H_2气氛下碱活化石油焦制备活性炭及连续活化技术开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KOH活化法所制高比表面积活性炭微孔结构发达、吸附容量大,在燃料气存储、气体分离、催化反应及双电层电容器等方面具有巨大的应用前景。石油焦为炼油厂的副产物,其资源比较丰富,且其碳含量高(80wt%以上),灰分及挥发份含量低,是制备性能优良的活性炭的优良原料。但由于石油焦结晶度高,结构较为致密,活化比较困难,通常在惰性气氛下采用高碱焦比(KOH/石油焦质量比大于3:1)进行活化成孔。过高的碱焦比带来一系列问题,包括高碱耗、高污染、高成本,以及设备腐蚀、安全隐患等,从而制约了其开发与应用。在国内,KOH活化法制备石油焦基高比表面积活性炭技术多处于间歇式小试阶段,生产效率低,无法实现规模化生产。因此,开发一种连续化生产,碱用量较低,产品性能优良的石油焦生产活性炭的工艺技术及装备成为迫切需要解决的问题。基于此,本文着重开展了以下几方面的研究:
     1.以实验室管式活化反应器为平台,以辽化石油焦为原料,以KOH为活化剂,通过在载气N2中引入活性气体H2制备出高比表面积活性炭。在活化过程中引入H2条件下,对碱焦比、活化温度、活化时间、载气中H2含量及石油焦粒度对活性炭孔隙结构及收率的影响进行了系统的考察。研究发现:(1)无论是在N2气氛下还是在N2+H2气氛下,碱焦比、活化温度、活化时间、载气中H2含量及石油焦粒度都会影响活性炭产品性能。(2)当碱焦比为2:1、活化温度为780℃、活化时间为60min、原料粒度为小于150μm以及载气中的H2含量为30%时,制备出的活性炭比表面积和孔容分别高达2477m2/g和1.10cm3/g。与在相同的条件下,未引入H2时制得的活性炭相比,比表面积和孔容分别提高了约500m2/g和0.25cm3/g。
     2.通过在N2及N2+H2气氛对石油焦进行热处理,研究了载气中的H2在石油焦炭化过程中的作用。在载气引入H2有利于脱除石油焦表面的杂原子基团,从而使其炭化产物有着更低的氮、硫、氧元素含量,同时,H2又会与因脱除表面基团而形成的活性位发生化学吸附作用,形成-CH2-及芳环=CH-基团。
     3.在N2及N2+H2气氛下进行KOH活化石油焦,通过分析其尾气中的H2含量、水蒸气的产生量、所制活性炭的元素组成及活化过程中钾单质的产量,研究了载气中H2在活化过程中的作用机理。活化过程中H2的引入会与石油焦表面官能团发生反应,造成尾气中H2的产生量减少,同时由于其与表面含氧官能团的作用,使活化过程的水的产生量增加。H2与石油焦表面杂原子基团作用所形成的-CH2-及芳环=CH-基团可作为活性位参与活化反应。活性位数量的增加,促进了活化反应的进行,同时产生的钾单质的量也进步增加,进一步促进了钾单质的插层活化作用。
     4.采用经过HCl+HF进行脱灰处理过的石油焦为原料,在N2及N2+H2气氛下进行活化时发现,石油焦原料的灰分对H2活化几乎不起任何作用。采用不同表面性质的原料在N2及N2+H2气氛下进行活化时发现,当采用石墨为原料时,引入H2进行活化对孔隙结构的发展几乎不起任何作用,而采用其它含有一定量杂原子的原料进行活化时,引入H2对活性炭孔隙结构的发展均起着明显的促进作用。通过在活化过程中引入水蒸气活化实验发现,在引入H2进行活化时各个温度段多产生的水的量对最终活性炭的孔结构的发展并未产生明显的影响。
     5.将N2及N2+H2气氛下所制活性炭应用于双电层电极材料,研究其电化学性能。当碱焦比为3:1、活化温度为780℃、活化时间为60min、原料粒度为小于150μm时,在载气引入30%的H2能够制备出比表面积及孔容分别高达2824m2/g和1.56cm3/g的活性炭。与在相同的条件下,未引入H2时制得的活性炭相比,比表面积、总孔容及中孔孔容分别提高了约400m2/g、0.40cm3/g和0.25cm3/g。将所制活性炭应用于双电层电容器电极材料,在所考察的扫描速率下,N2+H2气氛下所制活性炭电极材料的质量比电容均明显大于N2气氛下所制活性炭电极材料。
     6.针对KOH活化的特点,构建由原料/KOH混合脱水、连续活化反应单元和钾脱插及转化单元三个主要部分串联的连续活化反应体系,并完成了连续活化反应装置的设计、建造及调试。采用该炉进行连续活化试验,所制活性炭性能已接近于固定床管式活化炉所制活性炭产品性能。通过对不同批次的活性炭孔结构分析可以看出,采用该炉制备的活性炭性能具有较好的稳定性。
Activated carbons (AC) produced by KOH activation are widely used in fuel gas separation, gas storage, catalysis reaction, electric double-layer capacitor (EDLC) materials and various chemical processes due to their developed micropore structure and larger pore volume. It is well known that petroleum coke (PC) is a good precursor for preparing high surface area AC because of its abundant resource, high carbon content, low volatile and ash content. However, PC is difficult to be activated due to the stable micro-graphitic structure. Generally, high KOH/PC ratio is needed to prepare AC from PC, which brings many problems, such as high KOH consumption, high pollution, high cost, equipment corrosion, hidden danger, and so on. These problems restrict the exploration and application of PC-based high surface area activated carbons. In domestic, the research on the production of AC from PC by the KOH activation is just in the batch production with the small scale device. This will cause the low production efficiency and restrict its large scale production. Therefore, how to explore a process technology with low KOH consumption and continuous equipment for the production of AC with high performance is the emphasis for further research. In this dissertation, investigations were conducted as follows:
