钟时HPDLF胞内药物含量分别是0.067±0.049ng/μg、0.099±0.024ng/μg、0.078±0.015ng/μg,200μg/ml替硝唑孵育5分钟时HPDLF胞内替硝唑含量是0.142±0.011ng/μg;100μg/ml替硝唑孵育5分钟时,MC3T3-E1细胞胞内替硝唑含量是0.082±0.027ng/μg。结论:HPLC可以用于细胞内替硝唑的测定。替硝唑存在HPDLF的跨膜转运,这种转运与细胞外药物浓度有关,并存在着细胞差异。
     实验三HPDLF对盐酸四环素的跨膜转运
     目的:研究HPDLF对盐酸四环素的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:盐酸四环素溶液孵育HPDLF和MC3T3-E1细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:10μg/ml四环素孵育1、5、10分钟时HPDLF胞内药物含量分别是0.192±0.008ng/μg、0.212±0.082ng/μg、0.620±0.075ng/μg(p<0.01);20μg/ml四环素孵育5分钟时HPDLF胞内含量是0.503±0.056ng/μg,显著高于10μg/ml组数据(p<0.05);10μg/ml四环素孵育5分钟时,MC3T3-E1细胞胞内含量是0.666±0.560ng/μg。结论:HPLC可以用于细胞内盐酸四环素的测定。盐酸四环素存在HPDLF的跨膜转运,这种转运与细胞外药物浓度有关,并存在着细胞差异。
     实验四HPDLF对米诺环素的跨膜转运
     目的:研究HPDLF对米诺环素的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:米诺环素溶液孵育细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:20μg/ml米诺环素孵育1、5、10分钟时HPDLF胞内含量分别是1.661±0.520ng/μg、1.949±0.415ng/μg、2.154±0.728ng/μg(p<0.05),40μg/ml米诺环素孵育5分钟时HPDLF胞内含量是2.155±0.728ng/μg;20μg/ml米诺环素孵育1、5、10分钟时MC3T3-E1胞内含量分别是1.532±0.396ng/μg、3.331±0.538ng/μg、2.811±0.798ng/μg(p<0.05),10μg/ml、40μg/ml米诺环素孵育5分钟时MC3T3-E1细胞内含量是0.751±0.265ng/μg、3.188±0.636ng/μg(p<0.01)。结论:HPLC可以用于细胞内米诺环素的测定。米诺环素存在HPDLF的跨膜转运,这种转运与细胞外药物浓度有关,并存在着细胞差异。
     实验五HPDLF对罗红霉素的跨膜转运
     目的:研究HPDLF对罗红霉素的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:罗红霉素溶液孵育HPDLF和MC3T3-E1细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:20μg/ml的罗红霉素孵育HPDLF及MC3T3-E1细胞1、5、10分钟时均无法检测出胞内药物的存在,40μg/ml的药物作用5分钟,同样无法检测。结论:HPLC可以用于罗红霉素含量的测定。在本实验条件下,不能检测出HPDLF以及MC3T3-E1细胞对罗红霉素的跨膜转运。
     实验六HPDLF对诺氟沙星的跨膜转运
     目的:研究HPDLF对诺氟沙星的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:诺氟沙星溶液孵育HPDLF和MC3T3-E1细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:10μg/ml诺氟沙星孵育1、5、10分钟时HPDLF胞内药物含量分别是0.095±0.032ng/μg、0.096±0.052ng/μg、0.104±0.078ng/μg;10μg/ml诺氟沙星孵育1、5、10分钟时MC3T3-E1胞内药物含量分别是0.033±0.018ng/μg、0.034±0.013ng/μg、0.082±0.029ng/μg(p<0.05),20μg/ml诺氟沙星孵育5分钟时MC3T3-E1细胞内药物含量是0.070±0.057ng/μg。结论:HPLC可以用于细胞内诺氟沙星的测定。HPDLF对诺氟沙星存在跨膜转运,这种转运与细胞外药物浓度有关,还存在着细胞差异。
     实验七HPDLF对盐酸林可霉素的跨膜转运
     目的:研究HPDLF对盐酸林可霉素的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:盐酸林可霉素溶液孵育HPDLF和MC3T3-E1细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:10μg/ml的盐酸林可霉素孵育HPDLF及MC3T3-E1细胞1、5、10分钟时均无法检测出胞内药物的存在,20μg/ml的药物作用5、10分钟,同样无法检测。结论:HPLC可以用于盐酸林可霉素的测定。本实验条件下不能检测出HPDLF以及MC3T3-E1细胞对盐酸林可霉素的跨膜转运。
     实验八HPDLF对头孢噻肟钠的跨膜转运
     目的:研究HPDLF对头孢噻肟钠的跨膜转运,为根管全身给药假说提供实验依据。材料与方法:头孢噻肟钠溶液孵育HPDLF和MC3T3-E1细胞,超声破碎细胞后,HPLC测定不同时间点的胞内药物含量,考马斯亮蓝法测定细胞蛋白总量。结果:100μg/ml的头孢噻肟钠孵育1、5、10分钟时HPDLF胞内含量分别是0.104±0.030ng/μg、0.151±0.007ng/μg、0.161±0.046ng/μg;孵育5分钟时,MC3T3-E1胞内含量0.096±0.027ng/μg。结论:HPLC可以用于细胞内头孢噻肟钠的测定。头孢噻肟钠存在HPDLF的跨膜转运,这种转运存在着细胞差异。
     上述研究结果表明,高效液相色谱法测量稳定、分离度好、精密度高、重复性好,可以用于上述多种药物含量的检测。利用该方法,可检测到人牙周膜成纤维细胞对替硝唑、盐酸四环素、米诺环素、诺氟沙星、头孢噻肟钠存在跨细胞膜的转运,而对甲硝唑、罗红霉素和盐酸林可霉素不存在跨细胞膜的转运。人牙周膜成纤维细胞对药物的转运与细胞外液的药物浓度有关。人牙周膜成纤维细胞与MC3T3-E1细胞系对同一种药物的转运存在差异,这表明药物的跨细胞膜转运存在细胞类型和/或种属差异性。本研究在一定程度上证实了根管全身给药假说的可行性。另外,选择能够转运至胞内的药物更有利于牙周炎的治疗。
The invasion of bacteria to host cells made it more difficult to deal with the periodontal dieases. The concentrations of some medicine in gingival crevicular fluid were higher than those in serum. To verify the hypothesis of delivering medicine to the periodontium and whole body through the root canal, we carried out experiments to study the biological transport of 8 kinds of antibiotics by human periodontal ligaments fibroblasts (HPDLF). There are:
    Part 1: the biological transport of metronidazole by HPDLF
    Objective: To investigate biological transport of metronidazole by HPDLF.
