吸液驱气法在多孔材料微孔结构表征中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料对气体的吸附容量和吸附选择性主要由其微孔结构和表面性质决定。精确地测量多孔材料的微孔结构是气体吸附分离用多孔材料的制备和应用基础。77K N2吸附是测定多孔材料孔结构的标准方法之一。在77K低温下,N2分子动能很低,使得N2分子扩散到较窄的微孔(孔径小于0.7nm)内达到吸附平衡所需时间较长,难以准确测定较小微孔结构信息。而室温下小分子气体探针吸附则较77KN2吸附可以测量到更小的孔,获得更丰富的微孔信息。
     本文提出了通过分析多孔材料吸液驱气体积或速率获得其微孔结构参数的想法,即吸液驱气法。并建立了测量多孔材料吸液驱气体积和速率的装置。
     根据巨正则蒙特卡洛法模拟得到的N2在炭分子筛内的理论表观密度,由测量的炭分子筛吸水驱替出的N2体积计算N2在炭分子筛微孔内的表观密度,得到炭分子筛的微孔孔径。该方法测量得到的炭分子筛微孔孔径与常温N2吸附法测量得到的结果一致。根据液体只可进入孔径尺寸比其分子直径大的孔内的原理,通过比较炭分子筛吸液驱N2的体积得到炭分子筛的微孔孔口尺寸分布。该方法测量得到的炭分子筛微孔孔口尺寸主要分布在0.28-0.37nm。同时利用该方法跟踪了化学气相沉积制备炭分子筛过程中样品微孔孔径及孔口尺寸分布的变化。
     根据液体只可进入孔径尺寸比其分子直径大的孔的原理,通过比较活性炭吸液驱CH4和N2的体积得到活性炭的微孔孔径分布。与77K N2吸附法测量的结果相比,该方法能够测量到活性炭中更小尺寸的孔。得到活性炭的微孔孔径分布后,结合动态法测量的CH4/N2分离因子分析了活性炭的微孔结构对其选择吸附CH4/N2混合气中CH4的影响。结果表明,活性炭样品微孔孔径分布不同,其CH4/N2分离因子也不相同,其微孔孔径分布,尤其是孔径<0.48nm的微孔对其选择吸附混合气CH4/N2中的CH4起着非常重要的作用。
     通过比较测量的ZSM-5吸液驱CH4和N2的体积得到ZSM-5的微孔孔径分布。吸液驱气法测量的ZSM-5的微孔孔径主要分布在0.48nm左右,与77K N2吸附测量的结果一致。
     考察了温度、气体种类、粒度、液体粘度和极性等对炭分子筛、活性炭和沸石分子筛吸液驱气速率的影响。结果表明,炭分子筛、活性炭和ZSM-5吸水驱气的速率随着温度的升高,样品粒度的减小而加快,炭分子筛吸水驱气的速率受气体分子直径的影响。炭分子筛、活性炭和沸石分子筛吸水驱N2过程同时受大孔和微孔扩散控制。当炭分子筛和ZSM-5粒度分别减小至0.250-0.180mm和0.850-1.400mm时,样品吸水驱N2速率不再随粒度变化而变化,粒度分别减小至0.250-0.180mm和0.850-1.400mm的炭分子筛和ZSM-5吸水驱N2的过程只受微孔控制。活性炭和13X沸石分r筛吸液驱N2的速率受液体探针的极性和粘度影响。在此基础上,考察了化学气相沉积时间对炭分子筛微孔吸水驱N2速率影响,进而计算了该过程的活化能。实验结果表明,炭分子筛微孔吸水驱N2的速率随化学气相沉积时间的延长减慢;活化能随之增加。
The gas adsorption capacity and gas mixture selectivity of porous materials may be mainly caused by the micropore texture and surface properties. Hence, to develop better porous materials for the gas mixture separation and evaluate whether they are appropriate for application, an accurate means for assessing the micropore texture of the porous materials is needed. N2adsorption at77K is currently employed as a standard technique for the pore size determination. However, the application of this technique to ultramicropore is limited because N2is adsorbed at unreasonably slow rates in this kind pore at cryogenic temperature. The pore size characterized by smaller gas adsorption at ambient temperature extends to samller than that by N2adsorption at77K.
