扭曲椭圆管换热器传热与压降性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强化型高效传热管取代原来的普通金属光滑管,既可节约金属管材和降低设备费用,又能显著地提高热能利用效率,降低能耗。与传统的换热器相比,扭曲管换热器具有传热效率高、压降低、抗垢性能好、占地面积小等诸多优点,以扭曲管为换热元件的扭曲管换热器作为一种新型的换热设备也逐渐体现其在石油化工行业中的优势。
     本文以得到扭曲椭圆管换热器管内外强化传热机理以及管内外传热与压降特性计算通用准则关系式为目的,进行了扭曲椭圆管管内传热与流动的理论分析,对扭曲椭圆管换热器管内外传热与压降性能进行了试验测试以及数值计算,分析了换热器管程以及壳程传热与流动特点,主要研究内容和结论有以下几个方面:
     1.借助张量分析、摄动法、Galerkin法等数学工具,得到了管内流体层流流动与传热过程中速度场与温度场等各阶摄动分量的分析解。对比分析了光滑椭圆管、光滑圆管以及不同长短轴比扭曲椭圆管管内传热与压降特性,对扭曲椭圆管以及光滑椭圆管横截面温度以及速度的各阶分量及其相互之间的影响进行了分析,得到了二次流对换热管横截面局部努赛尔数以及壁面剪切应力分布的影响。分析了几何参数对二次流分布以及二次流大小的影响,得到了扭曲椭圆管低雷诺数强化传热机理。
     2.搭建了扭曲椭圆管管内传热与压降性能测试平台,并对测试系统可靠性进行了分析。利用测试平台,对长轴为2b=24mm、短轴2a=14.5mmm、扭距P分别为200mm以及230mm的扭曲椭圆管进行了试验测试,得到了两根扭曲椭圆管管内传热与压降性能计算准则关系式,分析了前人得到的准则关系式对本测试结果的可靠性,同时对比分析了光滑圆管以及不同几何参数扭曲椭圆管的传热与压降特性。
     3.搭建了扭曲椭圆管换热器壳程传热与压降性能测试平台,并对测试平台可靠性进行了分析。利用测试平台,对FrM=79的扭曲椭圆管换热器壳程传热与压降性能进行了试验测试,分析了前人得到的准则关系式应用范围扩展后的可靠性,同时对比分析了折流杆换热器与扭曲椭圆管换热器的传热与压降性能,优化了现有换热器综合性能评价因子,7,并基于新的评价因子ηM对扭曲椭圆管换热器的综合性能进行了评价。
     4.通过采用Realizable k-e模型及相关模型参数对扭曲椭圆管管内外传热与压降性能进行了数值计算,分析了几何参数对换热器管内外传热与压降性能的影响,同时以数值计算结果为基础,得到了扭曲椭圆换热器管内外温度场、速度场分布以及流线分布。同时分析了温度场、速度场、二次流对传热与流动的影响、几何参数对二次流大小和流体流动状态的影响等。借助场协同理论分析了换热器强化传热机理,拟合得到了扭曲椭圆管换热器管程以及壳程传热与压降特性计算通用型准则关系式。
Material and Equipment cost will be seriously saved when smooth tubes are replaced by enhanced tubes in the heat exchangers. Also the utilization rate of heat will be obviously promoted, more energy will be saved. Comparing with the traditional shell-tube heat exchangers, advantages just like higher heat transfer coefficient, lower pressure drop, higher clean ability and smaller volume will be found in twisted tube heat exchangers. This new type of heat exchanger is gradually showing their superiority in petroleum chemical industry.
