系统模态参数辨识的连续小波方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对机械系统进行模态分析和参数识别是分析系统动力学性能,进行故障诊断等多种研究必不可少的手段之一。模态参数辨识的时频分析方法是继频域和时域方法之后新发展起来的一种模态分析方法。相较于频域和时域模态分析方法,连续小波模态分析方法利用小波分析在数学处理能力上的优势,辨识更为精确,对含噪信号不敏感,方法简单有效,对这一方法进行深入地研究,有重大的理论意义和现实意义.本文所涉及的主要工作及创造性成果如下:
     本文对模态分析小波辨识方法的基础——脊线提取方法进行了详细的研究。在介绍了脊线提取的平稳相位理论的基础上,建立了连续小波变换脊线识别的基本方法。通过对利用小波变换的相位和模值信息提取脊线的识别算法进行比较研究,选择了更适于模态参数提取的Crazy Climbers算法,并以能量准则为基础改进了原有算法对噪声敏感这一缺点。仿真试验表明,改进Crazy Climber算法更适合于多自由度系统响应信号的小波脊线提取,对噪声具有很高的鲁棒性。
     本文选择Morlet小波作为系统辨识研究的基本小波。并针对小波变换时频关系的特点改进了原有小波函数,用以平衡小波函数时间、频率两方面的性质。采用这一算进行了仿真研究。仿真结果表明,该方法模态参数提取准确,对噪声不敏感。通过对悬臂梁的实验研究表明,该方法较一般频域方法有更高的辨识精度,可准确的识别悬臂梁模态参数。
     本文给出了不同尺度下边缘效应影响范围的划定方法。在介绍了常用改进方法的基础上,针对多自由度系统模态参数辨识的需要,给出了一种补偿函数法来解决这一问题。通过仿真实验表明,该方法计算负担小,可极大改善小波变换的边缘效应。
     本文给出了基于连续小波变换的模态参数提取方法可辨识密集模态的基本条件。针对密集模态对参数辨识所带来的影响,本文给出了基于改进Morlet小波的改进算法,并以某三阶系统进行仿真实验。实验结果表明,该方法可极大改善由密集模态带来的频率混叠问题,参数辨识准确,可满足密集模态参数辨识的需要。
This paper deals with the use of the continuous wavelet transform (CWT) for system identification purposes. CWT method is a new way to the identification of modal parameter. This time-frequency-domain method is a new developed method after time–domain and frequency-domain method. It has been proved that CWT method was exact at the identification of modal parameter, and was not sensitive to the noise. The main work and harvests of this paper are as follows:
     The wavelet ridge extraction method (REM) was studied in this paper. REM was used for the extraction of temporary frequency at before. REMs developed for this purpose would not work for modal parameter identification. A new method is introduced in this paper, called Crazy Climber method. Crazy Climber method can extract several ridges in the same time. It can be used for modal parameter identification of multi-degree-of-freedom (MDOF). But this method is sensitive to the noise. A improved study was introduced in this paper. The simulate result shows that the improved Crazy Climber method is not sensitive to the noise.
     Morlet wavelet was selected in this paper for identification purpose. A optimize wavelet method was used for the best time and frequency performances. A cantilever was tested to validate this method. The test result shows that the method is suit to the modal parameter identification.
     The edge-effect of wavelets was analyzed in this paper. A edge-effect measure method was introduced in this paper. In order to the MDOF identification, an equalizing function method was put forward. The simulate result shows that this method can modify the edge effected wavelet transform ridge commendably.
     The mass model question was studied in this paper. An estimate rule was introduced in this paper. This rule could divide mass models from normal models. A improved Morlet wavelet is used for the mass model estimation. A simulated 3DOF system was tested by the wavelet. The result shows that the improved Morlet wavelet is useful for mass model identification.
引文
[1] Allemang R.J, Brown D.L, A unified matrix polynomial approach to modal identification, Journal of Sound and Vibration, 1998(3). 301–322
    [2] Argoul P., Le T-P., Instantaneous indicators of structural behaviour based on continuous Cauchy wavelet transform, Mechanical Systems and Signal Processing.2003(17), 243–250.