     In this dissertation, characterization of microporous texture of porous materials by analyzing the volume or rate of gas recovered by liquid imbibition is proposed. An experimental set-up was built to measure the volume or rate of gas recovered by liquid imbibition.
     The volume of gas recovered by the water imbibition was measured and applied to evaluate the density of the N2adsorbed in the carbon molecular sieves. The micropore size of the carbon molecular sieves was determined by comparing the N2density from the water-N2imbibition with that calculated by Grand Canonical Monte Carlo simulation. The micropore size evaluated by the liquid-gas imbibition coincides with that obtained by N2adsorption at ambient temperature. The size-exclusion property of the carbon molecular sieves was estimated by comparing the volume of N2recovered by imbibition of liquids with varied molecular dimensions, because the liquid can probe only pores with mouth larger than the size of liquid molecules and only the gas in these pores can be replaced. The mian micropore mouth size distribution of the carbon molecular sieves for air separation dominates in0.28-0.37nm. Furthermore, the effect of chemical vapor deposition treatment on the porous texture of the carbon molecular sieves was revealed by the liquid-gas imbibition.
     The micropore size distribution of the activated carbons was estimated by comparing the volume CH4and N2recovered by imbibition of liquids with varied molecular dimensions, respectively, because the liquid can probe only pores with size larger than the size of liquid molecules and only the gas in these pores can be replaced. The results showed that the pore sizes characterized by spontaneous liquid-gas imbibition extend to smaller than that by N2 adsorption at77K. The influence of micropore size on their selective adsorption of CH4from CH4/N2mixture is analyzed with the CH4/N2separation factors obtained by dynamic method. The separation factor for CH4/N2on activated carbons changes with the micropore size distribution. The micropore of activated carbons plays an important role in their selective adsorption of CH4from CH4/N2mixture, particularly those pores smaller than0.48nm.
     The micropore size distribution of the ZSM-5was estimated by comparing the volume CH4and N2recovered by imbibition of liquids with varied molecular dimensions, respectively, because the liquid can probe only pores with mouth larger than the size of liquid molecules and only the gas in these pores can be replaced. The results showed that the dominated micropore size of the ZSM-5is about0.48nm, and the micropore size evaluated by the liquid-gas imbibition coincides with that obtained by N2adsorption at77K.
     The effect of temperature, the kinds of gases, particle size, liquid viscosity and polarity on the rate of gas recovered by water imbibition in carbon molecular sieves, activated carbon and ZSM-5was investigated. The experimental results showed that the rate of N2recovered by water imbibition increases with the temperature incrcasea and the particle size decreases, showing that the rate of gas recovered by water imbibition is controlled by both the macropore and the micropore. The kinds of gases play some role in the rate of gas recovered by water imbibition in carbon molecular sieves. There is a critical particle size0.250-0.180mm and0.850-1.400mm for carbon molecular sieves and ZSM-5, respectively, below which the rate of N2recovered by water imbibition is independent of the particle size, showing that the rate of N2recovered by water imbibition in carbon molecular sieves and ZSM-5is only controlled by the micropore when the particle size of carbon molecular sieves and ZSM-5below0.250-0.180mm and0.850-1.400mm, respectively. The viscosity and polarity of the liquid, can influence the rate of N2recovered by imbibition in activated carbons and13X. Furthermore, the effect of chemical vapor deposition time on the rate of N2recovered by water imbibition in micropore of carbon molecular sieves is investigated. The experimental results show that the rate of N2recovered by water imbibition in micropore of carbon molecular sieves decrease as the time of chemical vapor deposition increases and the activation energy of N2recovered by water imbibition in micropore of carbon molecular sieves increases as the time of chemical vapor deposition increases.
引文
[1]Konstantakou M, Steriotis Th A, Papadopoulos G K, et al. Characterization of nanoporous carbons by combining CO2 and H2 sorption data with the Monte Carlo simulations [J]. Applied Surface Science,2007,253(13):5715-5720.
    [2]Setoyama N, Kaneko K, Rodriguez-Reinoso F. Ultramicropore characterization of microporous carbons at low temperature helium adsorption [J]. The Journal of Physical Chemistry,1996, 100(24):10331-10336.