     Aiming at obtaining the heat transfer and pressure drop correlations of both the shell side and tube side of the twisted oval tube heat exchanger, the present work analyzes the heat transfer and fluid flow characteristics of the twisted oval tube theoretically. Heat transfer and pressure drop performances of twisted oval tubes with different geometrical parameters were studied experimentally and numerically. Fluid flow and heat transfer characteristics in both the tube side and shell side of the twisted oval tube heat exchanger are studied numerically. Main component and major findings of the present work are as follow:
     1. In terms of tensor technique, perturbation method and Galerkin method, analytic solutions of each order perturbation components of velocity and temperature are obtained. Comparatively analyzed the heat transfer and pressure drop performances of smooth round tube, smooth oval tube and twisted oval tubes with different geometrical parameters. Each order components of velocity and temperature of smooth round tube and twisted oval tube are analyzed and also their influences on each other are also studied. Their influence on the distribution of local Nusselt number and wall shear stress are also studied. Influences of geometrical parameters on the distribution of secondary flow and the magnitude of secondary flow are analyzed. Heat transfer enhancement mechanism of the twisted oval tubes in laminar state is obtained.
     2. Heat transfer and pressure drop performance testing system of the twisted oval tube is established. Performances of the twisted oval tubes with major axis2b=24mm, minor axis2a=9.5mm, twisted pitch length equals200mm and230mm are experimentally studied. Correlations for calculating their heat transfer and pressure drop performances are also fitted. The reliability of the correlations from former researchers is analyzed. And also the heat transfer and pressure drop performance of smooth round tube and twisted oval tubes are comparatively analyzed.
     3. Shell side heat transfer and pressure drop performance testing system of the twisted oval tube heat exchanger is established. Shell performances of twisted oval tube heat exchanger with FrM=79is experimentally studied. The reliability of the correlations from former researchers is analyzed. And also shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger and rod baffle heat exchanger are compared with each other. The overall performance evaluation factor η is optimized in the present work. With the optimized overall performance evaluation factor ηM, the overall performance of the twisted oval tube heat exchanger is evaluated.
     4. With Realizable k-ε turbulence model and relevant model parameters, shell side and tube side heat transfer and pressure drop performances of twisted oval tube heat exchanger are simulated. Influences of twisted oval tube geometrical parameters on the performance of the twisted oval tube heat exchanger are analyzed. Based on the numerical result, Influence of temperature, velocity, secondary flow distributions on the performances of the twisted oval tube heat exchanger are analyzed. In terms of field synergy principle, both the shell side and tube side heat transfer enhancement mechanism of the twisted oval tube heat exchanger are summarized. And also the general correlations for calculating the heat transfer and pressure drop performance of the twisted oval tube heat exchanger are fitted.
引文
[1]朱冬生,钱颂文,马小明,孙萍,罗小平,王阳君.换热器技术及进展.2008,北京:中国石化出版社.
    [2]林宗虎.强化传热及其工程应用.1987,北京:机械工业出版社.
    [3]周明霞.国内外换热器技术进展.压力容器,1995,12(1):19-23.
    [4]崔海亭,姚仲鹏.强化型管壳式热交换器的研究现状及发展.化工机械,1999,26(3):168-170.
    [5]帅志明,李学泰.电厂凝结换热器螺旋槽管强化传热.中国电力,1993(4):30-35.
    [6]贾檀,陆应生.横纹管的传热与流体力学特性研究.化工学报,1990,41(5):612-617.
    [7]思勤,刘兵.高效波纹管换热器的工业化试验.化学工程,1994,22(1):23-27.
    [8]张忠伟,刘新换.强化缩放管换热器组在酒精生产中的应用.辽宁食品与发酵,1996(2):40-44.
    [9]吴峰,林梅,田林,王秋旺,罗来勤.纵向内翅片管对流换热特性的实验研究及数值模拟.化工学报,2005,56(11):2065-2068.
    [10]齐承英,吕灿仁.绕花丝管内插物对蒸汽—空气混合物系凝结换热性能的影响.河北工业大学学报,1997,26(2):6-11.
    [11]Almeida J A, Mendes P R S. Local and average transport coefficients for the turbulent flow in internally ribbed tubes. Experimental Thermal and Fluid Science,1992,5(4): 513-523.
    [12]Goto M, Inoue N, Ishiwatari N. Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes. International Journal of Refrigeration,2001, 24(7):628-638.