    [3] Argoul P., Hans S., Conti F., Boutin C., Time–frequency analysis of free oscillations of mechanical structures. Application to the identification of the mechanical behavior of buildings under shocks, in: Proceedings of the COST F3 Conference: System Identification and Structural Health Monitoring. 2000, 283-292
    [4] Argoul P., Le T-P. Wavelet analysis of transient signals in civil engineering, Novel Approaches in Civil Engineering, Lecture Notes in Applied and Computational Mechanics, 2003(14),200-213
    [5] B. Boashash, P.O. Shea. Ploynormial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE trans. Signal Process. 1995(43): 216-220.
    [6] B. Eschdi’e, B. Tor’esanni. Wavelet representation and time-scaled matched receiver for asymptotic signals. Proc.EUSIPCOV, Barcelona, 1990,305-308
    [7] B.A.D. Piombo, A. Fasana, S. Marchesiello, et al. Modeling and identification of the dynamic response of a supported bridge. Mechanical Systems and Signal Processing, 2000,14(1): 75-89
    [8] Baker R. W., Hinich M. J., Statistical monitoring of rotating machinery by cumulant spectral analysis. IEEE signal Processing workshop on Hinger-Order Statistic. 1993:187-191
    [9] B.F. Feeny, J.W. Liang. A decrement method for the simultaneous estimation of Coulomb and viscous damping, Journal of sound and vibration. 1996, 195 (1): 149-154
    [10] Boashash B., Estimating the Instantaneous Frequency of a signal Part 1: Fundamentals. Proceedings of the IEEE, 1992,80(4), 520-538
    [11] Boashash B., Estimating the Instantaneous Frequency of a signal Part 2: Algorithms and Applications. Proceedings of the IEEE, 1992,80(4), 520-538
    [12] Brown D.L., Allemang R.J., Zimmerman R. D., Parameter estimation techniques for modal analysis, SAE Paper Number 790221, SAE Transactions. 1979(88). 828–846
    [13] Carmona R., Hwang W.L., Torresani B., Identification of chirps with continuous wavelet transform, in A. Antoniadis, G. Oppenheim (Eds.), Wavelets and Statistics, Lecture Notes in Statistics, Vol. 103, Springer, New York, 1994, 95–108
    [14] Carmona R., Hwang W.L., Torr!esani B., Characterization of signals by the ridges of their wavelet transforms, IEEE Transactions on Signal Processing.1997. 2586–2589
    [15] Carmona R., Hwang W-L., Torresani B., Practical Time–Frequency Analysis, Gabor and Wavelet Transforms with an Implementation in S, Wavelet Analysis and its Applications, Vol. 9, Academic Press, San Diego, CA, 1998.
    [16] Carmona R., Hwang W.L., Torresani B., Multi-ridge detection and time–frequency reconstruction, IEEE Transactions on Signal Processing. 1999(47).480-492
    [17] 陈章位, 潘宏. 渐进信号瞬态频率的提取. 振动工程学报, 1997(12):203-209
    [18] 程正兴. 小波分析算法与应用. 西安交通大学出版社,1998
    [19] C.H. Lamarque, S. Pernot, A. Cuer. Damping identification in multi-degree-of-freedom system via a wavelet-logarithmic decrement- part 1: theory. Journal of Sound and Vibration, 2000, 235(3):361-374
    [20] Chan W C, Chan C W, Cheung K C, et al. On the modeling of non-linear dynamic systems using support vector neural networks. Engineering Applications of Artificial Intelligence, 2001, 14: 105-113
    [21] Chun Shien Lu, Wen Liang Hwang. Segmentation of 3D textured images using continuous wavelet transform. IEEE Trans, on SP, 1997: 235-238
    [22] Chun Shien Lu, Wen Liang Hwang, Hong-Yong, et al. Shape from texture based on the ridge of continuous wavelet transform. IEEE. 1996: 295-298
    [23] 崔锦泰著. 程正兴译. 小波分析导论. 西安:西安交通大学出版社, 1995.