    Methods: Premolars extracted for orthodontic reasons were used in this study. HPDLF were primarily cultured by tissue explant. HPDLF were incubated in metronidazole solutions. After disrupting cells by supersonic wave, the intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: HPDLF were primarily cultured successfully and passaged stably. The intracellular metronidazole content of HPDLF couldn't be detected, incubated in 20 μg/ml antibiotics solution. The MC3T3-E1 cells intracellular contents were 0.165±0.034 ng/μg, 0.206±0.065 ng/μg at 5 min, 10 min respectively.
    Conclusion: HPLC is an accurate, sensitive method for measurement of the intracellular antibiotics. Metronidazole can't be transported by HPDLF. The transport is cell specific.
    Part 2: the biological transport of tinidazole by HPDLF
    Objective: To investigate biological transport of tinidazole by HPDLF. Methods: HPDLF and MC3T3-E1 cells were incubated in antibiotics solutions. The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The HPDLF intracellular contents were 0.067±0.049 ng/μg, 0.099±0.024 ng/μg, 0.078±0.015 ng/μg at 1min, 5 min, 10 min respectively, incubated in 100 μg/ml antibiotics solution. The HPDLF intracellular content was 0.142±0.011 ng/μg at 5 min, incubated in 200 μg/ml antibiotics solution. The MC3T3-E1 intracellular content was 0.082±0.027 ng/μg at 5 min, incubated in 100 μg/ml tinidazole solution.
    Conclusion: HPLC is an accurate, sensitive method for measurement of the intracellular antibiotics. Tinidazole can be transported by HPDLF. The transport is time-dependent, concentration-dependent and cell specific.
    Part 3: the biological transport of tetracycline hydrochloride by HPDLF
    Objective: To investigate biological transport of tetracycline hydrochloride by HPDLF. Methods: HPDLF and MC3T3-E1 cells were incubated in antibiotics solutions. The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The HPDLF intracellular contents were 0.192±0.008 ng/μg, 0.212±0.082 ng/μg, 0.620±0.075 ng/μg at 1min, 5 min, 10 min respectively, incubated in 10 μg/ml antibiotics solution (p<0.01). The HPDLF intracellular content was 0.503±0.056 ng/μg at 5 min , incubated in 20 μg/ml antibiotics solution and was siginificantly higher than that of 10 μg/ml group (p<0.05). The MC3T3-E1 intracellular content was 0.666±0.560 ng/μg at 5 min, incubated in 10 μg/ml antibiotics solution.
    Conclusion: HPLC is an accurate, sensitive method for measurement of the intracellular antibiotics. Tetracycline hydrochloride can be transported by HPDLF. The transport is time-dependent, concentration-dependent and cell specific.
    Part 4: the biological transport of minocycline by HPDLF
    Objective: To investigate biological transport of minocycline by HPDLF.
    Methods: HPDLF and MC3T3-E1 cells were incubated in minocycline solutions. The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The HPDLF intracellular contents were 1.661±0.520 ng/μg, 1.949± 0.415 ng/μg, 2.154± 0.728 ng/μg at 1min, 5 min, 10 min respectively, incubated in 20 μg/ml antibiotics solution (p<0.05). The HPDLF intracellular content was 2.155±0.728 ng/μg at 5 min, incubated in 20 μg/ml antibiotics solution. The MC3T3-E1 intracellular contents were 1.532±0.396 ng/μg, 3.331±0.538 ng/μg, 2.811±0.798 ng/μg at 1min, 5 min, 10 min respectively, incubated in 20 μg/ml antibiotics solution (p<0.05). The MC3T3-E1 intracellular contents were 0.751±0.265 ng/μg, 3.188±0.636 ng/μg at 5 min respectively, incubated in 10 μg/ml and 40μg/ml antibiotics solution (p<0.01). Conclusion: HPLC is an accurate, sensitive method for measurement of the intracellular antibiotics. Minocycline can be transported by HPDLF. The transport is time-dependent, concentration-dependent and cell specific.
    Part 5: the biological transport of roxithromycin by HPDLF
    Objective: To investigate biological transport of roxithromycin by HPDLF.
