应用纳米尺寸效应降低Sn基无铅焊料熔化温度的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对铅(Pb)及含铅合金毒性认识的加深,许多国家和地区都禁止或限制铅在电子产品中的应用,取而代之的是无铅焊料。目前已经开发出来的无铅焊料主要以Sn基无铅焊料为主,但其熔化温度远高于传统的Sn-Pb共晶合金,导致无铅焊料在应用过程中存在诸多问题。因此,如何降低Sn基无铅焊料合金的熔化温度成为电子工业界关注的焦点。
     本文围绕无铅焊料熔化温度过高的问题,开展了应用纳米尺寸效应降低Sn基无铅焊料合金熔化温度的研究,以期解决目前无铅焊料熔化温度过高带来的封装缺陷。围绕此主题,本文研究了具有不同尺寸大小和分布的Sn基无铅焊料合金纳米粒子的制备,并对Sn基无铅焊料合金纳米粒子熔化温度的尺寸效应进行了研究。在此基础上,进一步研究如何获得尺寸更小、分布范围更窄的Sn3.0Ag0.5Cu无铅焊料合金纳米粒子,以获得熔化温度大幅度降低的Sn基无铅焊料合金。最后对Sn基无铅焊料合金纳米粒子的凝固过程进行研究,为Sn基无铅焊料合金纳米粒子的实际应用提供借鉴。论文主要内容归纳如下:
     1)研究了不同尺寸Sn基无铅焊料合金纳米粒子的合成,尤其是表面剂浓度对纯Sn、Sn3.5Ag(wt.%)和Sn3.0Ag0.5Cu(wt.%)纳米粒子尺寸大小及分布的影响。结果表明,纳米粒子的尺寸大小及分布范围随着表面剂浓度的增加而减小,从表面剂与纳米粒子的络合作用阐述了表面剂的作用;研究了还原剂加入速率对Sn3.5Ag纳米粒子的尺寸大小和分布的影响,从一次粒子和二次粒子的竞争生长角度阐述了还原剂加入速率对尺寸大小和分布的影响;研究了反应物浓度对Sn3.0Ag0.5Cu纳米粒子的尺寸大小及分布的影响,从液相中晶核的形核及晶核的碰撞角度阐述了反应物浓度的影响作用;最后研究了Sn3.5Ag和Sn3.0Ag0.5Cu纳米粒子的形成过程,结果表明纳米粒子中首先形成金属间化合物相,而β-Sn相则是缓慢形成的。
     2)揭示了Sn基无铅焊料合金纳米粒子熔化温度的变化规律。研究结果表明,随着尺寸的减小,纯Sn纳米粒子的熔化温度和熔化潜热均随之降低,表现出明显的尺寸依赖性。Sn3.5Ag纳米粒子的熔化温度也表现出明显的尺寸效应,熔化温度随着尺寸的减小而降低。平均尺寸约为30nm的Sn3.5Ag纳米粒子的熔化温度为210℃,显著低于Sn3.5Ag大块合金的熔化温度。Sn3.0Ag0.5Cu纳米粒子的熔化温度随尺寸的变化规律与前二者类似,纳米粒子的熔化温度随着尺寸的减小而显著降低。平均尺寸为30nm左右的Sn3.0Ag0.5Cu纳米粒子的熔化温度为201℃,比母合金熔化温度低了16℃,显著降低了Sn3.0Ag0.5Cu无铅焊料合金的熔化温度。理论分析结果表明,当Sn3.0Ag0.5Cu纳米粒子的尺寸小于10nm时,其熔化温度与SnPb共晶合金的熔化温度相当。
     3)成功实现了大幅度降低Sn3.0Ag0.5Cu无铅焊料合金熔化温度的研究目的。研究了尺寸更小、分布范围更窄的Sn3.0Ag0.5Cu纳米粒子的制备及表征,并对其熔化温度进行研究,获得了熔化温度大幅度降低的Sn3.0Ag0.5Cu无铅焊料合金。20A电流下、液体石蜡保护介质下制备的Sn3.0Ag0.5Cu无铅焊料合金纳米粒子的熔化温度可以降低到190℃左右;50A电流下、液体石蜡保护介质下制备的Sn3.0Ag0.5Cu无铅焊料合金纳米粒子的熔化温度降到了180℃左右,与Sn-Pb共晶合金的熔化温度相当。因此,自耗电极直流电弧法为大幅度降低Sn基无铅焊料合金的熔化温度奠定了技术基础。
     4)研究了Sn基无铅焊料合金纳米粒子凝固过冷度的变化规律。采用DSC方法研究了Sn基无铅焊料合金纳米粒子的凝固过冷度,研究结果表明,Sn3.5Ag纳米粒子和Sn3.0Ag0.5Cu纳米粒子的凝固过冷度均随着冷却速率的增加而增大;同时,过冷度随着纳米粒子尺寸的减小而增大。对比研究发现,在相同的冷却速率下,Sn3.0Ag0.5Cu纳米粒子的凝固过冷度远大于微米粒子及母合金的过冷度。过冷度的提高会带来焊点凝固组织的细化,从而提高焊点的力学性能。
Due to the toxicity of lead (Pb), Pb-containing solder alloys are being phased out from the electronic industry, which has promoted the development and implementation of lead-free solders. These lead-free solder alloys possess, however, some weaknesses, mainly root in their higher melting temperature compared to the Sn-Pb eutectic solders. To solve this issue, researchers have tried to decrease the melting temperatures of the lead-free solders. A feasible approach to decrease the melting temperatures of a solder alloys is to decrease the particle size of the solder alloys down to the nanometer range.
     In this dissertation, we focus on the research to decrease the melting temperature of the lead-free solder alloy by decreasing their particle size down to nanometer range. The Sn-based lead free solder alloy nanoparticles with different sizes and size distribution were synthesized by chemical reduction method. The size-dependent melting temperature of these synthesized nanoparticles was studied by differential scanning calorimetry (DSC) and theoretical calculation. Based on these researches, the approach to prepare smaller nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy was studied, and nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy with equivalent melting temperature to SnPb solder alloy was obtained. Moreover, the undercooling of the Sn-based lead solder alloy nanopaticles was studied by DSC at different cooling rates. The major contents of this dissertation are epitomized as follows:
     1. Synthesis of Sn-based lead free solder alloy nanoparicles with different particle sizes and size distribution. The effect of surfactant on the nanoparticles size and size distribution was studied. It was found that the larger ratio of the weight of the surfactant to the precursor resulted in smaller particle size. Due to the capping effect caused by the surfactant molecules coordinating with the nanoclusters, a larger amount of surfactant would restrict the growth of the nanoparticles. Meanwhile, the effect of the reduction adding rate on the particle size and size distribution of Sn3.5Ag nanoparticles was studied. The results showed that the particle size increased and then decreased as decreasing the reduction adding rate, which can be explained by the competitive growth of the primary particles and second particles. The effect of the precursor concentration on the particle size and size distribution of Sn3.0Ag0.5Cu nanoparticles was also studied. The results showed that the particle size of Sn3.0Ag0.5Cu nanoparticles increased as increasing the precursor concentration. Finally, the formation of Sn3.5Ag and Sn3.0Ag0.5Cu nanoparticles was correspoindingly analyzed.