    [13]Goto M, Inoue N, Yonemoto R. Condensation heat transfer of R410A inside internally grooved horizontal tubes. International Journal of Refrigeration,2003,26(4):410-416.
    [14]San J-Y, Huang W-C. Heat transfer enhancement of transverse ribs in circular tubes with consideration of entrance effect International Journal of Heat and Mass Transfer, 2006,49(17-18):2965-2971.
    [15]Bilen K, Cetin M, Gul H, et al. The investigation of groove geometry effect on heat transfer for internally grooved tubes. Applied Thermal Engineering,2009,29(4): 753-761.
    [16]Kiml R, Magda A, Mochizuki S, et al. Rib-induced secondary flow effects on local circumferential heat transfer distribution inside a circular rib-roughened tube. International Journal of Heat and Mass Transfer,2004,47(6-7):1403-1412.
    [17]Rainieri S, Pagliarini G. Convective heat transfer to temperature dependent property fluids in the entry region of corrugated tubes. International Journal of Heat and Mass Transfer,2002,45(22):4525-4536.
    [18]Kiml R, Mochizuki S, Murata A. Heat transfer augmentation by rib-induced secondary flow inside a circular tube with inclined Ribs. Nippon Dennestu Shinpojiumu Koen Ronbunshu,2003,40(11):39-40.
    [19]陈颖.复杂通道中湍流与热传递的场协同研究.广州:华南理工大学,2003.
    [20]周强泰,赵伶玲,王泽宁,et a1.螺旋槽管强化传热研究及其在锅炉中的应用.东南大学学报:自然科学版,2005,35(1):1-6.
    [21]Ganeshan S, Rao M R. Studies on thermohydraulics of single-and multi-start spirally corrugated tubes for water and time-independent power law fluids. International Journal of Heat and Mass Transfer,1982,25(7):1013-1022.
    [22]Zimparov V D, Vulchanov N L, Delov L B. Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers-1. Experimental investigation and performance evaluation. International Journal of Heat and Mass Transfer,1991,34(9): 2187-2197.
    [23]Vulchanov M L, Zimparov V D, Delov L B. Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers-2. A mixing-length model for predicting fluid friction and heat transfer. International Journal of Heat and Mass Transfer,1991,34(9):2199-2206.
    [24]Srinivasan V, Christensen R N. Experimental investigation of heat transfer and pressure drop characteristics of flow through spirally fluted tubes. Experimental Thermal and Fluid Science,1992,5(6):820-827.
    [25]Panchal C B, France D M. Heat transfer and pressure drop in large pitch spirally indented tubes. International Journal of Heat and Mass Transfer,1993,36(3):565-576.
    [26]Vicente P G, Garcia A, Viedma A. Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers. International Journal of Heat and Mass Transfer,2004,47(4): 671-681.
    [27]Webb R L, Eckert E R G, Goldstein R J. Heat transfer and friction in tubes with repeated-rib roughness. International Journal of Heat and Mass Transfer,1971,14(4): 601-617.
    [28]Obot N T, Esen E B, Rabas T J. The role of transition in determining friction and heat transfer in smooth and rough passages. International Journal of Heat and Mass Transfer, 1990,33(10):2133-2143.
    [29]Barba A, Rainieri S, Spiga M. Heat transfer enhancement in a corrugated tube. International Communications in Heat and Mass Transfer,2002,29(3):313-322.
    [30]Vicente P G, Garcia A, Viedma A. Mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow. International Communications in Heat and Mass Transfer,2004,31(5):651-662.
    [31]Vicente P G, Garcia A, Viedma A. Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow. International Journal of Heat and Mass Transfer,2002,45(26):5091-5105.
    [32]Gee D L, Webb R L. Forced convection heat transfer in helically rib-roughened tubes. International Journal of Heat and Mass Transfer,1980,23(8):1127-1136.
    [33]Xiaoyue L, Michael K J. Geometry Effects on Turbulent Flow and Heat Transfer in Internally Finned Tubes. Journal of Heat Transfer,2001,123(6):1035-1044.