     AC was prepared from a green petroleum coke (PC) from SINOPEC Liaoyang Petrochemical Company and KOH as activating agent in the presence of Ho. The horizontal tube furnace was used for the activation. The effects of preparation variables including KOH/PC ratio, activation temperature, activation time, content of H2in the carrier gas and particle size of the PC on the porosity development of the AC were investigated. All the variables had an important influence on the performance of the AC. At the KOH/coke ratio of2:1, activation temperature780℃and activation time60min, AC with the specific surface area of2477m2/g and pore volume of1.10cm3/g was prepared in the presence of30%H2. The surface area and pore volume of the AC increased by500m2/g and0.25cm3/g, respectively, compared with that of AC prepared in the N2atmosphere.
     The effects of H2on the carbonization of PC were investigated. The presence of H2is beneficial for removal of the surface heteroatom groups of the PC during the carbonization process, which caused the carbonized samples had a lower content of nitrogen, sulfur and oxygen. Meanwhile, additional-CH-and-CH2-species were formed due to the chemisorption of H2on the nascent sites of the PC created by the removal of the surface heteroatom groups.
     The effects of H2on KOH activation of petroleum coke were systematically investigated by analyzing the evolution rate of H2, evolution of water, production of metallic K and element content of AC. The reaction of H2with the surface groups of PC caused the reduction of H2content in the sweep and the increase in the production of water. The formed-CH-and-CH2-species could act as 'active sites' to participate in the activation reaction. The increase in the quantity of'active sites'is beneficial to the further activation reaction. And the formation of metallic K could enhance the activation reaction.
     The PC (deashed with hydrochloride acid and hydrofluoric acid), graphite and other carbon materials (with some surface groups) were adopted as the raw materials for the activation under N2and N2+H2atmosphere. The result showed that the ash in the PC almost has no effect on the KOH activation of PC. The introduction of H2in the carrier gas almost has no effect on the porosity development of AC prepared from graphite. But as the other carbon materials were used as raw material, the introduction of H2is beneficial for the porosity development of the AC. The water produced by the interaction of H2and suface oxygen groups of PC had no evident effect on the porosity development of the resultant activated carbon.
     AC prepared from PC was used as electric double-layer capacitor (EDLC) materials. At the KOH/coke ratio of3:1, activation temperature780℃and activation time60min AC with specific surface area of2824m7g and pore volume of1.56cm/g was prepared in the presence of30%H2. The specific surface area, total pore volume and mesopore volume of the AC increased by400m2/g,0.40cm3/g and0.25cm3/g, respectively, compared with that of AC prepared in the N2atmosphere. At the investigated range of scanning rate, the gravimetric specific capacitance of the electric double-layer capacitor made from the AC prepared under H2+N2is higher than that prepared in the N2atmosphere.
     Based on the characteristic of KOH activation, the continuous activation system was constructed which included the dehydration system, continuous activation system and metallic potassium convertion system. And the continuous activation device was designed, constructed and adjusted. The performance of AC prepared with the activation device is close to that prepared with horizontal pipe reactor. Porosity characterization of AC from different batches showed that the AC prepared with the activation device has a good stability.
引文
[1]李聪.中国活性炭产业:“高调”谋未来.科技潮,2005,(4):26-27.