     2. The size-dependent melting temperature of Sn-based lead free solder alloy. The melting temperatures of Sn nanoparticles showed strong size-dependent tendency. The size-dependent melting properties of tin nanoparticles were comparatively analyzed by employing different size-dependent theoretical melting models and the differences among these models were discussed. The Sn3.5Ag and Sn3.0Ag0.5Cu nanoparticles also showed size-dependent melting temperature tendency. The melting temperature of Sn3.5Ag nanoparticles with average particle size of 30nm was about 210℃, 11℃lower than that of the bulk alloy. The melting temperature of Sn3.0Ag0.5Cu nanoparticles with average particle size of 30nm was 201℃, much lower than that of the bulk alloy. Theoretical analysis showed that the melting temperature can be as low as that of eutectic Sn-Pb solder alloy when the particle size was decreased to 10nm.
     3. The research on the Sn3.0Ag0.5Cu nanoparticles with large melting temperature depression. The Sn3.0Ag0.5Cu nanoparticles with smaller particles size and narrower size distribution were prepared by the self-developed consumable electrode direct current arc (CDCA) technique. The prepared nanoparticles were characterized by various methods such as X-ray diffraction (XRD), field emission scanning electronic microscope (FE-SEM) and high-resolution transmission electron microscopy (HRTEM). The melting temperatures of the Sn3.0Ag0.5Cu nanoparticles were measured by DSC, and the results showed that the calorimetric melting onset temperature of the nanoparticles of SnAgCu solder alloy could be as low as 180℃, which was equivalent to that of the traditionally used SnPb eutectic alloy (183℃). The CDCA technique showed promising prospect in manufacturing large amount of nanoparticles with controlled shape, small size, narrow particle size distribution and nearly oxide-free composition. This undoubtedly puts forward a novel feasible approach to manufacture high quality lead-free solders for electronic packaging.
     4. The research on the undercooling of the Sn-based lead-free solder alloy. The solidification properties of the Sn3.5Ag and Sn3.0Ag0.5Cu nanoparticles were studied by DSC at different cooling rates. The undercooling of these nanoparticles showed strong cooling rate dependent tendency. The undercooling of the Sn3.5Ag and Sn3.0Ag0.5Cu nanoparticles was in the range of 85.0~91.0℃and 82.0~88.5℃, respectively. In addition, the undercooling of Sn3.0Ag0.5Cu nanoparticles was much larger than that of the Sn3.0Ag0.5Cu micro-sized particles, hopefully producing better mechanical properties of the solder joints.
引文
[1]孙鹏.电子封装中无铅焊点的界面演化和可靠性研究[D].上海:上海大学机电工程与自动化学院, 2007: 1.
    [2]田民波.电子封装工程[M].北京:清华大学出版社, 2003: 1-3, 8-9, 131-132.
    [3] ABTEW M, SELVADURAY G. Lead-free solders in microelectronics [J]. Materials Science and Engineering R, 2000, 27 (5-6): 95-141.
    [4]马鑫,何鹏.电子组装中的无铅软钎焊技术[M].哈尔滨:哈尔滨工业大学出版社, 2006: 16, 19, 149, 166.
    [5]郭福.无铅钎焊技术与应用[M].北京:科学出版社, 2006: 1, 312, 315.
    [6]于大全.电子封装互连无铅钎料及其界面问题研究[D].大连:大连理工大学材料科学与工程学院, 2004: 3.
    [7] SUGANUMA K. Advances in lead-free electronics soldering [J]. Current Opinion in Solid State and Materials Science, 2001, 5 (1): 55-64.
    [8]邹时朴,胡淑珍,李维君,等.轻度铅中毒对儿童注意力及行为的影响[J].中国儿童保健杂志, 2006, 14 (1): 75-76.
    [9]张修发,江凡,祝爱霞,等.深圳宝安区学龄前幼儿血铅含量的探讨[J].中国妇幼保健, 2009, 24 (31): 4384-4385.
    [10] BANNOS T S. Lead-free solder to meet new safe drinking water regulations [J]. Welding Journal, 1988, 67 (10): 23-26.
    [11]外经贸部科技司翻译.关于报废电子电气设备指令(WEEE指令)[M].
    [12]外经贸部科技司翻译.关于在电子电气设备中限制使用某些有害物质指令(RoHS指令)[M].
    [13]信息产业部第39号令.电子信息产品污染控制管理办法[M]. 2006.
    [14] LIU C Z, CHEN J. Nanoindentation of lead-free solders in microelectronic packaging [J]. Materials Science and Engineering: A, 2007, 448 (1-2): 340-344.
    [15] CHEN C M, HUANG C C. Effects of silver doping on electromigration of eutectic SnBi solder [J]. Journal of Alloys and Compounds, 2008, 461 (1-2): 235-241.
    [16] MIAO H W, DUH J G. Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging [J]. Materials Chemistry and Physics, 2001, 71 (3): 255-271.
    [17] MAVOORI H, CHIN J, VAYNMAN S, et al. Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders [J]. Journal of Electronic Materials, 1997, 26 (7): 783-790.
    [18] CHEN C H, LIN C P, CHEN C-M. Effect of Cu thickness on the evolution of the reaction products at the Sn-9wt.%Zn solder/Cu interface during reflow [J]. Journal of Electronic Materials, 2009, 38 (1): 61-69.
    [19] MITTAL J, KUO S M, LIN Y W, et al. Diffusion behavior of Zn during reflow of Sn-9Zn solder on Ni/Cu substrate [J]. Journal of Electronic Materials, 2009, 38 (12): 2436-2442.
    [20] MCCORMACK M, JIN S, KAMMLOTT G W, et al. New Pb-free solder alloy with superior mechanical properties [J]. Applied Physics Letters, 1993, 63 (1): 15-17.
    [21] KERR M, CHAWLA N. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales [J]. Acta Materialia, 2004, 52 (15): 4527-4535.
    [22] YU D Q, WU C M L, LAW C M T, et al. Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dippingmethod [J]. Journal of Alloys and Compounds, 2005, 392 (1-2): 192-199.
    [23] SONG H, MORRIS J, HUA F. The creep properties of lead-free solder joints [J]. JOM Journal of the Minerals, Metals and Materials Society, 2002, 54 (6): 30-32.
    [24] ARENAS M, ACOFF V. Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates [J]. Journal of Electronic Materials, 2004, 33 (12): 1452-1458.