    [3]Jagiello J, Betz W. Characterization of pore structure of carbon molecular sieves using DFT analysis of Ar and H2 adsorption data [J]. Microporous and Mesoporous Materials,2008, 108(1-3):117-122.
    [4]Cazorla-Amoros D, Alcanz-Monge J, Linares-Solano A. Characterization of activated carbon fibers by CO2 adsorption [J]. Langmuir,1996,12(11):2820-2824.
    [5]Kobori R, Ohba T, Suzuki T, et al. Fine pore mouth structure of molecular sieve carbon with GCMC-assisted supercritical gas adsorption analysis [J]. Adsorption,2009,15 (2):114-122.
    [6]曹达鹏,汪文川.巨正则系综MonteCarlo模拟方法确定活性炭的微孔尺寸[J].高等学校化学学报,2002,23(5):910-914.
    [7]Rios RVRA, Silvestre-Albero J, Sepulveda-Escribano A, et al. Kinetic restrictions in the characterization of narrow microporosity in carbon materials [J]. The Journal of Physical Chemistry C,2007,111(10):3803-3805.
    [8]Stoeckli F, Centeno T A. On the characterization of microporous carbons by immersion calorimetry alone [J]. Carbon,1997,35(8):1097-1100.
    [9]Silvestre-Albero J, Silvestre-Albero A, Rodriguez-Reinoso F, et al. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273K) and argon (87.3 K) adsorption in combination with immersion calorimetry [J]. Carbon,2012,50(9): 3128-3133.
    [10]Badri M, Crouse K A, Wang H A. Conductance measurement of water-sorbed activated carbon[J].Pertanika,1984,7(3):59-65
    [11]Kalogianni E P, Savopoulos T, Karapantsios T D, et al. A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets [J]. Colloids and Surface B: Biointerfaces,2004,35(3-4):159-167
    [12]Labajos-Broncano L, Gonzalez-Martin M L, Bruque J M, et al.On the use of washburn's equation in the analysis of weight-time measurements obtained from imbibition experiments [J]. Colloid Interface Science,1999,219(2):275-281.
    [13]Van Oss C J, Giese R F, Li Z, et al. Determination of contact angles and pore sizes of porous media by column and thin layer wicking [J]. Journal of Adhesion Science and Technology,1992, 6(4):413-428.
    [14]Li Z, Giese R F, van Oss C J, et al. Wicking technique for determination of pore size in ceramic materials [J]. American Ceramic Society,1994,77(8):2220-2222.
    [15]Suzuki T, Takahashi E, Oishi S, et al. Evaluation of interparticle space network of carbon material using capillary rise of liquid [J]. Carbon,2004,42 (3):2735-2777.
    [16]Dang-Vu T, Hupka J. Characterization of porous materials by capillary rise method [J]. Physicochemical Problems of Mineral Processing,2005,39:47-65.
    [17]Chen X, Kornev K G, Kamath Y K, et al.. The wicking kinetics of liquid droplets into yams [J].Textile Research Journal,2001,71(10):862-869.
    [18]Fragiadaki E, Harhalakis S, Kalogianni E P. Characterization of porous media by dynamic wicking combined with imgae analysis [M]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,413:50-57.
    [19]Navas J, Alcantara R, Fernandez-Lorenzo C, et al. Pore characterization methodology by means of capillary sorption tests [J].Transport in Porous Media,2011,86:333-351.
    [20]Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendation for the characterization of potous solids [J]. Pure and Applied Chemistry,1994,66(8):1739-1758.
    [21]Rouqucrol F, Rouquerol J, Sing K. Adsorption by powders and porous solids [M]. Academic Press, London,1999:237.
    [22]Suzuki T, Ito H, Oishi S. Evaluation of the pore network of porous carbon material using the macro crystal model [J]. Carbon,2002,40:787-803.
    [23]Lucas R. Ueber das zeitgesetz des kapillaren aufstiegs von flussigkeiten [J]. Kolloid Zcitschrift, 1918,23(1):15-22.