    [2]邢伟,张明杰,阎子峰.超级活性炭的合成及活化反应机理.物理化学学报,2002,18(4):340-345.
    [3]刘海燕,凌立成,刘植昌,等.高比表面积活性炭的制备及其吸附性能的初步研究.新型碳材料,1999,14(2):21-25.
    [4]秦川丽,董楠,谭强,等.KOH活化对超级电容器用活性炭的影响.黑龙江大学自然科学学报,2009,26(1):35-42.
    [5]詹亮,李开喜,朱星明,等.高硫焦制备超级活性炭的正交实验研究.石油学报(石油加工),2002,18(1):89-92.
    [6]左宋林,滕勇升.KOH活化石油焦制备工艺对活性炭吸附性能的影响.南京林业大学学报,2008,32(3):48-52.
    [7]Yang S B, Hu H Q, Chen G H. Preparation of carbon adsorbents with high surface area and a model for calculating surface area. Carbon,2002,40(1):277-284.
    [8]韩露,李开喜,高峰.晋城无烟煤制备高吸附性活性炭的试验研究.科技情报开发与经,2008,18(12):132-133.
    [9]张秀云,单长春,刘春法,等.宝钢沥青焦制备超级活性炭的研究.煤化工,2008,(1):50-54.
    [10]Yang K B, Peng J H, Zhang L B, et al. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology,2010,101(15):6163-6169.
    [11]Lu C L, Xu S P, Gan Y X, et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon,2005,43(11):2295-2301.
    [12]Li W, Zhang L B, Peng J H, et al. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial Crops and Products,2008, 27(3):341-347.
    [13]Girods P, Dufoer A, Fierro V, et al. Activated carbons prepared from wood particleboard wastes: Characterization and phenol adsorption capacities. Journal of Hazardous Materials,2009,166(1): 491-501.
    [14]Marsh H, Crawford D, Grady TM et al. Formation and structure of active carbons from anisotropic cokes. Carbon,1982,20(2):137-138.
    [15]Otowa T, Tanibata R, Itoh M. Production and adsorption characteristics of MAXSORB:High surface area active carbon. Gas Separation & Purification,1993,7(4):241-245.
    [16]王新宇,孙晓峰,张治安,等.活化剂种类对活性炭结构及性能的影响.中南大学学报,2011,42(4):865-870.
    [17]Qiao W, Yoon S H, Mochida I. KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC. Energy & Fuels,2006,20(4):1680-1684.
    [18]Wu M B, Zha Q F, Qiu J S, et al. Preparation of porous carbons from petroleum coke by different activated methods. Fuel,2005,84(14-15):1992-1997.
    [19]张晓听,郭树才,邓贻钊.高表面积活性碳的制备.材料科学与工程,1996,14(4):34-37.
    [20]郭宁,李兆丰,闫健美,等.微波法制备石油焦系活性炭工艺条件优化.炭素技术,2009,28(3):5-9.
    [21]刘玲,庞自钊,孟庆函.石油焦基高比表面积活性炭电吸附脱盐性能的研究.炭素技术,2011,30(6):1-4.
    [22]杜亚平,毛清龙,张德祥,等.石油焦基活性炭制备工艺对其吸附性能及孔结构的影响.新型炭材料,2003,18(3):225-230.
    [23]时志强,赵朔,陈明鸣,等.预炭化对活化石油焦的结构及电容性能的影响.无机材料学报,2008,23(4):799-804.
    [24]宋燕,李开喜,杨常玲,等.石油焦制备高比表面积活性炭的研究.石油化工,2002,31(6):431-435.
    [25]Mitani S, Lee S I, Yoon S H, et al. Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. Journal of Power Sources,2004, 133(2):298-301.
    [26]立本英机,安部郁夫,高尚愚译.活性炭的应用技术:其维持管理及其存在的问题.南京:东南大学出版社,2002.
    [27]Laine J, Yune S. Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon,1992,30(4):601-604.
    [28]铃木孝臣,金子克美.非晶质固体中の构造解析.表面,1995,33(3):157-163.
    [29]Setoyama N, Suzuki T, Kaneko K. Simulation study on the relationship between high resolution as-plot and the pore side distribution for activated carbon. Carbon,1998,36(10):1459-1467.
    [30]Kaneko K, Ishii C, Ruike M, et al. Origin of super high surface area and microcrystalline graphitic structures of activated carbon. Carbon,1992,30(7):1075-1088.
    [31]Rodriguez J, Ruette F, Laine J. Molecular modeling of micropores in activated carbon. Carbon,1994,34(8):1536-1537.