    Methods: HPDLF and MC3T3-E1 cells were incubated in antibiotics solutions. The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The intracellular antibiotics content of HPDLF and MC3T3-E1 cells couldn't be detected at 1min, 5 min, 10 min, incubated in 20 μg/ml and 40 μg/ml antibiotics solutions.
    Conclusion: HPLC is an accurate, sensitive method for measurement of roxithromycin. With the limitations, roxithromycin can't be detected of transport by HPDLF.
    Part 6: the biological transport of norfloxacin by HPDLF
    Objective: To investigate biological transport of norfloxacin by HPDLF.
    Methods: HPDLF and MC3T3-E1 cells were incubated in norfloxacin solutions. The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The HPDLF intracellular contents were 0.095±0.032 ng/μg, 0.096±0.052 ng/μg, 0.104±0.078 ng/μg at 1min, 5 min, 10 min respectively, incubated in 10 μg/ml antibiotics solution. The MC3T3-E1 intracellular contents were 0.033±0.018 ng/μg, 0.034±0.013 ng/μg, 0.082±0.029 ng/μg at 1min, 5 min, 10 min respectively, incubated in 10 μg/ml antibiotics solution (p<0.05). The MC3T3-E1 intracellular contents were 0.070±0.057 ng/μg at 5 min , incubated in 20 μg/ml antibiotics solution. Conclusion: HPLC is an accurate, sensitive method for measurement of the intracellular antibiotics. Norfloxacin can be transported by HPDLF. The transport is time-dependent, concentration-dependent and cell specific.
    Part 7: the biological transport of lincomycin hydrochloride by HPDLF
    Objective: To investigate biological transport of lincomycin hydrochloride by HPDLF.
    Methods: HPDLF and MC3T3-E1 cells were incubated in antibiotics solutions. The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The intracellular antibiotics content of HPDLF and MC3T3-E1 cells couldn't be detected at 1min, 5 min, 10 min , incubated in 10 μg/ml and 20 μg/ml antibiotics solutions. Conclusion: HPLC is an accurate, sensitive method for measurement of lincomycin hydrochloride. With the limitations, lincomycin hydrochloride can't be detected of transport by HPDLF.
    Part 8: the biological transport of cefotaxime sodium by HPDLF
    Objective: To investigate biological transport of cefotaxime sodium by HPDLF.
    Methods: HPDLF and MC3T3-E1 cells were incubated in antibiotics solutions.
    The intracellular antibiotics contents were measured by HPLC and the cell total protein was measured by Bradford protein assay. Results: The HPDLF intracellular contents were 0.104±0.030 ng/μg, 0.151±0.007 ng/μg, 0.161±0.046 ng/μg at 1min, 5min, 10min respectively, incubated in 100 μg/ml antibiotics solution. The MC3T3-E1 intracellular content was 0.096±0.027 ng/μg at 5 min, incubated in 100 μg/ml antibiotics solution. Conclusion: HPLC is an accurate, sensitive method for measurement of the intracellular antibiotics. Cefotaxime sodium can be transported by HPDLF. The transport was time-dependent, cell specific.
引文
1. Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit Rev Oral Biol Med, 1997; 8(4): 389-409.
    2. Amano A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol, 2003; 74(1): 90-96.
    3. Amornchat C, Rassameemasmaung S, Sripairojthikoon W, et al. Invasion of Porphyromonas gingivalis into human gingival fibroblasts in vitro. J Int Acad Periodontol, 2003; 5 (4): 98-105.
    4. Eick S, Pflster W. Efficacy of antibiotics against periodontopathogenic bacteria within epithelial cells: An in vitro study. J Periodontol, 2004; 75 (10): 1327-1334.
    5. Van Bambeke F, Barcia-Macay M, Lemaire S, et al. Cellular pharmacodynamics and pharmacokinetics of antibiotics: Current views and perspectives. Curr Opin Drug Discov Devel, 2006; 9(2): 218-230.
    6. Tozum TF, Yildirim A, Caglayan F, et al. Serum and gingival crevicular fluid levels of ciprofloxacin in patients with periodontitis. J Am Dent Assoc, 2004; 135(12): 1728-1732.
    7. Lavda M, Clausnitzer CE, Walters JD. Distribution of systemic ciprofloxacin and doxycycline to gingiva and gingival crevicular fluid. J Periodontol, 2004; 75 (12): 1663-1667.
    8.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    9.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    10. Johnson JD, Hand WL, Francis JB, et al. Antibiotic uptakeby human alveolar macrophages. J Lab Clin Med, 1980; 95(3): 429-439.
    11. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31 (12): 1904-1908.
    12. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987, 31 (10): 1553-1557.
    13. Hand WL, King-Thompson NL. The entry of antibiotics into human monocytes. J Antimicrob Chemother, 1989, 23(5): 681-689.
    14. Gladue RP, Snider ME. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother, 1990; 34(6): 1056-1060.
    15.Pascual A, Ballesta S, Garcia I, et al. Uptake and intracellular activity of ketolide HMR 3647 in human phagocytic and non-phagocytic cells. Clin Microbiol Infect, 2001; 7(2): 65-69.
    16. Brayton JJ, Yang Q, Nakkula RJ, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002, 73(11): 1267-1272.
    17. Yang Q, Nakkula RJ, Walters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002, 81 (12): 836-840.
    1. Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit Rev Oral Biol Med, 1997; 8(4): 389-409.
    2. Hanes PJ, Purvis JP. Local anti-infective therapy: pharmacological agents. A systematic review. Ann Periodontol, 2003; 8(1): 79-98.