    [24]Washburn E W. The dynamics of capillary flow [J]. Physical Review,1921,17 (3) 273-283.
    [25]Siebold A, Walliser A, Nardin M, et al.Capillary rise for thermodynamic characterization of solid particle surface [J], Colloid Interface Science,1997,186 (1):60-70.
    [26]Aarden F B, Kerkhof P J A M, van der Zanden A J J. Capillary transport in adsorption from liquid phase on activated carbon [J]. AIChE,1999,45(2):268-275.
    [27]Borhan A, Rugnta K K. An experimental study of the radial penetration of liquids in thin porous substrates [J]. Jounal of Colloid and Interface Science,1993,58 (2):403-411.
    [28]Choudhary V R, Singh A P. Sorption capacity and diffusion of pure liquids in ZSM-5 type zeolites [J]. Zeolites,1986,6(3):206-208.
    [29]Harris R K., Thompson T V, Forshaw P, et al. A magic-angle spinning NMR study into the adsorption of deuterated water by activated carbon[J]. Carbon,1996,34(10):1275-1279.
    [30]Dickinson L M, Harris R K, Shaw J A, et al.Oxygen-17 and deuterium NMR investigation into the adsorption of water on activated carbon [J]. Magnetic Resonance in Chemistry,2000,38(11): 918-924.
    [31]Supple S, Quirke N. Molecular dynamics of transient oil flows in nanopores I:Imbibition speeds for single wall carbon nanotubes [J]. Chemical Physics,2004,121(17):8571-8579.
    [32]Rutherford S W, Nguyen C, Coons J E, et al. Characterization of carbon molecular sieves using methane and carbon dioxide as adsorption probes [J]. Langmuir,2003,19(20):8335-8342.
    [33]Rouquerol F, Rouquerol J, Sing K. Adsorption by powder and porous solids [M]. London: Academic Press,1999,6:165-179.
    [34]郭贤权,王补森,何炳林.压汞法研究大孔交换树脂和大孔吸附树脂的孔结构V.汞接触角和表面张力对孔结构的影响[J].离子交换与吸附,1990,6(2):87-92.
    [35]陈聿恕.用汞压法分析多孔体的结构[J].粉末冶金技术,1987,5(4):215-220.
    [36]刘希尧.压汞法研究吸附剂与催化剂的孔结构[J].石油化工,1984,13(8):538-546.
    [37]Gregg S J, Sing K S W. Adsorption. Surface Area and Porosity [M]. Second Edition London: Academic Press,1982:98-100.
    [38]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001,29(5):28-30.
    [39]Terzyk A P, Gauden P A, Kowalczyk P. What kind of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation? [J].Carbon,2002,40(15):2879-2886.
    [40]Korili S A, Gil A. On the application of various methods to evaluate the microporous properties of activated carbons. Adsorption,2001,7(3):249-264.
    [41]Gavalda S, Kaneko K, Thomson K T, et al. Molecular modeling of carbon aerogels [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,32(187-188):531-538.
    [42]Toth J. Adsorption theory:modeling, and analysis [M]. New York, Marcel Dekker,Inc,2002:175.
    [43]Dombrowski R J, Lastoskie C M, Hyduke D R. The Horvath-Kawazoe method revisited [J]. Colloids and Surfaces A,2001,187-188:23-39.
    [44]Cheng L S, Yang R T. Predicting isotherms in micropores for different molecules and temperatures from a known isotherm by improved Horvath-Kawazoe equations [J]. Adsorption, 1995,1(3):187-196.
    [45]Rege S U, Yang R T. Corrected Horvath-Kawazoe equations for pore-size distribution [J].AIChE, 2000,46(4):734-50.
    [46]谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.
    [47]Sing K S W. Adsorption method for the characterization of porous materials [M]. Advances in Colloid and Interface Science.1998,76-77:3-11.
    [48]Barton S S, Evans M J B, MacDonald J A F. Adsorption and immersion enthalpies on BPL carbon [J]. Carbon,1998,36(7):969-972.
    [49]Fritz Stoeckli, Abdou Slash, Deridre Hugi-Cleary, et al. The characterization of microporosity in carbons with molecular sieve effects [J]. Microporous and mesoporous materials,2002,51(3): 197-202.