    [33]Boehm H P. Adv in Catalysis, In:Eley D. D., editor, Advances in Catalysis,16th edition, New York:Academic Press,1966.
    [34]Puri B R. In:Walker Jr PL, editor. Chemistry and Physics of Carbon, vol.6. New York:Marcel Dekker,1970:191.
    [35]Kohl S, Drochner A, Vogel H. Quantification of oxygen surface groups on carbon materials via diffuse reflectance FT-IR spectroscopy and temperature programmed desorption. Catalysis Today, 2010,150(1-2):67-70.
    [36]Pradhan B K, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon,1999,37(8):1323-1332.
    [37]Lopez-Garzon F, Domingo-Garcia M, Perez-Mendoza M, et al. Texrural and chemical surface modifications produced by some oxidation treatments of a glassy carbon. Langmuir,2003,19(7): 2838-2844.
    [38]Fgueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons. Carbon,1999,37(9):1379-1389.
    [39]Zhao N, Wei N, Li J, et al. Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI). Chemical Engineering Journal,2005,115 (1-2):133-138.
    [40]Biniak S, Szymanski G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon,1997,35(12):1799-1810.
    [41]Pereira M F R, Soares S F, Orfao J J M, Figueiredo J L. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon,2003,41 (4):811-821.
    [42]Qiao W M, Koraia Y, Mochida I, et al. Preparation of an activated carbon artifact:oxidative modification of coconut shell-based carbon to improve the strength. Carbon,2002,40(3): 351-358.
    [43]梁大明.中国煤质活性炭.北京:化学工业出版社,2008.
    [44]#12[47]杨坤彬,彭金辉,夏洪应,等.CO2活化制备椰壳基活性炭.炭素技术,2010,29(1):20-23.
    [45]Ahmad A L, Loh M M, Aziz J A. Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dyes and Pigments,2007,75(2): 263-272.
    [46]Su W, Zhou L, Zhou Y P. Preparation of Microporous Activated carbon from raw coconut shell by two-step procedure. Chinese Journal of Chemical Engineering,2006,14(2):266-269.
    [49]王宁,苏伟,周理,等.水蒸气活化法制备椰壳活性炭的研究.炭素,2006,(2):44-48.
    [48]Pis Josej, Parra Joseb, Dela puente Gema, et al. Development of macroporosity in activated carbons by effect of coal preoxidation and burnoff. Carbon,1998,77(6):625-630.
    [50]Wigmans T. Industrial aspects of production and use of activated carbons. Carbon,1989,27(1): 13-22.
    [51]El Qada E N, Allen S J, Walker G M. Influence of preparation conditions on the characteristics of activated carbons produced in laboratory and pilot scale systems. Chemical Engineering Journal, 2008,142(1):1-13.
    [52]Guo J, Lua A C. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages. Journal of Colloid and Interface Science,2002,254(2):227-233.
    [53]Kawano T, Kubota M, Onyango M S, et al. Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering,2008, 28(1-3):865-871.
    [54]Lozano-Castello D, Lillo-Rodenas M A, Cazorla-Amoros D, et al. Preparation of activated carbons from Spanish anthracite:Ⅰ. Activation by KOH. Carbon,2001,39(5):741-749.
    [55]Diaz Teran J, Nevskaia D M, Fierro J L G, et al. Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Microporous and Mesoporous Materials, 2003,60(1-3):173-181.
    [56]Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism. Carbon,2003,41(2):267-275.
    [57]Nowicki P, Pietrzak R, Wachowska H. Siberian anthracite as a precursor material for microporous activated carbons. Fuel,2008,87(10-11):2037-2040.
    [58]Hayashi J, Horikawa T, Muroyama K, et al. Activated carbon from chickpea husk by chemical activation with K2CO3:preparation and characterization. Microporous and Mesoporous Materials, 2002,55(1):63-68.
    [59]Hayashi J, Uchibayashi M, Horikawa T, et al. Synthesizing activated carbons from resins by chemical activation with K2CO3. Carbon,2002,40(15):2747-2752.
    [60]Adinata D, Wan Daud W M A, Aroua M K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology,2007,98(1): 145-149.
    [61]Taya T, Ucarb S, Karagoz S. Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials,2009,165(1-3):481-485.
    [62]范慧,钱仁渊,金鸣林,等.不同活化剂对石油焦基活性炭孔结构的影响.煤炭转化,2004,27(2):65-68.
    [63]Teng H, Yeh T S, Hsu LY. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon,1998,36(9):1387-1395.
    [64]Ould-Idriss A, Stitou M, Cuerda-Correa E M, et al. Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel Processing Technology,2011, 92(2):261-265.