    [24] 陈晓梅, 倪国强, 李勇景. 图像融合中小波边缘效应的消除方法. 北京理工大学学报, 2003, 23(4): 525-529
    [25] 邓必鑫. 信号分析基础. 北京理工大学出版社,1993
    [26] David A. Schoenwald. System identification using a wavelet-based approach. Proceedings of the 32nd Conference on Decision and Control. 1993, 3064-3065
    [27] D.E. Adams, R.J. Allemang. Survey of nonlinear detection and identification techniques for experimental vibrations. Proceedings of ISMA23, Vol. I, 1998, 269-281.
    [28] Depart N. Asymptotic Wavelet and Gabor analysis: Extraction of instantaneous Frequencies. IEEE Transactions on Information Theory, 1992, 38(3):506-520
    [29] Delprat N., Escudie B., Guillemain P., R.K. Ronland-martinet, Ph. Tchamichian, B. Torresani, Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies, IEEE. 1992. 644–664
    [30] F. AUGER , P. FLANDRIN. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE 1ransactions on Signal Processing, 1995,43:1068-1085
    [31] 傅志方, 华宏星. 模态分析理论与应用. 上海: 上海交通大学出版社, 2000
    [32] Ghanem R, Romeo F. A wavelet-based approach for the identification of linear time-varying dynamical system. Journal of Sound and Vibration, 2000, 234(4):555-576
    [33] Gleen K. Heitman. Complexity of identification of Input-Output system. Journal of Mathematical Analysis and Applications, 1995,192: 1007-1033
    [34] Gram-Hansen K., Dorize K., On the choice of parameters for time–frequency analysis, in: Y. Meyer, Wavelets and Applications, Proceedings of the International Conference, Masson, Parts. 1991, 86–92
    [35] Granger S, Perotin L. An inverse method for identification of a distributed random excitation acting on a vibrating structure. Mechanical Systems and Signal Processing, 1999, 13(1): 53-65
    [36] 何岭松, 小波函数性质及其对小波分析结果的影响, 振动工程学报, 2000, 13(1): 143~146.
    [37] IBRAHIM, S.R., Mikulcik E.C., A method for the direct identification of vibration parameters from the free responses, Shock and Vibration Bulletin. 1997(4). 183–198
    [38] IBRAHIM S.R.. Modal parameter identification from responses of general unknown random inputs. Proceedings of the 14th IMAC. 1996, 2204-2219
    [39] 纪跃波, 秦树人, 柏林. 有限区间信号边界效应问题的研究. 振动与冲击, 2002, 21(4): 108-212
    [40] J.P. Leduc, Spatiio-temporal wavelet transforms fot digital signal analysis. Signal Processing, Elisevier, July 1997,60(1):23-41
    [41] Jaksic N., Boltezar M., Dynamical beahviour of the planar non-linear mechanical system-Part I: Theoretical Modelling. Journal of sound and vibration. 1999(226):923-940
    [42] Joseph, Lardies and Minh-Nghi, Ta . A wavelet-based approach for the identification of damping in non-linear oscillators. International Journal of Mechanical Sciences, 2005, 47(8): 1262-1281
    [43] Jaksic N., Boltezar M., Dynamical beahviour of the planar non-linear mechanical system-Part II: Experiment. Journal of sound and vibration. 1999(226):941-953
    [44] Jinghuai Gao, Xiaolong Dong. Instantaneous parameters extraction via wavelet transform. IEEE Transactions on Information Theory, 1999, 37(3):1022-1029