    [50]Silvestre-Albero Y, Gomez de Salazar C, Sepulveda-Escribano A, et al. Characterization of microporous solids by immersion calorimetry [J]. Colloids and Surfaces,2011,187-188(31): 151-165.
    [51]Hu Z H, Maes N, Vansant E F. Molecular probe technique for the assessment of the carbon molecular sieve structure [J]. Journal of Porous Materials,1995,2(1):19-23.
    [52]Villar-Rodil S, Denoyel R, Rouquerol J, et al. The use of microcalorimetry to assess the size exclusion properties of carbon molecular sieves [J]. Thermochimica Acta,2004,420(1-2): 141-144.
    [53]De Boer J J. The wettability of scoured and dried cotton fabrics [J]. Textile Research Journal, 1980,50(10):624-631.
    [54]Nelly Brielles, Florence Chantraine, Maryle'ne Viana, et.al Imbibition and dissolution of a porous medium [M]. Industrial Engineering Chemistry Research,2007,46(17):5785-5793.
    [55]Unsal E, Mason G, Ruth D W, et.al. Co-and counter-current spontaneous imbibition into groups of capillary tubes with lateral connections permitting cross-flow [J]. Colloid and Interface,2007, 315(1):200-209.
    [56]Barrer R M. Zeolite and clay minerals as sorbents and molecular sieves [M], Academic press, New York,1973:256.
    [57]Ruthven D M. Principles of Adsorption & Adsorption Processes[M], A Wiley-Interscience Publication, New York,1984:166-170
    [58]Ioannis Ioannou, Andrea Hamilton, Christopher Hall.Capillary absorption of water and n-decane by autoclaved aerated concrete [J]. Cement and Concrete Research,2008,38(1):766-771
    [59]Supple S, Quirke N. Rapid imbibition of fluid in carbon nanotubes [J]. Physical review letters, 2003,90(21):1-4.
    [60]Patrick J W, editor. Porosity in Carbons:Characterization and Application [M], New York: Halsted press,1995:2-8.
    [61]詹炳根,丁以兵.一种评定性能混凝土养护效果的新方法[J].混凝土,2006,2(4):25-27.
    [62]Kenneth Meeks, Nicholas J Carino. Curing of high performance concrete; Report of the Statc-of-the-Art. Building and Fire Research Laboratory Galthersburg, MD,1999,92-95.
    [63]Powers T C, Brownyard T L. Studies of the physical properties of hardened portland cement paste [J]. ACI,1946,43(9):845-880.
    [64]Dolch W L. Permeability and absorptivity of indiana limestone coarse aggregates. Thesis, Purdue University,1956.
    [65]Ephraim Senbetta, Charles F Scholer. A new approach for testing concrete curing efficiency [J]. ACI,1984,81(1):82-86.
    [66]IUPAC "Definitions, terminology and symbols in colloid and surface chemistry, part", Pure and Applied Chemistry.1972,31(4):597-638.
    [67]严继民,张启元,高敬琮.吸附与凝聚固体的表面与孔[M],北京利学出版社,1986: 2-3.
    [68]孙艳储.气材料及其储能性质的实验研究,[D],天津,天津大学:2001.
    [69]周亚平,杨斌.气体超临界吸附研究进展[J],化学通报,2000, 63(9): 8-13
    [70]Menon P G. Adsorption at High Pressure [J]. Chemical Review,1968,68(3):277-294.
    [71]Bose T K, Chahine R, Marchidon L, et al. New dielectric method for measurement of physical adsorption for gases at high pressure[J]. Review of Scientific Instruments,1987,58(12): 2279-2283.
    [72]Zhou L, Su W, Sun Y, et al, Supercritical adsorption:challenges in theory, analysis and modeling. Guan Yixin, Yao Shanjing, Zhu Ziqiang, eds, Proceeding of CKCSST' 2001, Hangzhou:China,2001,379-384.
    [73]王玉新,苏伟,周亚平.不同结构活性炭对CO2、CH4、N2及O_2的吸附分离性能[J].化工进展,2009,28(2):206-221.