    [65]Martin-Gullon I, Marco-Lozar J P, Cazorla-Amoros D, et al. Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons. Carbon,2004,42(7): 1339-1343.
    [66]Patnukao P, Pavasant P. Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation. Bioresource Technology,2008,99(17):8540-8543.
    [67]Moreno-Castilla C, Carrasco-Marin F, Loez-Ramon M V, et al. Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon,2001,39(9):1415-1420.
    [68]Lim W C, Srinivasakannan C, Balasubramanian N. Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. Journal of Analytical and Applied Pyrolysis, 2010,88(2):181-186.
    [69]Ucar S, Erdem M, Tay T, et al. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Applied Surface Science,2009,255(21): 8890-8896.
    [70]Ahmadpour A, Do D D. The preparation of active carbons from coal by chemical and physical activation. Carbon,1996,34(4):471-479.
    [71]Demiral H, Gunduzoglu G, Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology,2010,101(6):1675-1680.
    [72]Molina-Sabio M, Rodriguez-Reinoso F. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1-3): 15-25.
    [73]杨晓霞,周安宁.KOH-水蒸气活化法制煤基活性炭和氢气的研究.煤炭转化,2011,34(2):69-72.
    [74]杨晓霞,张亚婷,杨伏生,等.物理-化学耦合活化法制煤基活性炭.煤炭转化,2009,32(2):66-70.
    [75]Molina-Sabio M, Rodriguez-Reinoso F, Caturla F, et al. Development of porosity in combined phosphoric acid-carbon dioxide activation. Carbon,1996,34(4):457-462.
    [76]Hua C C, Wang C C, Wu F C, et al. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors. Electrochimica Acta, 2007,52(7):2498-2505.
    [77]Salman J M, Hameed B H. Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of Hazardous Materials,2010,175(1-3): 133-137.
    [78]O'Grady T M, Wennerberg A. Active carbon process and composition. US, Patent 4082694, 1978.
    [79]徐文东,陈进富,李术元,等.复合活化法制备高表面炭质吸附剂及助剂HJ-1作用机理的研究.国际网上化学学报,2004,6(3):21-28.
    [80]Lillo-Rodenas M A, Marco-Lozar M A, Cazorla-Amoros D, et al, Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis,2007,80(1):166-174.
    [81]Kobe K T, Izumi M. G. Active carbon and process for preparation of same. US, patent 5143889, 1992.
    [82]Yang T, Lua A C. Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Microporous and Mesoporous Materials,2003,63(1-3): 113-124.
    [83]Tsai W T, Chang C Y, Wang S Y, et al., Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resources. Conservation and Recycling,2001,32(1):43-53.
    [84]Jin H K, Lee Y S, Hong I. Hydrogen adsorption characteristics of activated carbon. Catalysis Today,2007,120(3-4):399-406.
    [85]Zhou L, Guo W C, Zhou Y P. A feasibility study of separating CH4/N2 by adsorption. Chinese Journal of Chemical Engineering,2002,10(5):568-571.
    [86]崔乐雨,张东辉,苏伟,等.变压吸附法回收氮气中的微量甲烷:实验与模型.天然气化工,2008,(6):2-10.
    [87]刘希邈,詹亮,滕娜,等.超级电容器用沥青焦基活性炭的制备及其电化学性能.新型炭材料,2006,21(1):48-53.
    [88]Kierzek K, Frackowiak E, Lota G. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta,2004,49(4):515-523.
    [89]张红波,伍恢和,刘洪波.氢氧化钾/石油焦质量配比对活性炭性能的影响.功能材料,1996,27(6):565-568.
    [90]张治安,孙晓峰,赖延清,等.原料粒度对石油焦基活性炭性能的影响.功能材料,2009,40(5):813-819.
    [91]卢春兰.碱活化法制备石油焦基活性炭及活化机理研究.大连:大连理工大学,2007.
    [92]杨绍斌,胡浩权.大比表面积炭质吸附剂的表面及孔隙发展.燃料化学学报,2000,28(5):473-477.
    [93]Xing W, Yan Z F. Effects of preoxidation on the surface properties of super active carbon. New Carbon Materials,2002,17(3):25-30.
    [94]Lu C L, Xu S P, Liu C H. The role of K2CO3 during the chemical activation of petroleum coke with KOH. Journal of Analytical and Applied Pyrolysis,2010,87(2):282-287.
    [95]Lu C L, Xu S P, Wang M, et al. Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke. Carbon,2007,45(1):206-209.