    [34]Nakayama W, Takahashi K, Daikoku T. Spiral ribbing to enhance single-phase heat transfer inside tubes.in the ASME-JSME Thermal Engineering Joint Conference[C]. Honolulu,1983.
    [35]Li H M, Ye K S, Tan Y K, et al. Investigation on tube-side flow visualization, friction factors and heat transfer characteristics of helical-ridging tubes, heat transfer, in the 7th International Heat Transfer Conference[C]. Washington DC:Hemisphere Publishing Corp,1982.
    [36]Garimella S, Chandrachood V, Christensen R N, et al. Investigation of heat transfer and pressure drop augmentation for turbulent flow in spirally enhanced tubes. ASHRAE Transaction,1988,94(2).
    [37]孟继安,陈泽敬,李志信,等.管内对流换热的场协同分析及换热强化.工程热物理学报,2003,24(4):652-654.
    [38]Chen W-L, Guo Z, Chen C-K. A numerical study on the flow over a novel tube for heat-transfer enhancement with a linear Eddy-viscosity model. International Journal of Heat and Mass Transfer,2004,47(14-16):3431-3439.
    [39]崔凯.异型管传热与流动的模拟研究.天津:天津大学,2005.
    [40]Chen W-L, Wong K-L, Huang C-T. A parametric study on the laminar flow in an alternating horizontal or vertical oval cross-section pipe with computational fluid dynamics. International Journal of Heat and Mass Transfer,2006,49(1-2):287-296.
    [41]Meng J-A, Liang X-G, Chen Z-J, et al. Experimental study on convective heat transfer in alternating elliptical axis tubes. Experimental Thermal and Fluid Science,2005, 29(4):457-465.
    [42]Li B, Feng B, He Y-L, et al. Experimental study on friction factor and numerical simulation on flow and heat transfer in an alternating elliptical axis tube. Applied Thermal Engineering,2006,26(17-18):2336-2344.
    [43]孟继安,陈泽敬,李志信,等.交叉缩放椭圆管换热与流阻实验研究及分析.工程热物理学报,2004,25(5):813-815.
    [44]Lutuha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical bafies. Trans. Chem. E,1990,68(A):263-270.
    [45]Gentry C C. Rodbaffle heat exchanger technology. Chem. Eng. Prog.,1990,80(7): 48-57.
    [46]褚家瑞.当代管壳式和板式换热设备的技术进展.石油化工设备,1992,21(2):3-7
    [47]邓先和,陈祥明,张志孝.空心环管壳式换热器工业化应用回顾.有色冶炼,2001,30(3):4-5.
    [48]周理,安福,徐越平.刺孔膜片式高效管壳换热器的壳程特性研究.化工学报,1992,43(5):599-608.
    [49]董爱明,刘敏珊.新型纵流壳程换热器结构的研究.林产化工通讯,1996,30(1):18-23
    [50]董其伍,刘敏珊,郭茶秀,胡庆均,王学生.纵流壳程换热器性能研究.郑州工业大学学报,1996,17(3):1-6
    [51]邓先和,罗运禄.壳程流体纵向冲刷型高效气—气管壳式换热器的传热与流阻性能的研究.化工学报,1991,42(2):178-182
    [52]Dzyubenko B V, Ashamantas L V, Segal M D. Modeling and design of twisted tube heat exchanger. New York:Begell House Inc.