    [45] K. Gram-Hansen, K. Dorize. On the choice of parameters for time-frequency analysis. Wavelet and Applications, Proceedings of the international conference, Masson, Parts, 1991, 86-92
    [46] Kaiping Yu, Jiyuan Ye, Jingxiang Zou, et al. Missile flutter experiment and data analysis using wavelet transform. Journal of Sound and Vibration, 2004,269(3): 899-912
    [47] Lardies J, Ta MN, Berthiller M. Modal parameter estimation based on the wavelet transform of output data. Archive of Applied Mechanics, 2004, 73: 718-733
    [48] Le T-P., Auscultation Dynamique des Structure’s . Aide de l’Analyse continue en Ondelettes, Ph.D. Thesis, ENPC, 2003, (in French)
    [49] 李霞. 基于连续小波变换的水下信号处理技术研究.博士学位论文:西北工业大学,2003
    [50] 李德葆, 陆秋海. 实验模态分析及其应用. 北京: 科学出版社, 2001
    [51] 李建平. 小波分析与信号处理-理论应用及软件实现. 重庆出版社,1997
    [52] 李炎保, 郄禄文, 祝振宇. 小波变换在随机海浪及相关课题中的应用与前景. 力学进展, 2003(4): 132-136
    [53] Lu Weixing, Ooi Boon Teck. Multi-terminal HVDC as enabling Technology of premium quality power park. Proceedings of IEEE Power Engineering Society Winter Meeting, Vol. 2, Piscataway(NJ), 2002, 719-724
    [54] 龙图景, 孙政顺, 李春文. 基于小波分解的MIMO系统辨识最优实验设计. 自动化学报. 2003, 29(6): 959-965
    [55] 罗晓, 陈耀, 孙优贤. 基于小波变换的含噪系统辨识. 信息与控制, 2003,32(5): 467-473
    [56] 刘一武, 张洪华, 吴宏鑫. 基于小波方法的挠性空间结构模态参数的辨识. 中国空间术.2001(4): 1-11.
    [57] 刘贵中, 邸双良. 小波分析及其应用. 西安: 西安电子科技大学出版社, 1995
    [58] 吕立华, 宋执环, 李平. 一种基于小波多分辨分析的多采样率系统辨识方法. 控制理论与应用, 2002, 19(2): 225-231
    [59] Mallat S. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. On PAMI, 1989, 11(7): 674-693
    [60] Maia N.M.M., Silva J.M.M., Theoretical and Experimental Modal Analysis, Research Studies Press Ltd., Herefordshire, 1998
    [61] Magalas, Leszek B. Application of the wavelet transform in mechanical spectroscopy and in Barkhausen noise analysis. Journal of Alloys and Compounds,2000,310(1): 269-275
    [62] M. Feldman, S. Braun. Identification of non-linear system parameters via the instantaneous frequency: application of the Hilbert transform and Wigner-Ville techniques. Proceedings of 13th IMAC, 1995,637-642
    [63] M. Feldman. Non-linear free vibration identification via the Hilbert transform. Journal of Sound and Vibration, 1997, 208(3):475-489
    [64] Mitra, Mira and Gopalakrishnan, S. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D wave-guides. International Journal of Solids and Structures, 2005, 42(16): 4695-4721
    [65] Miha B, Janko S. Enchancements to the continuous wavelet transform for damping identifications on short signals. Mechanical Systems and Signal Processing, 2004(18):1065-1076
    [66] Newland D.E., Wavelet analysis of vibration, Part 1: Theory, Journal of Vibration and Acoustics. 1994(12):409-416
    [67] Newland D.E., Wavelet analysis of vibration, Part 2: Wavelet maps, Journal of Vibration and Acoustics. 1994(16), 417–425
    [68] Newland D.E., Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets, Journal of Vibration and Acoustics. 1999(21), 149–155
    [69] 潘旭峰, 谢波, 小波理论及其在机械故障诊断中的应用, 振动与冲击, 1998,17(1). 14~18.