    [96]张淮浩,陈进富,郭绍辉,等.原料组成对石油焦基天然气吸附剂性能的影响.天然气[业,2007,27(4):104-107.
    [97]Lee S H, Choi C S. Chemical activation of high sulfur petroleum cokes by alkali metal compounds. Fuel Processing Technology,2000,64(1-3):141-153.
    [98]王中平.高比表面活性炭.精细与专用化学品,2002,(18):16-17.
    [99]Wennerberg A N, O'Grady T M. Active carbon process and composition. US, Patent 4082694, 1978.
    [100]Yoshiro Otowa, Amagasaki. Production of high quality activated carbon. US, Patent 5064805, 1991.
    [101]纪艳芬,王成军.石油焦制备高比表面积活性炭技术的研究.辽宁工业大学学报,2011,31(3):168-170.
    [102]Yamashita Y, Ouchi K. Influence of alkali on the carbonization process:I. Carbonization of 3, 5-dimethylphenol-formaldehyderesin with NaOH. Carbon,1982,20(1):41-45.
    [103]Lillo-Rodenas M A, Juan-Juan J, Cazorla-Amoros D, et al. About reactions occurring during chemical activation with hydroxides. Carbon,2004,42 (7):1371-1375.
    [104]Raymundo-Pinero E, Azai's P, Cacciaguerra T, Cazorla-Amoros D, etal. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon,2005,43(4):786-795.
    [105]音羽利郎.高品质活性炭的制造与性能.林产化工通讯,1992,(2):37-39.
    [106]Xue R S, Shen Z M. Formation of graphite-potassium intercalation compounds during activation of MCMB with KOH. Carbon,2003,41(9):1861-1864.
    [107]Matranga K R, Stella A, Myers A L, et al. Molecular Simulation of Adsorbed Natural Gas Separation science and technology,1992,27(14):1825-1836.
    [108]Kang M, Bae Y S, Lee C H. Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon,2005,43(7):1512-1516.
    [109]陆安惠,申文忠,郑经堂.KOH二次活化制备富含中孔的PAN-ACF.新型炭材料,2001,16(3):32-36.
    [110]Sun X, Zha Q F, Guo Y S, et al. Structure modification of ultra activated carbon from petroleum coke. New carbon materials,2005,20(3):240-244.
    [111]Zou Y, Han B X. High-Surface-Area Activated Carbon from Chinese Coal. Energy & Fuels, 2001,15(6):1383-1386.
    [112]王晓瑞,金鸣林,郑玉丽,等.煤沥青预处理工艺对活性炭孔结构的影响.煤炭转化,2004,27(4):59-63.
    [123]Polovina M, Babic B, Kaluderovic B et al. Surface characterization of oxidized activated carbon cloth. Carbon,1997,35(8):1047-1052.
    [114]许景文.炭素纤维与活性炭纤维.离子交换与吸附,1991,7(1):56-65.
    [115]孙新,查庆芳,吴明铂,等.碳分子筛孔结构的控制.石油学报(石油加工),2003,20(3):43-48.
    [116]Babel S, Kurniawan T A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere,2004,54(7):951-967.
    [117]Rivera-Utrilla J, Sanchez-Poloa M, Gomez-Serranob V, et al. Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials,2011, 187(1-3):1-23.
    [118]张乐忠,胡家朋,赵升云,等.活性炭改性研究新进展.材料导报,2009,23(S1):435-438.
    [119]Aggarwal D, Goyal M, Bansal R C. Adsorption of chromium by AC from aqueous solution. Carbon,1999,37(12):1989-1997.
    [120]Mawhinney D B, Yates J T, FTIR study of the oxidation of amorphous carbon by ozone at 300 K-Direct COOH formation. Carbon,2001,39(8):1167-1173.
    [121]de la Puente G, Pis J J, Menendez J A, Grange P. Thermal stability of oxygenated functions in ACs. Journal of Analytical and Applied Pyrolysis,1997,43(2) 125-138.
    [122]Bautista-Toledo I, Rivera-Utrilla J, Ferro-Garcia M A, Moreno-Castilla C. Influence of the oxygen surface complexes of ACs on the adsorption of chromium ions from aqueous solutions: effect of sodium chloride and humic acid. Carbon,1994,32(1):93-100.
    [123]Garcia T, Murillo R, Cazorla-Amoros D, Mastral A M, Linares-Solano A. Role of the AC surface chemistry in the adsorption of phenanthrene. Carbon,2004,42(8-9):1683-1689.
    [124]Moreno-Castilla C, Carrasco-Marin F, Mueden A. The creation of acid carbon surfaces by treatment with (NH4)2S2O8. Carbon,1997,35(10-11):1619-1626.