    [53]张杏祥,魏国红,桑芝富.螺旋扭曲扁管换热器传热与流阻性能试验研究.化学工程,2007,35(2):17-20,25
    [54]梁龙虎.螺旋扁管换热器的性能及工业应用研究.炼油设计,2001,31(8):28-33
    [55]Patankar S V, Spalding D B. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchanger, In Afgan N and Schlunder E V(eds.):Heat Exchanger Design and Theory Sourcebook, Washington D C:Scripta Book Company,1974:155-176
    [56]Butterworth D. A model for heat transfer during three-dimensional flow in tube bundles. 6th International Heat Transfer Conference, Toronto,1978
    [57]Sha W T, Yang C I, Kao T T, Cho S M. Multi-dimensional numerical modeling of heat exchanger. ASME J. Heat Transfer,1986,104:417-425
    [58]Sha W T. Numerical modeling of heat exchanger. In:Cheremisin off N P, ed. Handbook of Heat and Mass Transfer, Gulf Publishing,1985
    [59]Prithiviraj M, Andrews M J. Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchanger Part I:Foundation and fluid mechanics. Numerical heat transfer,1998,33 A:799-816
    [60]Prithiviraj M, Andrews M J. Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchanger Part Ⅱ:Heat transfer. Numerical Heat Transfer,1998, 33A:817-828
    [61]Huang X H, Lu Z, Liu D N. Numerical Study of Turbulent Flow Characteristics in Shell Side of Shell-and-Tube Heat Exchanger. Journal of Shanghan Jioantong University, 2000,51(3):297-302
    [62]Hu Y D. Three-dimensional Numerical Simulation of Shell Side Velocity and Temperature Fields of Shell-and-Tube Heat Exchanger. Xi'an:Xi'an Jiaotong University,2001.
    [63]邓斌,陶文铨.管壳式换热器壳侧湍流流动与换热的三维数值模拟.化工学报,2004,55(7):1053-1059.
    [64]曾文良,张复兴,王剑秋,邓先和.轴流管壳式换热器壳侧流体优化分布数值研究.衡阳师范学院学报,2009,30(3):65-69.
    [65]Dong Q W, Liu M S, Zhao X D. Research on the characteristic of shell side support structures of heat exchanger with longitudinal flow of shell side fluid. IASME Trans., 2005,8(2):1491-1498.
    [66]古新,董其伍,王珂.纵流壳程换热器壳程近壁区流场和温度场数值研究.工程热物理学报,2009,30(4):683-686.
    [67]王定标,向飒,董其伍,等.纵流壳程换热器的三维流场.化工学报,2004,55(5):699-703.
    [68]董其伍,刘敏珊,赵晓东.杆栅支撑纵流壳程换热器壳侧流体流动与传热的数值模拟.2006,57(5):1073-7078.
    [69]汪健生,崔凯.纵流式换热器流动与传热特性的数值研究.河北工业科技,2005,22(2):55-59.
    [70]Zhang J F, He Y L, Tao W Q.3D numerical simulation on shell-and-tube heat exchanger with middle-overlapped helical baffles and continuous baffles-Part I Numerical model and results of whole heat exchanger with middle-overlapped helical baffles. International Journal of Heat and Mass Transfer.2009,52:5371-5380.
    [71]Wang Q W, Chen Q Y, Chen G D, Zeng M. Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles. International Journal of Heat and Mass Transfer,2009,52:1214-1222.
    [72]Zhang Z G, Ma D B, Fang X M, Gao X N. Experimental and numerical heat transfer in a helically baffled heat exchanger combined with one three-dimensional finned tube. Chemical Engineering and Processing,2008,47:1738-1743.
    [73]思勤,夏清,梁龙虎,等.螺旋扁管换热器传热与阻力性能.化工学报,1995,46(5):601-608.
    [74]江楠,江飞飞,许海峰.钉头管自支承式换热器壳程性能研究.压力容器,2008,25(3):18-22.
    [75]董爱明.纵流壳程换热器性能研究.南京林业大学学报,1996,20(1):85-89
    [76]吴金星,朱登亮,魏新利,等.螺旋肋片自支撑换换热器强化换热试验研究.热能动力工程,2008,23(2):157-160
    [77]Todd L. Some comments on steady laminar flow through twisted pipes. Journal of Engineering Mathematics.1977,11(1):29-48.
    [78]Kotorynski W P.. Steady laminar flow through a twisted pipe of elliptical cross-section. Computers & Fluids.1986,14(4):433-444.