    [74]Zhou L, Zhou Y P, Li M, et al. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon [J]. Langmuir,2000,16(14):5955-5959.
    [75]Zhou L, Bai Sh P, Zhou Y P, et al. Adsorption of nitrogen on silica gel over a large range of temperature [J]. Adsorption,2002,8(1):79-87.
    [76]杨斌.气体跨越临界温度吸附行为研究[D],天津:天津大学,2000.
    [77]Raashina Humayun, David L Tomasko. High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon [J]. AIChE,2000,46(10):2065-2075.
    [78]Vidal D, Malbrunot P, Vermesse J, et al. Measurement of physical adsorption of gases at high pressure [J]. Review of Scientific Instruments,1990,61(4):1314-1318.
    [79]Stoeckli H F. A generalization of the Dubinin-Radushkevich Equation for filling of eterogeneous microporous [J]. Colloid Interface Science,1978,67(2):195-203.
    [80]苏伟,周理,周亚平,等.孔结构对活性炭吸附CH4和CO2的影响.天然气工业,2006,26(10):147-150.
    [81]Malbunot P, Vidal D, Vermesse J, et al. Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure [J]. Langmuir,1997,13(3):539-544.
    [82]Sircar S. Measurement of gibbsian surface excess [J]. AIChE Journal,2001,47(5):1169-1176
    [83]Sircar S. Role of helium void measurement in estimation of gibbsian surface excess, The 7th International Conference on Fundamental of Adsorption, Nagasaki Japan,2001:656-663.
    [84]Maggs F A P, Schwabe P H, et al. Adsorption of helium on carbons:influence on measurement of density [J].Nature,1960,186(4729):956-958.
    [85]Alexander V. Neimark Peter, Ravikovitch I. Calibration of pore volume in adsorption experiments and theoretical model [J]. Langmuir,1997,13(19):5148-5160.
    [86]Staudt R, Saller G, Tomalla M, et al. A note on gravimetric measurements of gas-adsorption equilibria [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1993,97(1):98-105.
    [87]Ustinov E A, Do D D, Herbst A, et al. Modeling of gas adsorption equilibrium over a wide range of pressure:A thermodynamic approach based on equation of state [J]. Colloid and Interface Science,2002,250(1):49-62.
    [88]Zhou Y, Zhou L. Experimental study on high-pressure adsorption of hydrogen on activated carbon [J]. Science in China (Series B),1996,39(6):598-607.
    [89]周亚平,周理.超临界氢在活性炭上的吸附等温线研究[J].物理化学报,1997,13(2):119-127.
    [90]Zhou C H, Hall F, Gasem K A M, et al.Predicting gas adsorption using two-dimensional equations of state [J].Industrial Engineering Chemistry Research,1994,33(5):1280-1289.
    [91]Suzuki T, Kobori R, Kaneko K. Grand canonical Monte Carlo simulation-assisted pore width determination of molecular sieve carbons by use of ambient temperature N2 adsorption. Carbon. 2000,38:623-641.
    [92]曹大鹏.高度非对称模型流体及纳米介孔材料内真实流体吸附的分子模拟[D].北京:北京化工大学,2002.
    [93]王吉峰.多孔材料吸液驱气动力学研究[D].大连:大连理工大学,2012.
    [94]Srinivasan R, Auvil S R, Schork J M. Mass transfer in carbon molecular sieves-an interpretation of Langmuir kinetics [J]. Chemical Engineering Journal,1995,57 (2):137-144.
    [95]聂李红.炭分子筛的制备及应用[D].大连:大连理工大学,2008.
    [9f]雷利春.煤矿乏风中低浓度甲烷的变压吸附提纯[D].大连:大连理工大学,2010.
    [97]Verma S K. Molecular sieving properties of microporous carbons were investigated by adsorption and diffusion of O2 and Ar [J]. Carbon,1991,29(6):793-803.
    [98]Chagger Ⅱ K, Ndaji F E, Sykes M L, et al. Kinetics of adsorption and diffusional characteristics of carbon molecular sieves [J]. Carbon,1995,33(10):1405-1411.
    [99]Villar-Rodil S, Martinez-Alonso A, Tascon J M D. Carbon molecular sieves for air separation from Nomex Aramid fibers [J].Colloid Interface Science,2002,254(2):414-416.