    [70] P. FLANDRIN, C.-M. ERIC , A. PATRICE. Reassigned scalograms and their fast algorithms. Proceedings of SPIE,1995, 2569: 152-163
    [71] Pierre Argoul, Thien-phu Le. Instantaneous indicators of structural behavior based on the continuous Cauchy wavelet analysis. Mechanical Systems and Signal Processing, 2003, 17(1): 243-250
    [72] Ph. Guillemain, R. Kronland-Martinet. Horizontal and vertical ridges associated to continuous wavelet transforms. IEEE, 1992, 63-66
    [73] R. Carmona, W-L. Hwang, B. Torresani. Practical time-frequency analysis. New York: Academic Press, 1998
    [74] 任春辉, 魏平, 肖先赐. 改进的Morlet小波在信号特征提取中的应用. 电波科学学报, 2003, 18(6): 633-638
    [75] 任宜春, 邓寿昌, 仇一颗. 基于小波分析的系统识别研究. 湘潭大学自然科学学报, 2004, 26(2): 56-60
    [76] Richardson M.H., Global frequency and damping estimates from frequency response measurements, in: Proceedings of the Fourth International Modal Analysis Conference (IMAC IV) Los Angeles, CA, 1986, 465–470
    [77] Richardson M.H., Formenti D.L., Parameter estimation from frequency response measurements using rational fraction polynomials, Proceedings of the First International Modal Analysis. 1993(3).203-231
    [78] Roger Ghanem, Francesco Romeo. A wavelet-based approach for model and parameter identification of non-linear systems. International Journal of Non-Linear Mechanics, 2001(36): 835-859
    [79] Ruzzene M., Fasana A., Garibaldi L., Piombo B., Natural frequencies and dampings identification using wavelet transform: application to real data. Mechanical Systems and Signal Processing. 1997(2). 207-218
    [80] S. Braun, M. Feldman. Time-frequency characteristics of non-linear systems. Mechanical Systems and Signal Processing, 1997, 11(4): 611-620
    [81] S. Hans, E. Ibraim, S. Pernot, et al. Damping identification in muti-degree-of freedom system via a wavelet-logarithmic decrement-Part 1: theory. Journal of Sound and Vibration, 2000, 235(3): 361-374
    [82] S. Hans, E. Ibraim, S. Pernot, et al. Damping identification in muti-degree-of freedom system via a wavelet-logarithmic decrement-Part 2: study of a civil engineering building. Journal of Sound and Vibration, 2000, 235(3): 375-403
    [83] Simonovski I., Boltezar M., The norms and variances of the Gabor, Morlet and General harmonic wavelet functions. Journal of Sound and Vibration. 2003(264): 545-557
    [84] 尚志武, 万淑敏, 王太勇, 基于高速数据采集和实时信号分析的结构实验分析系统的研究与应用, 仪器仪表学报, 2001, 22(4): 203-208
    [85] 师汉民, 湛刚, 吴雅. 机械振动系统(上册).武汉:华中理工大学出版社, 1992
    [86] 师汉民, 湛刚, 吴雅. 机械振动系统(下册).武汉:华中理工大学出版社, 1992
    [87] Staszewski W.J., Identification of dampingin m.d.o.f systems usingtime-scale decomposition, Journal of Sound and Vibration. 1997(203). 283–305
    [88] Staszewski W.J., Copper J.E. Flutter data analysis using the wavelet transform. Proceedings of the International Seminar on New Advances in Modal Synthesis of Large Structures: Nonlinear, Damped and Non-deterministic Cases, Lyon, France, 1995, 203-214
    [89] Staszewski W.J., Identification of nonlinear systems using wavelets experimental study. Proceedings of the 15th IMAC. 1997, 1012-1016
    [90] Staszewski W.J., Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound and Vibration. 1998(3), 639–658.