    [125]Puri B R, Hazra R S. Carbon sulphur surface complexes on charcoal. Carbon,1971,9(2): 123-134.
    [126]Wang J, Deng B L, Wang X R, Zheng J Z. Adsorption of aqueous Hg (Ⅱ) by sulfur-impregnated activated carbon. Environmental engineering science,2008,26(12):1693-1699.
    [127]Liu W, Vidic R. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors. Environmental Science and Technology, 2000,34(3):483-488.
    [128]Krishnan K A, Anirudhan T S, Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised ACs prepared from bagasse pith:kinetics and equilibrium studies. Journal of Hazardous Materials,2002,92(2):161-183.
    [129]Feng W, Borguet E, Vidic R D. Sulfurization of carbon surface for vapour phase mercury removal-II:sulfur forms and mercury uptake. Carbon,2006,44(14):2998-3004.
    [130]Tajar A F, Kaghzchi T, Soleimani M, Adsorption of cadmium from aqueous solutions on sulfurized AC prepared from nut shells. Journal of Hazardous Materials,2009,165(1-3): 1159-1164.
    [131]Goel J, Kadirvelu K, Rajagopal C, Garg V K. Removal of lead (Ⅱ) by adsorption using treated granular AC:batch and column studies. Journal of Hazardous Materials,2005,125(1-3): 211-220.
    [132]Strelko V V, Kuts V S, Thrower P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon,2000,38(10):1499-1524.
    [133]Boehm H P, Mair G, Stohr T, et al. Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel,1984,63(8):1061-1063.
    [134]Przepiorski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of AC for ehancement of CO2 adsorption. Applied Surface Science,2004,225 (1-4):235-242.
    [135]Okoniewska E, Lach J, Kacprzak M, et al. The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon. Desalination,2007,206(1-3):251-258.
    [136]Abe M, Kawashima K, Kozawa K, et al. Amination of AC and adsorption characteristics of its aminated surface. Langmuir,2000,16(11):5059-5063.
    [137]Stavropoulos G C, SamarasP, Sakellaropoulos G P. Effect of ACs modification on porosity, surface structure and phenol adsorption. Journal of Hazardous Materials,2008,151(2-3): 414-421.
    [138]Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon,2008,46(11):1475-1488.
    [139]杨全红,郑经堂,王茂章,等.微孔炭的纳米孔结构和表面微结构.材料研究学报,2000,14(2):113-122.
    [140]谢应波,张维燕,张睿,等.采用KOH与NaOH(?)舌化剂所制活性炭表面化学性质及孔结构的比较.炭素,2008,134(2):18-23.
    [141]Sun R Q, Sun L B, Chun Y, et al. Catalytic performance of porous carbons obtained by chemical activation. Carbon,2008,46(13):1757-1764.
    [142]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon,2001,39(6):937-950.
    [143]王晓峰,王大志,梁吉.碳基电化学双层电容器及复合电源系统的研制.无机材料学报,2002,17(6):1167-1173.
    [144]Omar N, Van Mierlo J, Verbrugge B, et al. Power and life enhancement of battery-electrical double layer capacitor for hybrid electric and charge-depleting plug-in vehicle applications. Electrochimica Acta,2010,55(25):7524-7531.
    [145]孟庆函,李开喜,宋燕,等.石油焦基活性炭电极电容特性研究.新型炭材料,2001,16(4):18-26.
    [146]Hu C C, Wang C C, Wu F C, et al. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors. Electrochimica Acta,2007,52(7):2498-2505.
    [147]Bleda-Martinez M J, Macia-Agullo J A, Lozano-Castello D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon,2005,43(13):2677-2684.
    [148]Pawelec B, Mariscal R, Fierro J L G, et al. Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions. Applied Catalysis A,2001,206(2):295-307.
    [149]Hu Y H, Ruckenstein E. The catalytic reaction of NO over Cu supported on meso-carbon microbeads of ultrahigh surface area. Journal of Catalysis,1997,172(1):110-117.
    [150]Grunewald G C, Drago R S. Carbon molecular sieves as catalysts and catalyst supports. Journal of the American Chemical Society,1991,113 (5):1636-1639.
    [151]Grunewald G C, Drago R S. Oxidative dehydrogenation of ethylbenzene to stykene over carbon-based catalysts. Journal of Molecular Catalysis,1990,58(2):227-233.
    [152]Liu F, Xu S P, Chi Y W, et al. A novel alumina-activated carbon composite supported NiMo catalyst for hydrodesulfurization of dibenzothiophene. Catalysis Communications,2011,12(6): 521-524.