    [25] YOON J W, KIM S W, JUNG S-B. Interfacial reaction and mechanical properties of eutectic Sn-0.7Cu/Ni BGA solder joints during isothermal long-term aging [J]. Journal of Alloys and Compounds, 2005, 391 (1-2): 82-89.
    [26] ARENAS M, HE M, ACOFF V. Effect of flux on the wetting characteristics of SnAg, SnCu, SnAgBi, and SnAgCu lead-free solders on copper substrates [J]. Journal of Electronic Materials, 2006, 35 (7): 1530-1536.
    [27] ZHAO N, PAN X M, YU D Q, et al. Viscosity and surface tension of Liquid Sn-Cu lead-free solders [J]. Journal of Electronic Materials, 2009, 38 (6): 828-833.
    [28] MCCORMACK M, JIN S. Improved mechanical properties in new, Pb-free solder alloys [J]. Journal of Electronic Materials, 1994, 23 (8): 715-720.
    [29] GLAZER J. Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: A review [J]. Journal of Electronic Materials, 1994, 23 (8): 693-700.
    [30] IGOSHEV V, KLEIMAN J, SHANGGUAN D, et al. Microstructure changes in Sn-3.5Ag solder alloy during creep [J]. Journal of Electronic Materials, 1998, 27 (12): 1367-1371.
    [31] LEE J H, PARK Y B. Abnormal failure behavior of Sn-3.5Ag solder bumps under excessive electric current stressing conditions [J]. Journal of Electronic Materials, 2009, 38 (10): 2194-2200.
    [32] WU F, WANG B, DU B, et al. Effect of stand-off height on microstructure and tensile strength of the Cu/Sn9Zn/Cu solder joint [J]. Journal of Electronic Materials, 2009, 38 (6): 860-865.
    [33] WANG L, XIAN A P. Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method [J]. Journal of Electronic Materials, 2005, 34 (11): 1414-1419.
    [34] LEE C, SHIEU F. Growth of intermetallic compounds in the Sn-9Zn/Cu joint [J]. Journal of Electronic Materials, 2006, 35 (8): 1660-1664.
    [35] HUNG Y M, CHEN C M. Electromigration of Sn-9wt.%Zn Solder [J]. Journal of Electronic Materials, 2008, 37 (6): 887-893.
    [36] MEI Z, MORRIS J. Characterization of eutectic Sn-Bi solder joints [J]. Journal of Electronic Materials, 1992, 21 (6): 599-607.
    [37] MIAO H W, DUH J G, CHIOU B S. Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints [J]. Journal of Materials Science: Materials in Electronics, 2000, 11 (8): 609-618.
    [38] LEE J I, CHEN S W, CHANG H Y, et al. Reactive wetting between molten Sn-Bi and Ni substrate [J]. Journal of Electronic Materials, 2003, 32 (3): 117-122.
    [39] GUO F, XU G, HE H, et al. Effect of electromigration and isothermal aging on the formation of metal whiskers and hillocks in eutectic Sn-Bi solder joints and reaction films [J]. Journal of Electronic Materials, 2009, 38 (12): 2647-2658.
    [40] GUO H Y, GUO J D, SHANG J K. Influence of thermal cycling on the thermal resistance of solder interfaces [J]. Journal of Electronic Materials, 2009, 38 (12): 2470-2478.
    [41] SIEWERT T, LIU S, SMITH D R, et al. Database for solder properties with emphasis on new lead-free solders: Properties of lead-free solders [M]. Release 4.0, 2002.
    [42] AMTECH. NC-560-LF lead-free no-clean solder paste [Web]. http://www.amtechsolder.com/pdf/nc-560-lf.pdf.
    [43] INDIUM-CORPORATION. Indium5.1AT无铅焊膏[Web]. http://www.indium.net.cn/b5/downloads/products/circuitboard/Indium5-1AT.pdf.
    [44] KESTER. Tarutin peace solder TCS-502-3 [Web]. http://www.kester.com/Data%20Sheets/Solder%20Pastes/No-Clean/TCS-502-3%20Global%20(Aug04).pdf.
    [45] SMIC. Solder paste [Web]. http://www.senju-m.co.jp/en/product/ecosolder/paste/index.html.
    [46] MILLER C, ANDERSON I, SMITH J. A viable tin-lead solder substitute: Sn-Ag-Cu [J]. Journal of Electronic Materials, 1994, 23 (7): 595-601.
    [47] OHNUMA I, MIYASHITA M, ANZAI K, et al. Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys [J]. Journal of Electronic Materials, 2000, 29 (10): 1137-1144.
    [48]张富文,刘静,杨福宝,等. Sn-Ag-Cu无铅焊料的发展现状与展望[J].稀有金属, 2005, 29 (5): 519-624.
    [49] LOOMANS M, FINE M. Tin-silver-copper eutectic temperature and composition [J]. Metallurgical and Materials Transactions A, 2000, 31 (4): 1155-1162.
    [50] ZBRZEZNY A. Microstructure characterization of Sn-Ag-Cu lead-free solder solidified at different cooling speeds [J]. Microscopy and Microanalysis, 2002, 8 (Supplement 2): 1456-1457.
    [51] LEWIS D, ALLEN S, NOTIS M, et al. Determination of the eutecticstructure in the Ag-Cu-Sn system [J]. Journal of Electronic Materials, 2002, 31 (2): 161-167.
    [52] MULLER M, WIESE S, WOLTER K J. Solidification behavior of lead-free SnAgCu alloys [C]. 29th International Spring Seminar on Electronics Technology, ISSE '06:32-37.
    [53] QIANG H, ZHONG-SUO L, ZHI-LI Z, et al. Study of cooling rate on lead-free soldering microstructure of Sn-3.0Ag-0.5Cu solder [C]. Proceedings of 2005 International Conference on Asian Green Electronics, AGEC 2005:156-160.
    [54] FREAR D, JANG J, LIN J, et al. Pb-free solders for flip-chip interconnects [J]. JOM Journal of the Minerals, Metals and Materials Society, 2001, 53 (6): 28-33.
    [55] CHANG T C, WANG M C, HON M H. Morphology and adhesion strength of the Sn-9Zn-3.5Ag/Cu interface after aging [J]. Journal of Crystal Growth, 2004, 263 (1-4): 223-231.
    [56]田春霞.纳米粉末制备方法综述[J].粉末冶金工业, 2001, 11 (5): 19-24.
    [57] ADAIR J H, LI T, KIDO T, et al. Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles [J]. Materials Science and Engineering R, 1998, 23: 139-242.
    [58] FERRANDO R, JELLINEK J, JOHNSTON R L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles [J]. Chemical Reviews, 2008, 108 (3): 845-910.
    [59] GOIA D V. Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions [J]. Journal of Materials Chemistry, 2004, 14 (4): 451-458.
    [60]李宇农,何建军,龙小兵.纳米金属粉末研究进展[J].粉末冶金工业, 2004, 14 (1): 34-39.