    [91] Slavic J., Simonovski I., Boltezar M., Damping Identification using a continuous wavelet transform: application to real data, Journal of Sound and Vibration. 2003(262), 291–307
    [92] Song Zhihua. Nonlinear dynamic system identification based on wavelet approximation. Proceedings of the 3rd Word Congress on Intelligent Control and Automation, 2000:2226-2230
    [93] 宋执环, 李平. 非线性系统辨识的一种新方法. 浙江大学学报(自然科学版), 1997, 31:306-310
    [94] Tang S.K., On the time–frequency analysis of signals that decay exponentially with time, Journal of Sound and Vibration. 1999(1) , 241–258
    [95] 谭冬梅, 姚三, 翟伟廉. 振动模态的参数识别综述. 华中科技大学学报(自然科学版). 2002(3): 73-79
    [96] Torriesani B., Analysis Continue par Ondelettes, Inter Editions / CNRS Editions, Paris, 1995
    [97] Torriesani B., Time–frequency and time-scale analysis, in: J.S. Byrnes (Ed.), Signal Processing for Multimedia, 1999, IOS Press, Amsterdam pp. 37–52. T.-P. Le, P. Argoul / Journal of Sound and Vibration. 2004(3). 73–100
    [98] V.M. Becerra, R.K.H. Galvao, J.M.F. Calado. Linear-wavelet models for non-linear identification applied to a pressure plant. IEEE, 2002, 2180-2186
    [99] Viberg M. Subspace based methods for the identification of linear time invariant systems. Automatica, 1995, 31(12): 1835-1851
    [100] 魏云冰, 黄进, 牛发亮. 基于小波脊线的笼型异步电动机转子故障特征提取. 电工技术学报, 2003, 18(4): 123-128
    [101] 徐亚兰, 陈建军, 胡太彬.系统模态参数辨识的小波变换方法.西安电子科技大学学报.2004(2): 281-286
    [102] 续秀中, 张志谊, 华宏星. 应用视频分析方法辨识时变系统的模态参数. 振动工程学报. 2003, 16(3): 358-363
    [103] 尹琪.基于动态信号测试的声学分析与模态分析系统研究及其应用.天津大学硕士论文,1998年3月.
    [104] Y. Kitada, Identification of nonlinear structural dynamic systems using wavelets. J. Engng Mech. 1998,124 (10): 1059-1066
    [105] 郁春来, 何明浩, 裴立志. 基于改进小波脊线法的LFM信号脉内特征提取. 航天电子对抗, 2004(4): 38-45
    [106] 杨福生. 小波变换的工程分析与应用. 北京:科学技术出版社, 1999
    [107] 于开平, 邹经香. 模态参数辨识的小波变换方法, 宇航学报. 1999, 20(4): 72-78
    [108] 王永刚, 张景绘. 小波变换在动力学系统识别中的应用, 强度与环境. 1997(4):22-29.
    [109] 王宏禹. 非平稳随机信号分析与处理. 北京,国防工业出版社,1999
    [110] 张广萤, 邓正隆. 小波分析在系统辨识中的应用. 电机控制学报. 2002(1):64-68
    [111] 张贤达. 现代信号处理. 北京,清华大学出版社,1995
    [112] 张贤达. 非平稳信号分析与处理. 北京,国防工业出版社,1998
    [113] 张正平, 任震, 黄雯莹. 基于小波脊线的电动机转子故障检测新方法. 中国电机工程学报, 2003, 23(1): 97-102
    [114] Zhang G-M., Wang Y-W., Zhang S-Y., Optimal frequency-to-bandwidth ratio of wavelet in ultrasonic non-destructive evaluation, Ultrasonic. 2001(3), 13–17
    [115] Zheng, Yuanjin, Tay, D.B.H.David B.H., Lin, Zhiping. Modeling general distributed nonstationary process and identifying time-varying autoregressive system by wavelets: theory and application. Signal Processing, 2001, Volume 81(9):1823-1848
    [116] 朱全民. 非线性系统辨识. 控制理论与应用. 1994, 11(6): 641-652
    [117] 朱继梅.小波变换及其工程应用(连载).振动与冲击,1996, Vol.15, No.2: 94-100, No.3: 94-101, No.4: 85~91
    [118] 周牡丹, 颜玉崇. 用小波变换的方法辨识线性系统的阶次. 东南大学学报(自然科学版), 2003(33): 6-10
    [119] 周传荣, 赵淳生. 机械振动参数识别及其应用. 北京: 科学出版社, 1989
    [120] 张庆华 王太勇. 时频分析方法在往复机械振动特征提取中的应用. 机械设计与制造工程. 2002(4):16-17.
    [121] 张策. 机械动力学. 北京:高等教育出版社,2000
    [122] 邹家军, 冯志华. 基于小波脊的MDOF系统的模态参数辨识. 苏州大学学报(自然科学版). 2004, 20(3): 35-40
    [123] 祖淑芝 王太勇 邓学欣, 便携测试信号分析系统.吉林大学学报,2005(1):101-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700