    [153]MacDonald J A F, Quinn D F. Adsorbents for methane storage made by phosphoric acid activation of peach pits. Carbon,1996,34(9):1103-1108.
    [154]Kim B J, Park S J. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons. Journal of Colloid and Interface Science,2007, 311(2):619-621.
    [155]Anson A, Lafuente E, Urriolabeitia E, et al. Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption. Journal of Alloys and Compounds,2007,436(1-2): 294-297.
    [156]刘铁岭,陈进富,刘晓君.天然气吸附剂的开发及其储气性能的研究V-吸附剂成型与型炭甲烷储存特性研究.天然气工业,2004,24(8):99-101.
    [157]Zhou L, Sun Y, Zhou Y P. Enhancement of the methane storage on activated carbon by pre-adsorbed water. American Institute of Chemical Engineers,2002,48(10):2412-2416.
    [158]Su W, Zhou W, Wei L F, et al. Effect of microstructure and surface modification on the hydrogen adsorption capacity of active carbons. New Carbon Materials,2007,22(2):135-140.
    [159]Otowa T, Nojima Y, Miyazaki T. Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon,1997,35(9):1315-1319.
    [160]Adib F, Bagreev A, Bandosz T J. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide. Journal of Colloid and Interface Science,1999, 214(2):407-415.
    [161]Malik P K. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Journal of Hazardous Material,2004,113(1-3):81-88.
    [162]Bornhardt C, Drewes J E, Jekel M. Removal of organic halogens (AOX) from municipal wastewater by powdered activated carbon (PAC)/activated sludge (AS) treatment. Water Science and Technology,1997,35(10):147-53.
    [163]Tseng R L, Tseng S K. Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption. Journal of Hazardous Materials,2006,136(2): 671-680.
    [164]乔文明,查庆芳,凌立成,等.沥青基高比表面积活性炭吸附性能的研究.炭素技术,1994,(3):1-5.
    [185]常俊玲,刘洪波,张红波,等.石油焦基高比表面积活性炭处理含铬废水的研究.炭素技术,2001,116(5):20-23.
    [166]Jimenez V, Sanchez P, Valverde J L, et al. Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers. Journal of Colloid and Interface Science,2009,336(2):712-722.
    [167]Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity.2ed, Academic Press. London. 1982:25.
    [168]Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society,1951,73(1):373-380.
    [169]Lowell S, Introduction to powder surface area, New York:John Willey and Sons.1979.
    [170]Zhong Z H, Aika K. Effect of hydrogen treatment of active carbon as a support for promoted ruthenium catalysts for ammonia synthesis. Chemical Communications,1997, (13):1223-1224.
    [171]Calo J M, Cazorla-Amoros D, Linares-Solano A, et al, The effects of hydrogen on thermal desorption of oxygen surface complexes. Carbon 1997,35(4):543-544.
    [172]Angel Menendez J, Jonathan Phillips, Bo Xia, et al. On the modification and characterization of chemical surface properties of activated carbon:In the search of carbons with stable basic properties. Langmuir,1996,12(18):4404-4410.
    [173]Meijer R, van der Linden B, Kapteijn F, et al. The interaction of H2O, CO2, H2 and CO with the alkali-carbonate/carbon system:a thermogravimetric study. Fuel,1991,70(2):205-14.
    [174]Painter P C, Sobkowiak M, Youtcheff J. FT-i.r. study of hydrogen bonding in coal. Fuel,1987, 66 (7):973-978.
    [175]Socrates G. Infrared Characteristic Group Frequencies, John Wiley, New York,1980.
    [176]Gomez-Serrano V, Pastor-Villegas J, Perez-Florindo A, et al. FT-IR study of rockrose and of char and activated carbon, Journal of Analytical and Applied Pyrolysis,1996,36(1):71-80.
    [177]Munoz-Guillena M J, Illan-Gomez M J, Martin-Martinez J M, et al. Activated carbons from Spanish coals.1. two-stage carbon dioxide activation. Energy & Fuels,1992,6(1):9-15.
    [178]Marsh H, Yan D S, O'Grady T M, et al. Formation of active carbons from cokes using potassium hydroxide. Carbon,1984,22(6):603.
    [179]Lillo-Rodenas MA, Juan-Juan J, Cazorla-Amoros D, et al. About reactions occurring during chemical activation with hydroxides. Carbon,2004,42(7):1371-1375.
    [180]Frackowiak E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics,2007,9(15):1774-1785.
    [181]罗曼.低内阻碳基双电层电容器的研究.武汉:华中科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700