    [61] HO P F, CHI K M. Size-controlled synthesis of Pd nanoparticles fromβ-diketonato complexes of palladium [J]. Nanotechnology, 2004, 15: 1059-1064.
    [62] CROSS C E, HEMMINGER J C, PENNER R M. Physical vapor deposition of one-dimensional nanoparticle arrays on graphite: Seeding the electrodeposition of gold nanowires [J]. Langmuir, 2007, 23 (20): 10372-10379.
    [63] KONG Y C, YU D P, ZHANG B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J]. Applied Physics Letters, 2001, 78 (4): 407-409.
    [64] OLURIN O B, WILKINSON D S, WEATHERLY G C, et al. Strength and ductility of as-plated and sintered CVD nickel foams [J]. Composites Science and Technology, 2003, 63 (16): 2317-2329.
    [65] HWANG S, CHOI H, SHIM I. Copper CVD precursors containing alkyl 3-oxobutanoate ligands [J]. Chemistry of Materials, 1996, 8 (5): 981-983.
    [66] LAY E, SONG Y H, CHIU Y C, et al. New CVD precursors capable of depositing copper metal under mixed O2/Ar atmosphere [J]. Inorganic Chemistry, 2005, 44 (20): 7226-7233.
    [67] KONG X Y, DING Y, YANG R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J]. Science, 2004, 303 (5662): 1348-1351.
    [68] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291 (5510): 1947-1949.
    [69] XIU Y, ZHU L, HESS D W, et al. Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition [J]. Langmuir, 2006, 22 (23): 9676-9681.
    [70] HOBBS K L, LARSON P R, LIAN G D, et al. Fabrication of nanoring arrays by sputter redeposition using porous alumina templates [J]. Nano Letters, 2003, 4 (1): 167-171.
    [71] OATES T W H, KELLER A, NODA S, et al. Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates [J]. Applied Physics Letters, 2008, 93: 063106.
    [72] YONEZAWA T, ONOUE S Y, KIMIZUKA N. Preparation of highly positively charged silver nanoballs and their stability [J]. Langmuir, 2000, 16 (12): 5218-5220.
    [73] GUI Z, FAN R, MO W, et al. Synthesis and characterization of reduced transition metal oxides and nanophase metals with hydrazine in aqueous solution [J]. Materials Research Bulletin, 2003, 38 (1): 169-176.
    [74] PASTORIZA-SANTOS I, LIZ-MARZ N L M. Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide [J]. Langmuir, 1999, 15 (4): 948-951.
    [75] WU S H, CHEN D H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol [J]. Journal of Colloid and Interface Science, 2003, 259 (2): 282-286.
    [76] LIVAGE J, HENRY M, SANCHEZ C. Sol-gel chemistry of transition metal oxides [J]. Progress in Solid State Chemistry, 1988, 18 (4): 259-341.
    [77] HARDIKAR V V, MATIJEVIC E. Coating of Nanosize Silver Particles with Silica [J]. Journal of Colloid and Interface Science, 2000, 221 (1): 133-136.
    [78] LISIECKI I, PILENI M P. Synthesis of copper metallic clusters using reverse micelles as microreactors [J]. Journal of the American Chemical Society, 1993, 115 (10): 3887-3896.
    [79] CARPENTER E E, KUMBHAR A, WIEMANN J A, et al. Synthesis andmagnetic properties of gold-iron-gold nanocomposites [J]. Materials Science and Engineering A, 2000, 286 (1): 81-86.
    [80] LOPEZ-QUINTELA M A. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control [J]. Current Opinion in Colloid & Interface Science, 2003, 8 (2): 137-144.
    [81] CARPENTER E E, SIMS J A, WIENMANN J A, et al. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques [J]. Journal of Applied Physics, 2000, 87 (9): 5615-5617.
    [82] GAO Y, NIU H, ZENG C, et al. Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process [J]. Chemical Physics Letters, 2003, 367 (1-2): 141-144.
    [83] CHENG H, MA J, ZHAO Z, et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles [J]. Chemistry of Materials, 1995, 7 (4): 663-671.
    [84] WANG J, WANG X, PENG Q, et al. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres [J]. Inorganic Chemistry, 2004, 43 (23): 7552-7556.
    [85] LIU H, WANG Z L. Bismuth spheres grown in self-nested cavities in a silicon wafer [J]. Journal of the American Chemical Society, 2005, 127 (43): 15322-15326.
    [86] BASSET D, MATTEAZZI P, MIANI F. Designing a high energy ball-mill for synthesis of nanophase materials in large quantities [J]. Materials Science and Engineering A, 1993, 168 (2): 149-152.
    [87] SHEIBANI S, ATAIE A, HESHMATI-MANESH S, et al. Structural evolution in nano-crystalline Cu synthesized by high energy ball milling [J]. Materials Letters, 2007, 61 (14-15): 3204-3207.
    [88] SHEIBANI S, HESHMATI-MANESH S, ATAIE A. Structural investigation on nano-crystalline Cu-Cr supersaturated solid solution prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 2010, 495 (1): 59-62.
    [89] LIU S, HUANG Z-L, LIU G, et al. Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling [J]. International Journal of Refractory Metals and Hard Materials, 2006, 24 (6): 461-464.
    [90] NING L J, WU Y P, FANG S B, et al. Materials prepared for lithium ion batteries by mechanochemical methods [J]. Journal of Power Sources, 2004, 133 (2): 229-242.
    [91] STOJANOVIC B D, SIMOES A Z, PAIVA-SANTOS C O, et al. Mechanochemical synthesis of barium titanate [J]. Journal of the European Ceramic Society, 2005, 25 (12): 1985-1989.
    [92] BENJAMIN J. Dispersion strengthened superalloys by mechanical alloying [J]. Metallurgical and Materials Transactions B, 1970, 1 (10): 2943-2951.
    [93] BIRRINGER R, GLEITER H, KLEIN H P, et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? [J]. Physics Letters A, 1984, 102 (8): 365-369.
    [94]卢年端,宋晓艳,张久兴,等.惰性气体蒸发-冷凝法制备尺寸可控的纯稀土纳米粉末[J].粉末冶金技术, 2007, 25 (6): 424-429.
    [95]刘伟,邓晓燕,张志焜.纳米铜粒子的热稳定性研究[J].理化检验-物理分册, 2004, 40 (2): 64-67.
    [96] NG C H B, YANG J, FAN W Y. Synthesis and self-assembly of one-dimensional sub-10 nm Ag nanoparticles with cyclodextrin [J]. Journal of Physical Chemistry C, 2008, 112 (11): 4141-4145.
    [97] RAVEENDRAN P, FU J, WALLEN S L. Completely“green”synthesisand stabilization of metal nanoparticles [J]. Journal of the American Chemical Society, 2003, 125 (46): 13940-13941.
    [98] LEE Y, CHOI J-R, LEE K J, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics [J]. Nanotechnology, 2008, 19 (41): 415604.