    3.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    4.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    5. Jones BM, Geary I, Alawattegama AB. In-vitro and in-vivo activity of metronidazole against Gardnerella vaginalis, Bacteroides spp. and Mobiluncus spp. in bacterial vaginosis. J Antimicrob Chemother, 1985; 16 (2): 189-197.
    6.周爽英,徐莉,段清宇,等.局部应用甲硝唑辅助治疗深牙周袋的疗效分析.现代口腔医学杂志,2001;15(4):276-278.
    7. Zee KY, Lee DH, Corbet EF. Repeated oral hygiene instructions alone, or in combination with metronidazole dental gel with or without subgingival scaling in adult periodontitis patients: a one-year clinical study. J Int Acad Periodontol, 2006; 8(4): 125-135.
    8. Brayton JJ, Yang Q, Nakkula RJ, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002; 73 (11): 1267-1272.
    9. Yang Q, Nakkula R J, Walters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002, 81 (12): 836-840.
    10.司徒镇强,吴军正.细胞培养.西安:世界图书出版公司,1996:188-189.
    11. Saito S, Ngan P, Saito M, et al. Interactive effects between cytokines on PGE production by human periodontal ligament fibroblasts in vitro. J Dent Res, 1990; 69(8): 1456-1462.
    12. Van Bambeke F, Barcia-Macay M, Lemaire S, et al. Cellular pharmacodynamics and pharmacokinetics of antibiotics: Current views and perspectives. Curr Opin Drug Discov Devel, 2006; 9(2): 218-230.
    13.顾宜,蒋永培,赵德化.替硝唑和甲硝唑的人体药动学对比研究.中国药学杂志,2000,35(5):323-326.
    14. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31(10): 1553-1557.
    15. Hand WL, King-Thompson NL. The entry of antibiotics into human monocytes. J Antimicrob Chemother, 1989; 23(5): 681-689.
    16. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31(12): 1904-1908.
    17.国家药典委员会编.中华人民共和国药典 2005年版 二部.北京:化学工业出版社,2005:123-126.
    18. Monkkonen H, Tormalehto S, Asunmaa K, et al. Cellular uptake and metabolism of clodronate and its derivatives in Caco-2 cells: a possible correlation with bisphosphonate-induced gastrointestinal side-effects. Eur J Pharm Sci, 2003; 19(1): 23-29.
    19. Bounds S J, Nakkula R, Waiters JD. Fluoroquinolone transport by human monocytes: characterization and comparison to other cells of myeloid lineage. Antimicrob Agents Chemother, 2000; 44(10): 2609-2614.
    20. Sudo H, Kodama HA, Amagai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol, 1983; 96(1): 191-198.
    21. Kinane DF. Local antimicrobial therapies in periodontal disease. Ann R Australas Coll Dent Surg, 2000; 15 (1): 57-60.
    1. Sandros J, Papapanou P, Dahlen G. Porphyromonas gingivalis invades oral epithelial cells in vitro. J Periodontal Res, 1993; 28(3): 219-226.
    2. Amano A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol, 2003; 74(1): 90-96.
    3. Killoy WJ, Polson AM. Controlled local delivery of antimicrobials in the treatment of periodontitis. Dent Clin North Am, 1998; 42(2): 263-283.
    4. Soskolne WA. Subgingival delivery of therapeutic agents in the treatment of periodontal diseases. Crit Rev Oral Biol Med, 1997; 8(2): 164-174.
    5. Brayton JJ, Yang Q, Nakkula R J, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002, 73 (11): 1267-1272.
    6. Yang Q, Nakkula RJ, Waiters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002, 81 (12): 836-840.
    7. Greenstein G; Poison A. The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol, 1998; 69(5): 507-520.
    8. Lamp KC, Freeman CD, Klutman NE, et al. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet, 1999; 36(5): 353-373.
    9.肖晓蓉,朱硃,张继,等.替硝唑棒对牙周炎和冠周炎病原菌的抗菌作用.华西口腔医学杂志,2002;12(6):420-422.
    10.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    11.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    12.国家药典委员会编.中华人民共和国药典 2005年版 二部.北京:化学工业出版社,2005:123,682.
    13. Liew V, Mack G, Tseng P, et al. Single-dose Concentrations of Tinidazole in Gingival Crevicular Fluid, Serum, and Gingival Tissue in Adults with Periodontitis. J Dent Res, 1991; 70(5): 910-912.
    14.史蓓菊,袁诗芬,刘大力.单剂量口服替硝唑后龈沟液药物浓度监测.临床口腔医学杂志,1997,13(3):149-150.
    15. Salo JP, Yli-Kauhaluoma J, Salomies H. On the hydrolytic behavior of tinidazole, metronidazole, and omidazole. J Pharm Sci, 2003; 92(4): 739-746.
    16. Bounds SJ, Nakkula R, Walters JD. Fluoroquinolone transport by human monocytes: characterization and comparison to other cells of myeloid lineage. Antimicrob Agents Chemother, 2000; 44(10): 2609-2614.
    17. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987; 31 (10): 1553-1557.
    18. Hand WL, King-Thompson NL. The entry of antibiotics into human monocytes. J Antimicrob Chemother, 1989; 23(5): 681-689.
    19. Kinane DF. Local antimicrobial therapies in periodontal disease. Ann R Australas Coll Dent Surg, 2000; 15 (1): 57-60.