    [79]Tuttle E R. Laminar flow in twisted pipes. Journal of Fluid Mechanics,1990,219: 545-570.
    [80]Bishara F, Jog M A, Manglik R M. Computational simulation of swirl enhanced flow and heat transfer in a twisted oval tube. Journal of Heat Transfer,2009,131(8):1.
    [81]Bishara F. Numerical simulation of fully developed laminar flow and heat transfer in isothermal helically twisted tubes with elliptical cross-section.2010, Cincinnati: University of Cincinnati:45-56.
    [82]Bolinder C J. Curvilinear coordinates and physical components:an application to the problem viscous flow and heat transfer in smoothly curved ducts. Journal of Applied Mechanics.1996,63(4):985-989.
    [83]Bolinder C J. First-and higher-order effects of curvature and torsion on the flow in a helical rectangular duct, Journal of Fluid Mechanics,1996,314:113-136.
    [84]章本照,张金锁,常华章,陈华军.椭圆形截面螺旋管道内二次流动的摄动解.空气动力学学报,2000,18(4):448-455.
    [85]张明侃,沈新荣,麻剑锋,章本照.旋转椭圆截面螺旋管道内粘性流动的Galerkin解.自然科学进展,2005,15(8):923-929.
    [86]Zhang J S, Zhang B Z. Laminar Fluid flow in helical elliptical tube, Journal of hydrodynaimcs,2000, Series B,2:62-71.
    [87]顾维藻,马重方,神家锐.强化传热.科学出版社,1990:139-150.
    [88]Yang S, Zhang L, Xu H. Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes. Applied Thermal Engineering,2011,31:2981-2991.
    [89]高学农,邹华春,王端阳,陆应生.高扭曲比螺旋扁管的管内传热及流阻性能.华南理工大学学报(自然科学版),2008,36(11):17-21.
    [90]Gao X N, Yin H B, Huang Y Y, Fang Y T, Zhang Z G. Nucleate pool-boiling enhancement outside a horizontal bank of twisted tubes with machined porous surface. Applied Thermal Engineering,2009,29(14-15):3212-3217.
    [91]黄德斌,邓先和,王扬君,黄素逸.螺旋椭圆扁管强化传热研究.石油化工设备,2003,32(3):1-4.
    [92]于洋,朱冬生,曾力丁,邹静.扭曲管强化传热性能实验研究.化学工程,2011,39(2):18-21.
    [93]孟继安,李志信,过增元.螺旋扭曲椭圆管层流换热与流阻特性模拟分析.工程热物理学报,2002,23:117-120.
    [94]杨蕾.扭曲管双壳程换热器传热性能的数值模拟与实验研究.广州:华南理工大学,2010:45-54
    [95]Ievlev V M, Dzyubenko B V, Dreitser G A, Vilemas Y V. In-line and cross-flow helical tube heat exchangers. International Journal of Heat and Mass Transfer,1982,25(3) 317-323.
    [96]Dzyubenko B V. Investigation of the transfer properties of a stream in a heat exchanger with spiral tubes. Journal of Engineering Physics and Thermophysics,1979,38(6): 965-971.
    [97]Dzyubenko B V, Urbonas P A, Ashmantas L A. Interchannel mixing of heat carriers in a bundle of spiral tubes. Journal of Engineering Physics and Thermophysics,1982,45(1): 26-32.
    [98]Dzyubenko B V, Stetsyuk V N. Effect of flow-twisting intensity on the mixing of a heat-transfer agent in bundles of twisted tubes. Journal of Engineering Physics and Thermophysics,1987,55(5):709-715.
    [99]Levlev V M, Kalinin E K, Danilov I I, Dzyubenko B V, Dreitser G A. Heat transfer in the turbulent swirling flow in a channel of complex shape[C]. Heat transfer 1982; Proceedings of the Seventh International Conference, Washington D C:Hemisphere Publishing Corperation,1982,3:171-176.