    [99] ZHU H, ZHANG C, YIN Y. Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size [J]. Nanotechnology, 2005, 16 (12): 3079-3083.
    [100] DOUGLAS F, YA EZ R, ROS J, et al. Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization [J]. Journal of Nanoparticle Research, 2008, 10 (Supplement 1): 97-106.
    [101] CHANG I T H, REN Z. Simple processing method and characterisation of nanosized metal powders [J]. Materials Science and Engineering A, 2004, 375-377: 66-71.
    [102]徐匡迪,翟启杰,高玉来,等.微小液滴凝固技术研究及其应用展望[C]. 2005年度中国工程院化工、冶金与材料工程学部第五届学术会议(博鳌论坛)大会特邀报告, 2005:1-16.
    [103] TAKAGI M. Electron-diffraction study of liquid-solid transition of thin metal films [J]. Journal of the Physical Society of Japan, 1954, 9 (3): 359-363.
    [104] MEI Q S, LU K. Melting and superheating of crystalline solids: From bulk to nanocrystals [J]. Progress in Materials Science, 2007, 52 (8): 1175-1262.
    [105] WRONSKI C R M. The size dependence of the melting point of small particles of tin [J]. British Journal of Applied Physics, 1967, 18 (12): 1731-1737.
    [106] BUFFAT P, BOREL J P. Size effect on the melting temperature of goldparticles [J]. Physical Review A, 1976, 13 (6): 2287.
    [107] DIPPEL M, MAIER A, GIMPLE V, et al. Size-dependent melting of self-assembled indium nanostructures [J]. Physical Review Letters, 2001, 87 (9): 095505.
    [108] LAI S L, GUO J Y, PETROVA V, et al. Size-dependent melting properties of small tin particles: nanocalorimetric measurements [J]. Physical Review Letters, 1996, 77 (1): 99-102.
    [109] ALLEN L H, RAMANATH G, LAI S L, et al. 1 000 000 oC/s thin film electrical heater: In situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing [J]. Applied Physics Letters, 1994, 64 (4): 417-419.
    [110] ZHANG M, EFREMOV M Y, SCHIETTEKATTE F, et al. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements [J]. Physical Review B, 2000, 62 (15): 10548.
    [111] LAI S L, RAMANATH G, ALLEN L H, et al. High-speed (104 oC/s) scanning microcalorimetry with monolayer sensitivity (J/m2) [J]. Applied Physics Letters, 1995, 67 (9): 1229-1231.
    [112] KEVIN F P, YIP-WAH C, JEROME B C. Surface melting on small particles [J]. Applied Physics Letters, 1997, 71 (16): 2391-2393.
    [113] PETERS K F, COHEN J B, CHUNG Y-W. Melting of Pb nanocrystals [J]. Physical Review B, 1998, 57 (21): 13430.
    [114]辛立辉,周瑞敏,爱可可,等.电子束辐照制备纳米银[J].辐射研究与辐射工艺学报, 2004, 22 (2): 69-72.
    [115] LUCIC LAVCEVIC M, OGORELEC Z. Melting and solidification of Sn-clusters [J]. Materials Letters, 2003, 57 (26-27): 4134-4139.
    [116] SHENG H W, LU K, MA E. Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10wt% M (M=In, Sn, Bi, Cd,Pb) mixtures [J]. Acta Materialia, 1998, 46 (14): 5195-5205.
    [117] GOSWAMI R, CHATTOPADHYAY K. Melting of Bi nanoparticles embedded in a Zn matrix [J]. Acta Materialia, 2004, 52 (19): 5503-5510.
    [118] JESSER W A, SHNECK R Z, GILE W W. Solid-liquid equilibria in nanoparticles of Pb-Bi alloys [J]. Physical Review B, 2004, 69 (14): 144121.
    [119] JESSER W A, SHIFLET G J, ALLEN G L, et al. Equilibrium phase diagrams of isolated nano-phases [J]. Materials Research Innovations, 1999, 2 (4): 211-216.
    [120] YASUDA H, MITSUISHI K, MORI H. Particle-size dependence of phase stability and amorphouslike phase formation in nanometer-sized Au-Sn alloy particles [J]. Physical Review B - Condensed Matter and Materials Physics, 2001, 64 (9): 941011-941016.
    [121] TANAKA T, HARA S. Thermodynamic evaluation of binary phase diagrams of small particle systems [J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2001, 92 (5): 467-472.
    [122] LEE J, MORI H, LEE J, et al. Phase diagrams of nanometer-sized particles in binary systems [J]. JOM Journal of the Minerals, Metals and Materials Society, 2005, 57 (3): 56-59.
    [123]卢柯,生红卫,金超晖.晶体的熔化和过热[J].材料研究学报, 1997, 11 (6): 658-665.
    [124] GUPTA N P. Lindemann law for ideal solids [J]. International Journal of Solids and Structures, 1973, 9 (3): 431-433.
    [125] LINDEMANN F A. The calculation of molecular vibration frequencies [J]. Physikalische Zeitschrift, 1910, 11: 609-612.
    [126] BORN M. Thermodynamics of crystals and melting [J]. The Journal ofChemical Physics, 1939, 7 (8): 591-603.
    [127] TALLON J L, ROBINSON W H, SMEDLEY S I. A melting criterion based on the dilatation dependence of shear moduli [J]. Nature, 1977, 266: 337-338.
    [128] TALLON J L. Crystal instability and melting [J]. Nature, 1982, 299: 188-188.
    [129]张帅.金属纳米晶体熔化的尺寸效应[D].长春:吉林大学材料科学与工程学院, 2004.
    [130] DASH J G. History of the search for continuous melting [J]. Reviews of Modern Physics, 1999, 71: 1737-1743.
    [131] KUHLMANN-WILSDORF D. Theory of melting [J]. Physical Review, 1965, 140: A1599-A1610.
    [132] GORECKI T. Vacancies for solid krypton bubble copper,nickel and gold particles [J]. Zeitschrift für Metallkunde, 1974, 65: 426.
    [133] KAMANI S K. Influence of defects on thermal and mechanical properties of metals [D]. Texas: Texas A&M University Chemical Engineering, 2008.
    [134] RUBCIC A, RUBCIC J B. Simple Model for Volume Change at Melting of Elements [J]. Fizika, 1978, 10 (Suppl 2): 294-299.
    [135] WAUTELET M. Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model [J]. Journal of Physics D: Applied Physics, 1991, 24 (3): 343-346.
    [136] NANDA K K, SAHU S N, BEHERA S N. Liquid-drop model for the size-dependent melting of low-dimensional systems [J]. Physical Review A, 2002, 66 (1): 013208.
    [137] JIANG Q, ZHANG S, ZHAO M. Size-dependent melting point of noble metals [J]. Materials Chemistry and Physics, 2003, 82 (1): 225-227.