    [100]Rutherford S W, Coons J E. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve [J]. Journal of Colloid Interface Science,2005,284 (2):432-439.
    [101]liyama T, Nishikawa K, Suzuki T, et al. Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction [J]. Chemical Physics Letters.1997,274(1-3):152-158.
    [102]Bellisscnt-Funel M C, Sridi-Dorbez R, Bosio L. X-ray and neutron scattering studies of the structure of water at a hydrophobic surface [J]. Journal of Chemical Physics.1996,104 (24): 10023.
    [103]Kaneko K, Hanzawa Y, Iiyama T, et al. Cluster-mediated water adsorption on carbon nanopores [J]. Adsorption,1999,5(1):7-13.
    [104]Alcanz-Monge J, Linares-Solano A, Rand B. Water adsorption on activated carbons:study of water adsorption in micro-and mesopores [J]. The Journal of Physical Chemistry B,2001,105 (33):7998-8006.
    [105]Alcanz-Monge J, Linares-Solano A, Rand B. Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fibers [J]. The Journal of Physical Chemistry B,2002,106 (12):3209-3216.
    [106]Alcanz-Monge J, Lozano-Castello D. Assessment of ultramicroporosity on carbon molecular sieves by water adsorption [J]. Adsorption Science Technology,2003,21 (9):841-848.
    [107]王文.我国煤层气利用现状[J]. 煤炭加工与综合利用,2008,(2): 53.
    [108]刘应书,郭广栋,杨雄,等.变压吸咐浓缩煤层吸附剂的选择实验[J].矿业安全与环保,2010,37(4):4-7.
    [109]聂李红,徐绍平,苏绝敏,等.低浓度煤层气提纯的研究现状[J].化工进展,2008,27(10):1505-1511.
    [110]辜敏,刘克万,鲜学福,等.烟煤制备成型活性炭及其PSA浓缩CH4/N2中CH4的性能研究[J].功能材料,2010,2(4):204-207.
    [111]Li P Y, Handan Tezel F. Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolitc [J]. Microporous and Mesoporous Materials,2007,98(1-3):94-101.
    [112]Hernandez-Huesca R, Diaz L, Aguilar-Armenta G. Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites [J]. Separation and Purification Technology,1999,15(2): 163-173.
    [113]Unsal E, Mason G, Morrow N R, et al. Co-current and counter-current imbibition in indepent tubes of non-axisymmetric geometry [J].Colloid Interface Science,2007,306(1):105-117.
    [114]Nogami H, Fukuzawa H, Nakai Y. Studies on tablets disintegration. I. The effect of enetrating rate on tablet disintegration [J]. Chemical Pharmaceutical. Bulletin.1963,11:1389-1398.
    [115]Koresh J, Soffer A. Molecular Sieve Carbons Part 3.-Adsorption kinetics according to a surface-barrier Model [J]. Transaction of the Faraday Society,1981,1(77):3005-3018.
    [116]LaCava A I, Koss V A, Wickens D. Non-Fickian adsorption rate behaviour of some carbon molecular sieves:I. Slit-potential rate model [J]. Gas Separation & Purification,1989,3(4): 180-186.
    [117]Meyer C J, Steudle E, Peterson C A. Patterns and kinetics of water uptake by soybean seeds [J]. Experimental Botany,2007,58 (3):717-732.
    [118]Cil M, Reis J C. A multi-dimensional, analytical model for counter-current water imbibition into gas-saturated matrix blocks [J]. Journal of Petroleum Science and Engineering.1996,16 (1-3): 61-69.
    [119]Ruthven D M, Raghavan N S, Hassan M M. Adsorption and diffusion of nitrogen and oxygen in a carbon molecular sieve [J]. Chemical Engineering Science,1986,41 (5):1325-1332.
    [120]Ruthven D M. Principles of adsorption and adsorption processes [M]. Wiley:New York,1984: 166.
    [121]Barton S S, Koresh J E. Pore constrictions in a molecular sieve carbon. Nineteenth Biennial conference on carbon.1989. The Pennsylvania State University.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700