    1. Salvi GE, Lang NP. Host response modulation in the management of periodontal diseases. J Clin Periodontol, 2005; 32(Suppl 6): 108-129.
    2. Ingman T, Sorsa T, Suomalainen K, et al. Tetracycline inhibition and the cellular source of collagenase in gingival crevicular fluid in differe nt periodontal diseases. A review article. J Periodontol, 1993; 64(2): 82-88.
    3. Tonetti MS. Local delivery of tetracycline: from concept to clinical application. J Clin Periodontol, 1998; 25(11 Pt 2): 969-977.
    4. Gordon JM, Walker CB, Murphy JC, et al. Concentration of tetracycline in human gingival fluid after single doses. J Clin Periodontol, 1981; 8(2): 117-121.
    5. Lavda M, Clausnitzer CE, Walters JD. Distribution of systemic ciprofloxacin and doxycycline to gingiva and gingival crevicular fluid. J Periodontol, 2004; 75 (12): 1663-1667.
    6.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    7.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007:5(1):2-3.
    8.国家药典委员会编.中华人民共和国药典2005年版二部.北京:化学工业出版社,2005:483-485.
    9. Amano A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol, 2003; 74(1): 90-96.
    10. Amornchat C, Rassameemasmaung S, Sripairojthikoon W, et al. Invasion of Porphyromonas gingivalis into human gingival fibroblasts in vitro. J Int Acad Periodontol, 2003; 5(4): 98-105.
    11. Van Bambeke F, Barcia-Macay M, Lemaire S, et al. Cellular pharmacodynamics and pharmacokinetics of antibiotics: Current views and perspectives. Curr Opin Drug Discov Devel, 2006; 9(2): 218-230.
    12.刘宇,刘洪臣,吴霞,等.人牙周膜成纤维细胞对甲硝唑和替硝唑的转运.口腔颌面修复学杂志,2007;8(2):90-93.
    13. Agarwal S, Piesco NP, Peterson DE, et al. Effects of sanguinarium, chlorhexidine and tetracycline on neutrophil viability and functions in vitro. J Periodontal Res, 1997; 32(3): 335-344.
    14. Bounds SJ, Nakkula R, Walters JD. Fluoroquinolone transport by human monocytes: characterization and comparison to other cells of myeloid lineage. Antimicrob Agents Chemother, 2000; 44(10): 2609-2614.
    15. Brayton JJ, Yang Q, Nakkula RJ, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002, 73 (11): 1267- 1272.
    16. Yang Q, Nakkula RJ, Walters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002; 81 (12): 836- 840.
    17. Johnson JD, Hand WL, Francis JB, et al. Antibiotic uptakeby human alveolar macrophages. J Lab Clin Med, 1980; 95(3): 429-439.
    18. Babu E, Takeda M, Narikawa S, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol, 2002; 88(1): 69-76.
    19. Gabler WL. Fluxes and accumulation of tetracyclines by human blood cells. Res Commun Chem Pathol Pharmacol. 1991; 72(1): 39-51.
    20. Zee KY, Lee DH, Corbet EF. Repeated oral hygiene instructions alone, or in combination with metronidazole dental gel with or without subgingival scaling in adult periodontitis patients: a one-year clinical study. J Int Acad Periodontol, 2006; 8(4): 125-135.
    21. Greenstein G. Local drug delivery in the treatment of periodontal diseases: assessing the clinical significance of the results. J Periodontol, 2006; 77(4): 565-578.
    1. Rodrigues RM, Goncalves C, Souto R, et al. Antibiotic resistance profile of the subgingival microbiota following systemic or local tetracycline therapy. J Clin Periodontol, 2004; 31 (6): 420-427.
    2. Vandekerckhove BN, Quirynen M, van-Steenberghe D. The use of locally delivered minocycline in the treatment of chronic periodontitis. A review of the literature. J Clin Periodontol, 1998; 25(11 Pt 2): 964-968.
    3. Oringer RJ, Al-Shammari KF, Aldredge WA, et al. Effect of locally delivered minocycline microspheres on markers of bone resorption. J Periodontol, 2002; 73(8): 835-842.
    4.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    5.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    6. Brayton JJ, Yang Q, Nakkula RJ, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002, 73 (11): 1267-1272.
    7. Yang Q, Nakkula RJ, Walters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002, 81 (12): 836-840.
    8.国家药典委员会编.中华人民共和国药典2005年版二部.北京:化学工业出版社,2005:507-508.
    9. Christersson LA, Albini B, Zambon J J, et al. Tissue localization of Actinobacillus actinomycetemcomitans in human periodontitis. I. Light, immunofluorescence and electron microscopic studies. J Periodontol, 1987; 58(8): 529-539.
    10. Amornchat C, Rassameemasmaung S, Sripairojthikoon W. et al. Invasion of Porphyromonas gingivalis into human gingival fibroblasts in vitro. J Int Acad Periodontol, 2003; 5(4): 98-105.
    11. Ciancio SG, Mather ML, McMullen JA. An evaluation of minocycline in patients with periodontal disease. J Periodontol, 1980; 51 (9): 530-534.
    12. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31(12): 1904-1908.
    13. Monkkonen H, Tormalehto S, Asunmaa K, et al. Cellular uptake and metabolism of clodronate and its derivatives in Caco-2 cells: a possible correlation with bisphosphonate-induced gastrointestinal side-effects. Eur J Pharm Sci, 2003; 19 (1): 23-29.