    [100]Dzyubenko B V. Drag in heat exchanger with a twisted flow. Journal of Engineering Physics and Thermophysics,1981,44(3):357-362.
    [101]Dzyubenko B V, Dreitser G A. Heat transfer and fluid friction in bundles of twisted tubes. Journal of Engineering Physics and Thermophysics,1986,20(6):885-892.
    [102]Dzyubenko B V. Heat exchanger along the initial segment in a heat exchanger with a helical flow. Journal of Engineering Physics and Thermophysics,1982,42(2):230-235.
    [103]Dzyubenko B V. Estimation of the thermo hydraulic efficiency of heat exchanging apparatuses with twisted tubes. Heat transfer research,2006,37(4):349-363.
    [104]Dzyubenko B V. Influence of flow twisting on convective heat transfer in banks of twisted tubes. Heat transfer research,2005,36(6):449-459.
    [105]Mushabbab A. Design and operate a fouling monitoring device to study fouling at twisted tube. Dhahran:King Fahd University of Petroleum & Minerals,2007:96-135.
    [106]鞠在堂.螺旋扁管换热器.化工装备技术,2003,5(24):19-21.
    [107]梁龙虎.螺旋扁管换热器的性能及工业应用研究.炼油设计,2001,8(31):28-33.
    [108]Zhang L., Yang S., Xu. H., Experimental study on condensation heat transfer characteristics of steam on horizontal twisted elliptical tubes. Applied Energy,2012,97: 881-887.
    [109]Maia C R M, Aparecido J B, Milanez L F. Heat transfer in laminar flow of non-Newtonian fluids in ducts of elliptical section, International Journal of Thermal Science.2006,45:1066-1072.
    [110]Velusamy K, Garg V K, Vaidyanathan G. Fully developed flow and heat transfer in semi-elliptical ducts. International Journal of heat and fluid flow,1995 (16):145-152.
    [111]Debler W R. Fluid mechanics fundamentals.1990, New Jersey:Prentice-Hall, Inc. 306-314.
    [112]Kakac S, Shah, R K, Aung W. Handbook of single-phase convective heat transfer.1987, New York:John Wiley & Sons, Inc.:3.63-368.
    [113]Adrian B. Convection heat transfer.1984New York:John Wiley & Sons, Inc.:82-89.
    [114]Robertson A M, Muller S J. Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section, International Journal of No-Linear mechanics,1996,1(31):1-20.
    [115]Zhang, M K, Shen X R Ma J F, Zhang B Z. Theoretical analysis of convective heat transfer of Oldroyd-B fluids in a curved pipe. International Journal of Heat and Mass Transfer,2008, (51):661-671.
    [116]Moffat R J. Using uncertainty analysis in the planning of an experiment. Journal of Fluids Engineering 1985,107(2):173-178.
    [117]Kline S J, McClintock F A. Describing uncertainties in single-sample experiment. ASME Mechanical Engineering,1953,75:3-8
    [118]Webb R L. Performance evaluation criteria for use of enhanced heat transfer surface in heat exchanger design. International Journal of heat and mass transfer,1981,24(4): 715-726.
    [119]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001:374-376.
    [120]Fluent 6.3 User's Guide.
    [121]Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes. AIAA Paper,1989,89(366):1-12.
    [122]Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [123]Chorin A J. Numerical solution of Navier-stokes equations. Mathematics of Computation,1968, (22):745-762.
    [124]Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer,1998,41(14):2221-2225.
    [125]Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer,2005,48:1797-1807.
    [126]Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications. International Journal of Heat and Mass Transfer,2002,45:3849-3856.
    [127]Tao W Q, He Y L, Wang QW, Qu Z G, Song F Q. A unified analysis on enhancing single phase convective heat transfer with field synergy principle. International Journal of Heat and Mass Transfer,2002,45:4871-4879.
    [128]Chen W L, Wong KL, Huang C.T. Parametric study on the laminar flow in an alternating horizontal or vertical oval cross-section pipe with computational fluid dynamics. International Journal of Heat and Mass Transfer,2006,49:287-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700