    [138] QI W H, WANG M P. Size and shape dependent melting temperature of metallic nanoparticles [J]. Materials Chemistry and Physics, 2004, 88 (2-3): 280-284.
    [139] QI W H. Size effect on melting temperature of nanosolids [J]. Physica B: Condensed Matter, 2005, 368 (1-4): 46-50.
    [140] QI W H, WANG M P. Size and shape dependent lattice parameters of metallic nanoparticles [J]. Journal of Nanoparticle Research, 2005, 7 (1): 51-57.
    [141] QI W H, HUANG B Y, WANG M P, et al. Molecular dynamic simulation of the size- and shape-dependent lattice parameter of small Platinum nanoparticles [J]. Journal of Nanoparticle Research, 2008, 11 (3): 575-580.
    [142] ATTARIAN SHANDIZ M, SAFAEI A, SANJABI S, et al. Modeling size dependence of melting temperature of metallic nanoparticles [J]. Journal of Physics and Chemistry of Solids, 2007, 68 (7): 1396-1399.
    [143] HSIAO L Y, DUH J G. Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x = 0.2, 0.5, 1.0) alloy nanoparticles-by the chemical reduction method [J]. Journal of the Electrochemical Society, 2005, 152 (9): J105-J109.
    [144] JIANG H, MOON K S, HUA F, et al. Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders [J]. Chemistry of Materials, 2007, 19 (18): 4482-4485.
    [145] JIANG H, MOON K S, WONG C P. Tin/Silver/Copper alloy nanoparticle pastes for low temperature lead-free interconnect applications [C]. Electronic Components and Technology Conference, ECTC '08:1400-1404.
    [146] KARAKAYA I, THOMPSON W. The Ag-Sn (Silver-Tin) system [J]. Bulletin of Alloy Phase Diagrams, 1987, 8 (4): 340-347.
    [147]刘文胜,彭芬,马运柱,等.工艺条件对气雾化制备SnAgCu合金粉末特性的影响[J].中国有色金属学报, 2009, 19 (6): 1074-1079.
    [148] MOON K, BOETTINGER W, KATTNER U, et al. Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys [J]. Journal of Electronic Materials, 2000, 29 (10): 1122-1136.
    [149] ZENG K, TU K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J]. Materials Science and Engineering: R: Reports, 2002, 38 (2): 55-105.
    [150]官万兵.金属微纳液滴凝固特性与组织研究[D].上海:上海大学材料科学与工程学院, 2006: 20.
    [151] PRADHAN N, PAL A, PAL T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles [J]. Langmuir, 2001, 17 (5): 1800-1802.
    [152] JANA N R, PAL T. Redox catalytic property of still-growing and final palladium particles: A comparative study [J]. Langmuir, 1999, 15 (10): 3458-3463.
    [153] MCCALL S L, LEVI A F J, SLUSHER R E, et al. Whispering-gallery mode microdisk lasers [J]. Applied Physics Letters, 1992, 60 (3): 289-291.
    [154] LINK S, EL-SAYED M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods [J]. The Journal of Physical Chemistry B, 1999, 103 (40): 8410-8426.
    [155] JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chemical Communications, 2001: 617-618.
    [156] HUH M Y, KIM S H, AHN J P, et al. Oxidation of nanophase tin particles [J]. Nanostructured Materials, 1999, 11 (2): 211-220.
    [157] CHEYSSAC P, KOFMAN R, MATTEI G, et al. Fundamental properties of lead and tin nanocrystals in a dielectric matrix [J]. Superlattices and Microstructures, 1995, 17 (1): 47-47.
    [158] STELLA A, NISOLI M, DE SILVESTRI S, et al. Size effects in the ultrafast electronic dynamics of metallic tin nanoparticles [J]. Physical Review B, 1996, 53 (23): 15497.
    [159] CHEYSSAC P, EL FIDALI Y, KOFMAN R, et al. Surface waves as a tool for the study of phase transition of nanoparticles [J]. Thin Solid Films, 1998, 318 (1-2): 128-131.
    [160] BOTTANI C E, LI BASSI A, TANNER B K, et al. Melting in metallic Sn nanoparticles studied by surface Brillouin scattering and synchrotron-x-ray diffraction [J]. Physical Review B, 1999, 59 (24): R15601.
    [161] BOTTANI C E, LI BASSI A, TANNER B K, et al. Brillouin scattering investigation of melting in Sn nanoparticles [J]. Materials Science and Engineering C, 2001, 15 (1-2): 41-43.
    [162] DEPERO L E, BONTEMPI E, SANGALETTI L, et al. Melting of nanostructured Sn probed by in-situ x-ray diffraction [J]. The Journal of Chemical Physics, 2003, 118 (3): 1400-1403.
    [163] HENGLEIN A, GIERSIG M. Radiolytic formation of colloidal tin and Tin-Gold particles in aqueous solution [J]. The Journal of Physical Chemistry, 1994, 98 (28): 6931-6935.
    [164] YANG C S, LIU Q, KAUZLARICH S M, et al. Synthesis and characterization of Sn/R, Sn/Si-R, and Sn/SiO2 Core/Shell nanoparticles [J]. Chemistry of Materials, 2000, 12 (4): 983-988.
    [165] EGASHIRA M, TAKATSUJI H, OKADA S, et al. Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries [J]. Journal of Power Sources, 2002, 107(1): 56-60.
    [166] LEE K T, JUNG Y S, OH S M. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries [J]. Journal of the American Chemical Society, 2003, 125 (19): 5652-5653.
    [167] NAYRAL C, OULD-ELY T, MAISONNAT A, et al. A novel mechanism for the synthesis of tin/tin oxide nanoparticles of low size dispersion and of nanostructured SnO2 for the sensitive layers of gas sensors [J]. Advanced Materials, 1999, 11 (1): 61-63.
    [168] ZHAO Y, ZHANG Z, DANG H. Preparation of tin nanoparticles by solution dispersion [J]. Materials Science and Engineering A, 2003, 359 (1-2): 405-407.
    [169] BALAN L, SCHNEIDER R, BILLAUD D, et al. Novel low-temperature synthesis of tin(0) nanoparticles [J]. Materials Letters, 2005, 59 (8-9): 1080-1084.
    [170] BALAN L, SCHNEIDER R, BILLAUD D, et al. A new organometallic synthesis of size-controlled tin(0) nanoparticles [J]. Nanotechnology, 2005, 16: 1153-1158.
    [171] JIANG H, MOON K S, DONG H, et al. Size-dependent melting properties of tin nanoparticles [J]. Chemical Physics Letters, 2006, 429: 492-496.
    [172] WANG Y, CAMARGO P H C, SKRABALAK S E, et al. A facile, water-based synthesis of highly branched nanostructures of silver [J]. Langmuir, 2008, 24 (20): 12042-12046.
    [173] GARCIA-SERRANO J, PAL U, HERRERA A M, et al. One-step "green" synthesis and stabilization of Au and Ag nanoparticles using ionic polymers [J]. Chemistry of Materials, 2008, 20 (16): 5146-5153.