    14.刘宇,刘洪臣,吴霞,等.人牙周膜成纤维细胞对甲硝唑和替硝唑的转运.口腔颌面修复学杂志,2007;8(2):90-93.
    15. Walters JD, Nakkula RJ, Maney P. Modulation of gingival fibroblast minocycline accumulation by biological mediators. J Dent Res, 2005; 84(4): 320-323.
    16. Gabler WL. Fluxes and accumulation of tetracyclines by human blood cells. Res Commun Chem Pathol Pharmacol, 1991; 72(1): 39-51.
    17. Babu E, Takeda M, Narikawa S, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol, 2002; 88(1): 69-76.
    1. Bahal N, Nahata MC. The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin. Ann Pharmacother, 1992; 26(1): 46-55.
    2. Del Tacca M, Danesi R, Bemardini N, et al. Roxithromycin penetration into gingiva and alveolar bone of odontoiatric patients. Chemotherapy. 1990; 36(5): 332-336.
    3. Jehl F, Kolbe R, Scheimberg A, et al. Penetration of roxithromycin into gingival tissue. Diagn Microbiol Infect Dis. 1992; 15(4 Suppl): 77S-79S.
    4.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    5.刘洪臣.牙根管全身给药假说。中华老年口腔医学杂志,2007;5(1):2-3.
    6.国家药典委员会编.中华人民共和国药典2005年版二部.北京:化学工业出版社,2005:335-336.
    7. Amornchat C, Rassameemasmaung S, Sripairojthikoon W, et al. Invasion of Porphyromonas gingivalis into human gingival fibroblasts in vitro. J Int Acad Periodontol, 2003; 5(4): 98-105.
    8.吴霞,刘洪臣,刘宇,等.大鼠下颌骨来源的成骨细胞对甲硝唑和替硝唑的转运.口腔颌面修复学杂志,2007;8(1):59-62.
    9.刘宇,刘洪臣,吴霞,等.人牙周膜成纤维细胞对甲硝唑、替硝唑的跨膜转运.口腔颌面修复学杂志,2007;8(2):90-93.
    10. Sun J, Zhang T, Qiu F, et al. Impact of pharmaceutical dosage forms on the pharmacokinetics of roxithromycin in healthy human volunteers. J Antimicrob Chemother, 2005; 55(5): 796-799.
    11. Maizumi N, Tamura Y, Kanai H, et al. Quantitative comparison of the cytocidal effect of seven macrolide antibiotics on human periodontal ligament fibroblasts. J Periodontal Res, 2002; 37(4): 250-254.
    12. Inoue K, Kumakura S, Uchida M, et al. Effects of eight antibacterial agents on cell survival and expression of epithelial-cell- or cell-adhesion-related genes in human gingival epithelial cells. J Periodontal Res, 2004; 39(1): 50-58.
    13. Panteix G, Guillaumond B, Harf R, et al. In-vitro concentration of azithromycin in human phagocytic cells. J Antimicrob Chemother. 1993; 31 (Suppl E): 1-4.
    14. Johnson JD, Hand WL, Francis JB, et al. Antibiotic uptake by human alveolar macrophages. J Lab Clin Med, 1980; 95 (3): 429-439.
    15. Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis. 1991; 10 (2): 100-106.
    16. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987; 31 (10): 1553-1557.
    17. Hand WL, King-Thompson NL. The entry of antibiotics into human monocytes. J Antimicrob Chemother, 1989; 23(5): 681-689.
    18. Gladue RP, Snider ME. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother, 1990; 34(6): 1056-1060.
    19. Pascual A, Ballesta S, Garcia I, et al. Uptake and intracellular activity of ketolide HMR 3647 in human phagocytic and non-phagocytic cells. Clin Microbiol Infect, 2001; 7(2): 65-69.
    20. Hand WL, Hand DL. Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int J Antimicrob Agents, 2001; 18(5): 419-425.
    21. Hand WL, King-Thompson NL. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts. Antimicrob Agents Chemother. 1990; 34(6): 1189-1193.
    22. Labro MT. 1997. Effects of macrolides on leukocytes and inflammation, p.101-116. In Zinner SH, Young LS, Acar JF, et al. Expanding indications for the new macrolides, azalides, and streptogramins. Marcel Dekker, Inc., New York, N.Y.
    23. Vazifeh D, Abdelghaffar H, Labro MT. Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycm and roxithromycin. Antimicrob Agents Chemother, 1997; 41 (10): 2099-2107.
    1. Sandros J, Papapanou P, Dahlen G. Porphyromonas gingivalis invades oral epithelial cells in vitro. J Periodontal Res, 1993; 28(3): 219-226.
    2. Amano A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol, 2003; 74(1): 90-96.
    3. Killoy WJ, Poison AM. Controlled local delivery of antimicrobials in the treatment of periodontitis. Dent Clin North Am, 1998; 42(2): 263-283.
    4. Soskolne WA. Subgingival delivery of therapeutic agents in the treatment of periodontal diseases. Crit Rev Oral Biol Med, 1997; 8(2): 164-174.
    5.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    6.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    7. Brayton JJ, Yang Q, Nakkula RJ, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002, 73 (11): 1267-1272.
    8. Yang Q, Nakkula R J, Waiters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002, 81 (12): 836-840.
    9.国家药典委员会编.中华人民共和国药典2005年版 二部.北京:化学工业出版社,2005:641-642.
    10. Adhami ZN, Wise R, Weston D, et al. The pharmacokinetics and tissue penetration of norfloxacin. J Antimicrob Chemother, 1984; 13 (1): 87-92.
    11. Easmon CS, Crane JP. Uptake of ciprofloxacin by human neutrophils. J Antimicrob Chemother, 1985; 16(1): 67-73.
    12. Easmon CS, Crane JP. Uptake of ciprofloxacin by macrophages. J Clin Pathol, 1985; 38(4): 442-444.
    13. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31(12): 1904-1908.
    14. Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis, 1991; 10 (2): 100-106.
    15. Perea E J, Garcia I, Pascual A. Comparative penetration of lomefloxacin and other quinolones into human phagocytes. Am J Med, 1992; 92(S4A): 48-51.
    16. Pascual A, Garcia I, Perea EJ. Fluorometric measurement of ofloxacin uptake by human polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1989; 33(5): 653-656.
    17. Waiters JD, Zhang F, Nakkula RJ, et al. Mechanisms of fluoroquinolone transport by human neutrophils. Antimicrob Agents Chemother, 1999; 43 (11): 2710-2715.
    18. Bounds SJ, Nakkula R, Waiters JD. Fluoroquinolone transport by human monocytes: characterization and comparison to other cells of myeloid lineage. Antimicrob Agents Chemother. 2000; 44(10): 2609-2614.
    1. Miyake Y, Tsuruda K, Okuda K, et al. In vitro activity of tetracyclines, macrolides, quinolones, clindamycin and metronidazole against periodontopathic bacteria. J Periodontal Res, 1995; 30(4): 290-293.
    2. Ichimiya T, Yamasaki T, Nasu M. In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation. J Antimicrob Chemother, 1994; 34(3): 331-341.
    3. Brook I, Lewis MA, Sandor GK, et al. Clindamycin in dentistry: More than just effective prophylaxis for endocarditis? Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005; 100 (5): 550-558.
    4. Gordon J, Walker C, Lamster I, et al. Efficacy of clindamycin hydrochloride in refractory periodontitis. 12-month results. J Periodontol, 1985; 56(11 Suppl): 75-80.
    5. Sauvetre E, Glupczynsky Y, Labbe M, et al. The effect of clindamycin gel insert in periodontal pockets, as observed on smears and cultures. Infection, 1993; 21(4): 245-247.
    6.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    7.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    8. Easmon CS, Crane JR Cellular uptake of clindamycin and lincomycin. Br J Exp Pathol, 1984; 65 (6): 725-730.
    9. Walker CB, Gordon JM, Cornwall HA, et al. Gingival crevicular fluid levels of clindamycin compared with its minimal inhibitory concentrations for periodontal bacteria. Antimicrob Agents Chemother, 1981; 19(5): 867-871.
    10.国家药典委员会编.中华人民共和国药典2005年版 二部.北京:化学工业出版社,2005:531-532.
    11. Johnson JD, Hand WL, Francis JB, et al. Antibiotic uptake by human alveolar macrophages. J Lab Clin Med, 1980; 95 (3): 429-439.
    12. Tulkens PM. Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis, 1991; 10 (2): 100-106.
    13. Klempner MS, Styrt B. Clindamycin uptake by human neutrophils. J Infect Dis, 1981; 144(5): 472-479.
    14. Hand WL, King-Thompson NL. The entry of antibiotics into human monocytes. J Antimicrob Chemother, 1989; 23(5): 681-689.
    15. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31 (12): 1904-1908.
    16. Hand WL, King-Thompson NL. Membrane transport of clindamycin in alveolar macrophages. Antimicrob Agents Chemother, 1982; 21 (2): 241-247.
    17. Steinberg TH, Hand WL. Effects of phagocytosis on antibiotic and nucleoside uptake by human polymorphonuclear leukocytes. J Infect Dis, 1984; 149(3): 397-403.
    18. Steinberg TH, Hand WL. Effect of phagocyte membrane stimulation on antibiotic uptake and intracellular bactericidal activity. Antimicrob Agents Chemother, 1987; 31(4): 660-662.
    19. Eick S, Pfister W, Fiedler D, et al. Clindamycin promotes phagocytosis and intracellular killing of periodontopathogenic bacteria by crevicular granulocytes: an in vitro study. J Antimicrob Chemother, 2000; 46(4): 583-588.
    1. Saini S, Aparna, Gupta N, et al. Antibiotic susceptibility of bacterial isolates in gingivitis and periodontitis. Indian J Dent Res, 2003; 14(2): 95-100.
    2. Kuriyama T, Karasawa T, Nakagawa K, et al. Bacteriology and antimicrobial susceptibility of gram-positive cocci isolated from pus specimens of orofacial odontogenic infections. Oral Microbiol Immunol, 2002; 17(2): 132-135.
    3. Lazzarini L, Brunello M, Padula E, et al. Prophylaxis with cefazolin plus clindamycin in clean-contaminated maxillofacial surgery. J Oral Maxillofac Surg, 2004; 62(5): 567-570.
    4.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    5.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007:5(1):2-3.
    6. Mandell LA, Afnan M. Synergistic killing of gram-negative bacilli by cefotaxime, its desacetyl metabolite and human polymorphonuclear neutrophils. J Antimicrob Chemother, 1991; 27 (6): 817-828.
    7. Sugawara M, Hashimoto A, Toda T, et al. Changes in the permeation rate of organic anions through the intestinal brush-border membrane with membrane surface potential. Biochim Biophys Acta, 1994; 1190(1): 85-90.