    [174] YANG Y, MATSUBARA S, XIONG L M, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties [J].Journal of Physical Chemistry C, 2007, 111 (26): 9095-9104.
    [175] BRANDT W W, DWYER F P, GYARFAS E D. Chelate complexes of 1,10-phenanthroline and related compounds [J]. Chemical Reviews, 1954, 54 (6): 959-1017.
    [176] FERGUSON J, HAWKINS C J, KANE-MAGUIRE L A P, et al. Absolute configurations of 1,10-phenanthroline and 2,2'-bipyridine metal complexes [J]. Inorganic Chemistry, 1969, 8 (4): 771-779.
    [177] WANG Y, LEE J Y, DEIVARAJ T C. Controlled synthesis of V-shaped SnO2 nanorods [J]. The Journal of Physical Chemistry B, 2004, 108 (36): 13589-13593.
    [178] WANG Y, LEE J Y. Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features [J]. The Journal of Physical Chemistry B, 2004, 108 (46): 17832-17837.
    [179] GALLAGHER J, CHEN C H B, PAN C Q, et al. Optimizing the targeted chemical nuclease activity of 1,10-phenanthroline-copper by ligand modification [J]. Bioconjugate Chemistry, 1996, 7 (4): 413-420.
    [180] PETTINARI C, PELLEI M, MILIANI M, et al. Tin(IV) and organotin(IV) complexes containing mono or bidentate N-donor ligands: III. 1-methylimidazole derivatives: synthesis, spectroscopic and structural characterization [J]. Journal of Organometallic Chemistry, 1998, 553 (1-2): 345-369.
    [181] SARKAR S, PRADHAN M, SINHA A K, et al. Chelate effect in surface enhanced raman scattering with transition metal nanoparticles [J]. The Journal of Physical Chemistry Letters, 2009, 1 (1): 439-444.
    [182] MUNIZ-MIRANDA M. Surface enhanced Raman scattering and normal coordinate analysis of 1,10-phenanthroline adsorbed on silver sols [J]. The Journal of Physical Chemistry A, 2000, 104 (33): 7803-7810.
    [183] JANG N H, SUH J S, MOSKOVITS M. Effect of surface geometry onthe photochemical reaction of 1,10-phenanthroline adsorbed on silver colloid surfaces [J]. The Journal of Physical Chemistry B, 1997, 101 (41): 8279-8259.
    [184] LIM M C, SINN E, MARTIN R B. Crystal structure of a mixed-ligand complex of copper(II), 1,10-phenanthroline, and glycylglycine dianion: glycylglycinato (1,10-phenanthroline)copper(II) trihydrate [J]. Inorganic Chemistry, 1976, 15 (4): 807-811.
    [185] SIGMAN D S. Nuclease activity of 1,10-phenanthroline-copper ion [J]. Accounts of Chemical Research, 1986, 19 (6): 180-186.
    [186] YOON C, KUWABARA M D, SPASSKY A, et al. Sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion [J]. Biochemistry, 1990, 29 (8): 2116-2121.
    [187] RANNULU N S, RODGERS M T. Noncovalent Interactions of Cu+ with N-donor ligands (pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline): Collision-induced dissociation and theoretical studies [J]. The Journal of Physical Chemistry A, 2007, 111 (18): 3465-3479.
    [188] PRIVMAN V, GOIA D V, PARK J, et al. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors [J]. Journal of Colloid and Interface Science, 1999, 213 (1): 36-45.
    [189] CUSHING B L, KOLESNICHENKO V L, O'CONNOR C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chemical Reviews, 2004, 104 (9): 3893-3946.
    [190] WEISS G H. Overview of theoretical models for reaction rates [J]. Journal of Statistical Physics, 1986, 42 (1): 3-36.
    [191] LIFSHITZ I M, SLYOZOV V V. The kinetics of precipitation from supersaturated solid solutions [J]. Journal of Physics and Chemistry of Solids, 1961, 19 (1-2): 35-50.
    [192] WAGNER C. Theorie der Alterung von Niederschl?gen durch Uml?sen (Ostwald–Reifung) [J]. Zeitschrift für Elektrochemie, 1961, 65: 581-591.
    [193] TOKUYAMA M, KAWASAKI K, ENOMOTO Y. Kinetic equations for Ostwald ripening [J]. Physica A: Statistical and Theoretical Physics, 1986, 134 (2): 323-338.
    [194] HSIAO L Y, DUH J G. Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5Ag-0.5Cu nanoparticles by a chemical reduction method [J]. Journal of Electronic Materials, 2006, 35 (9): 1755-1760.
    [195] Tin (II) chloride [Web]. http://en.wikipedia.org/wiki/Tin(II)_chloride.
    [196] CORRIAS A, ENNAS G, LICHERI G, et al. Amorphous metallic powders prepared by chemical reduction of metal ions with potassium borohydride in aqueous solution [J]. Chemistry of Materials, 1990, 2 (4): 363-366.
    [197] ZENG D, HAMPDEN-SMITH M J. Synthesis and characterization of nanophase Group 6 metal (M) and metal carbide (M2C) powders by chemical reduction methods [J]. Chemistry of Materials, 1993, 5 (5): 681-689.
    [198] MULFINGER L, SOLOMON S D, BAHADORY M, et al. Synthesis and study of silver nanoparticles [J]. Journal of Chemical Education, 2007, 84 (2): 322.
    [199] IVANOVA O S, ZAMBORINI F P. Size-dependent electrochemical oxidation of silver nanoparticles [J]. Journal of the American Chemical Society, 2009, 132 (1): 70-72.
    [200] Standard reduction potential [Web]. http://www.science.uwaterloo.ca/~cchieh/cact/tools/rdvolt.html.
    [201]刘智恩.材料科学基础[M].西安:西北工业大学出版社, 2003: 329.
    [202] VESNIN Y I, SHUBIN Y V. Equilibrium solid solubilities in the Ag-Cu system by X-ray diffractometry [J]. Journal of Physics F: Metal Physics, 1988, 18 (11): 2381-2386.
    [203] BOTTANI C E, LI BASSI A, STELLA A, et al. Investigation of confined acoustic phonons of tin nanoparticles during melting [J]. Europhysics Letters, 2001, 56 (3): 386-392.
    [204] COUCHMAN P R, JESSER W A. Thermodynamic theory of size dependence of melting temperature in metals [J]. Nature, 1977, 269 (5628): 481-483.
    [205] GIBBS J W. The collected works of J. Willard Gibbs [M]. New Haven: Yale University, 1948.
    [206] MAKKONEN L. On the methods to determine surface energies [J]. Langmuir, 2000, 16 (20): 7669-7672.
    [207] SUN J, SIMON S L. The melting behavior of aluminum nanoparticles [J]. Thermochimica Acta, 2007, 463 (1-2): 32-40.