    8.国家药典委员会编.中华人民共和国药典2005年版二部.北京:化学工业出版社,2005:159-160.
    9. Christersson LA, Albini B, Zambon J J, et al. Tissue localization of Actinobacillus actinomycetemcomitans in human periodontitis. I. Light, immunofluorescence and electron microscopic studies. J Periodontol, 1987; 58(8): 529-39.
    10. Amomchat C, Rassameemasmaung S, Sripairojthikoon W, et al. Invasion of Porphyromonas gingivalis into human gingival fibroblasts in vitro. J Int Acad Periodontol, 2003; 5(4): 98-105.
    11. Van Bambeke F, Barcia-Macay M, Lemaire S, et al. Cellular pharmacodynamics and pharmacokinetics of antibiotics: Current views and perspectives. Curr Opin Drug Discov Devel, 2006; 9(2): 218-230.
    12.尹音,王峰编著.实用口腔药物学.北京:人民卫生出版社,2006:154-155.
    13. Johnson JD, Hand WL, Francis JB, et al. Antibiotic uptakeby human alveolar macrophages. J Lab Clin Med, 1980; 95 (3): 429-439.
    14. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31 (10): 1553-1557.
    15. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother, 1987; 31(12): 1904-1908.
    16. Hand WL, King-Thompson NL. The entry of antibiotics into human monocytes. J Antimicrob Chemother, 1989; 23(5): 681-689.
    17. Khamdang S, Takeda M, Babu E, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol, 2003; 465(1-2): 1-7.
    18. Takeda M, Babu E, Narikawa S, et al. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol, 2002; 438(3): 137-142.
    19. Wenzel U, Kuntz S, Diestel S, et al. PEPTl-mediated cefixime uptake into human intestinal epithelial cells is increased by Ca2+ channel blockers. Antimicrob Agents Chemother, 2002; 46(5): 1375-1380.
    20. Dantzig AH, Duckworth DC, Tabas LB. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim Biophys Acta, 1994; 1191 (1): 7-13.
    1. Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit Rev Oral Biol Med, 1997; 8(4): 389-409.
    2. Amano A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol, 2003; 74(1): 90-96.
    3. Amornchat C, Rassameemasmaung S, Sripairojthikoon W, et al. Invasion of Porphyromonas gingivalis into human gingival fibroblasts in vitro. J Int Acad Periodontol, 2003; 5(4): 98-105.
    4. Eick S, Pfister W. Efficacy of antibiotics against periodontopathogenic bacteria within epithelial cells: An in vitro study. J Periodontol, 2004; 75 (10): 1327-1334.
    5. Tozum TF, Yildirim A, Caglayan F, et al. Serum and gingival crevicular fluid levels of ciprofloxacin in patients with periodontitis. J Am Dent Assoc, 2004; 135(12): 1728-1732.
    6. Lavda M, Clausnitzer CE, Walters JD. Distribution of systemic ciprofloxacin and doxycycline to gingiva and gingival crevicular fluid. J Periodontol, 2004; 75 (12): 1663-1667.
    7.刘洪臣.人工种植牙全身给药系统的设计.口腔颌面修复学杂志,2006;7(4):291-292.
    8.刘洪臣.牙根管全身给药假说.中华老年口腔医学杂志,2007;5(1):2-3.
    9. Brayton JJ, Yang Q, Nakkula RJ, et al. An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells. J Periodontol, 2002, 73(11): 1267-1272.
    10. Yang Q, Nakkula RJ, Walters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res, 2002, 81(12): 836-840.
    11. Zavarella MM, Gbemi O, Waiters JD. Accumulation of non-steroidal anti-inflammatory drugs by gingival fibroblasts. J Dent Res, 2006; 85(5): 452-456.
    12.吴霞,刘洪臣,刘宇,等.大鼠下颌骨来源的成骨细胞对甲硝唑和替硝唑的转运.口腔颌面修复学杂志,2007;8(1):59-62.
    13.刘宇,刘洪臣,吴霞,等.人牙周膜成纤维细胞对甲硝唑和替硝唑的转运.口腔颌面修复学杂志,2007;8(2):90-93.
    14. Mustafa M, Wondimu B, Hultenby K, et al. Uptake, distribution and release of 14C-triclosan in human gingival fibroblasts. J Pharm Sci, 2003; 92(8): 1648-1653.
    15. Hand WL, King-Thompson NL. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts.Antimicrob Agents Chemother, 1990; 34(6):1189-1193.
    16. Rajnarayana K, Chaluvadi MR, Alapati VR, et al. Validated HPLC method for the determination of tinidazole in human serum and its application in a clinical pharmacokinetic study. Pharmazie. 2002; 57(8): 535-537.
    17. Waiters JD, Nakkula R J, Maney P. Modulation of gingival fibroblast minocycline accumulation by biological mediators. J Dent Res, 2005; 84(4): 320-323.
    18. Rawal SY, Walters JD. Effect of biologic mediators on ciprofloxacin accumulation by gingival fibroblasts. J Periodontol, 2005; 76(12): 2254-2259.
    19. Waiters JD, Zhang F, Nakkula RJ. Mechanisms of fluoroquinolone transport by human neutrophils. Antimicrob Agents Chemother, 1999; 43(11): 2710-2715.
    20. Van Bambeke F, Barcia-Macay M, Lemaire S, et al. Cellular pharmacodynamics and pharmaeokinetics of antibiotics: Current views and perspectives. Curt Opin Drug Discov Devel, 2006; 9(2): 218-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700