    [208] GUAN W, VERMA S C, GAO Y, et al. Characterization of nanoparticles of lead-free solder alloys [C]. 1st Electronics Systemintegration Technology Conference (ESTC 2006), 2006:7-12.
    [209] GAO Y, ZOU C, YANG B, et al. Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy [J]. Journal of Alloys and Compounds, 2009, 484: 777-781.
    [210] ANTISARI M V, MARAZZI R, KRSMANOVIC R. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments [J]. Carbon, 2003, 41 (12): 2393-2401.
    [211] BIN W, YANFENG M, YINGPENG W, et al. Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties [J]. Carbon, 2009: 2112-2115.
    [212] HYEON GU C, SANG WON K, HYEONG JUN L, et al. A simple and highly effective process for the purification of single-walled carbon nanotubes synthesized with arc-discharge [J]. Carbon, 2009, 47 (15): 3544-3549.
    [213] LANGE H, SIODA M, HUCZKO A, et al. Nanocarbon production by arc discharge in water [J]. Carbon, 2003, 41 (8): 1617-1623.
    [214] MATHUR R B, SETH S, LAL C, et al. Co-synthesis, purification and characterization of single- and multi-walled carbon nanotubes using the electric arc method [J]. Carbon, 2007, 45 (1): 132-140.
    [215] SHI Z J, LIAN Y F, ZHOU X H, et al. Mass-production of single-wall carbon nanotubes by arc discharge method [J]. Carbon, 1999, 37 (9): 1449-1453.
    [216] BUCKLOW I A, DRAIN L E. Spark erosion in liquid argon [J]. Journal of Scientific Instruments, 1964, 41 (10): 614-617.
    [217] SI P Z, ZHANG Z D, GENG D Y, et al. Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor [J]. Carbon, 2003, 41 (2): 247-251.
    [218] BERA D, KUIRY S C, MCCUTCHEN M, et al. In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution [J]. Chemical Physics Letters, 2004, 386 (4-6): 364-368.
    [219] BERA D, KUIRY S C, MCCUTCHEN M, et al. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method [J]. Journal of Applied Physics, 2004, 96 (9): 5152-5157.
    [220] CHANG I T H, HONG I T. Powder and coating formation and apparatus [P]. British, WO 03/0802275 A2.
    [221] XIE S Y, MA Z J, WANG C F, et al. Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in asurfactant solution: a combination of physical and chemical processes [J]. Journal of Solid State Chemistry, 2004, 177 (10): 3743-3747.
    [222]翟启杰,高玉来,官万兵,等.自耗电极直流电弧法制备导电金属纳米粉末的方法[P].中国, ZL 20061002621.0.
    [223]周玉,武高辉.材料分析测试技术—材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社, 2004: 145.
    [224] GOODHEW P J, HUMPHREYS J, BEANLAND R. Electron microscopy and analysis [M]. London: Tayoor & Francis, 2001: 23.
    [225] LIU W, LEE N-C. The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints [J]. JOM Journal of the Minerals, Metals and Materials Society, 2007, 59 (7): 26-31.
    [226] LAURILA T, MATTILA T, VUORINEN V, et al. Evolution of microstructure and failure mechanism of lead-free solder interconnections in power cycling and thermal shock tests [J]. Microelectronics Reliability, 2007, 47 (7): 1135-1144.
    [227] CHEN C H, WONG W, LO J C C, et al. Characterization and comparison of five SAC-based solder pastes for Pb-free reflow soldering [C]. 2007 International Symposium on High Density packaging and Microsystem Integration, HDP '07:1-8.
    [228] KRUIS F E, FISSAN H, PELED A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications--a review [J]. Journal of Aerosol Science, 1998, 29 (5-6): 511-535.
    [229] TABRIZI N S, ULLMANN M, VONS V A, et al. Generation of nanoparticles by spark discharge [J]. Journal of Nanoparticle Research, 2009, 11 (2): 315-332.
    [230]王志平.两用式电弧法金属那米粉制取设备[P].中国, ZL 200320103356.5.
    [231]电弧法产业化金属纳米粉制取设备[Web]. http://www.gsdnm.com/caseT_N_A.aspx?id=11.
    [232]王志平.连动式电爆法金属钠米粉制取设备[P].中国, ZL 200320103357.X.
    [233]电爆法产业化金属纳米粉制取设备[Web]. http://www.gsdnm.com/caseT_N_A.aspx?id=7.
    [234] CHO C, CHOI Y W, KANG C, et al. Effects of the medium on synthesis of nanopowders by wire explosion process [J]. Applied Physics Letters, 2007, 91 (14): 141501-3.
    [235] GAO Y, ZHURAVLEV E, ZOU C, et al. Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates [J]. Thermochimica Acta, 2009, 482: 1-7.
    [236] GAO Y, ZOU C, YANG B, et al. Fast calorimetric scanning of micro-sized SnAgCu single droplet at a high cooling rate [J]. Science in China Series E: Technological Sciences, 2009, 52 (6): 1707-1711.
    [237] YANG B, GAO Y L, ZOU C D, et al. Repeated nucleation in an undercooled tin droplet by fast scanning calorimetry [J]. Materials Letters, 2009, 63 (28): 2476-2478.
    [238] LIU X, LU X, WEI B. Rapid monotectic solidification under free fall condition [J]. Science in China Series E, 2004, 47 (4): 409-420.
    [239] YAO W J, WEI B. Nucleation and growth of ?Cu3Sb intermetallic compound in undercooled Cu-31%Sb eutectic alloy [J]. Journal of Alloys and Compounds, 2004, 366: 165-170.
    [240] YANG W, FELTON L, MESSLER R. The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints [J]. Journal of Electronic Materials, 1995, 24 (10): 1465-1472.
    [241] KINYANJUI R, LEHMAN L P, ZAVALIJ L, et al. Effect of sample sizeon the solidification temperature and microstructure of SnAgCu near eutectic alloys [J]. Journal of Materials Research, 2005, 20 (11): 2914-2918.
    [242]杨斌.单个纯Sn金属微滴的原位快速凝固研究[D].上海:上海大学材料科学与工程学院, 2010: 31.
    [243] H HNE G W H, CAMMENGA H K, EYSEL W, et al. The temperature calibration of scanning calorimeters [J]. Thermochimica Acta, 1990, 160 (1): 1-12.
    [244] SARGE S M, H HNE G W H, CAMMENGA H K, et al. Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode [J]. Thermochimica Acta, 2000, 361 (1-2): 1-20.
    [245] MUELLER B A, PEREPEZKO J H. The Undercooling Aluminum [J]. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 1987, 18 (6): 1143-1150.
    [246] MAVEETY J, LIU P, VIJAYEN J, et al. Effect of cooling rate on microstructure and shear strength of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-37Pb solders [J]. Journal of Electronic Materials, 2004, 33 (11): 1355-1362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700