新型药物缓释材料的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酯类和聚酸酐类材料在临床医学领域的应用越来越受到重视。为了寻找对亲水性药物具有良好缓释性能,在体内可降解吸收的生物相容性好的新型药物缓释材料,本文采用C12-C15脂肪二酸和其它相关单体合成了几种新型聚酸酐和一类新的可注射药物缓释材料—改性不饱和聚酯材料,研究了这些材料的降解、释药性能和在与药物配伍后的生物活性。包括以下主要内容:
    1、以二聚酸和C12-C15脂肪二酸为单体两两共聚,制备得到了聚(二聚酸-月桂二酸)共聚酸酐、聚(二聚酸-十三烷二酸)共聚酸酐、聚(二聚酸-十四烷二酸)共聚酸酐、聚(二聚酸-十五烷二酸)共聚酸酐、聚(月桂二酸-十四烷二酸)共聚酸酐和聚(十三烷二酸-十五烷二酸)共聚酸酐。所有聚酸酐用FT-IR、GPC、DSC和广角X-射线衍射进行了表征,并研究了聚酸酐的体外降解及其对亲水性模型药物盐酸环丙沙星的释放性能。实验结果表明合成的聚酸酐具有分子量高、熔点低、热稳定性好等特点, 在0.1mol/L pH7.4PBS中可降解,对盐酸环丙沙星和硫酸庆大霉素有较好的释放性能,总体上表现出一级释放动力学特征,在一定的配比条件下的药物释放呈0级释放动力学行为,材料降解和药物释放速率与疏水性单体二聚酸含量及结晶度成反比。用小鼠做的组织学试验结果表明,聚酸酐材料在皮下植入部位周围所引起的局部刺激反应比明胶海绵稍轻,表现出较好的生物相容性。小鼠皮下植入实验结果表明,盐酸阿霉素-聚酸酐缓释片可被完全吸收,心脏血液中未检出药物,具有良好的生物可降解吸收特性和释药安全性。
    2、初步研究了硫酸庆大霉素-聚酸酐缓释药丸的抑菌活性和盐酸阿霉素-聚酸酐缓释片的体内抗癌活性。硫酸庆大霉素-聚酸酐控释片对大肠杆菌、金黄色葡萄球菌的抑菌试验表明,控释片对作用菌有长达50~60天的持续抑菌活性,可望用于骨髓炎的定点治疗。对小鼠S180鼠肉瘤模型的研究表明,盐酸阿霉素-聚酸酐缓释制剂能显著延长小鼠S180鼠肉瘤的体积倍增时间,当该制剂为150mg时倍增时间从对照组的7天延长至24~35天,表现出强的抑癌作用,在实体瘤治疗方面展示出良好的应用前景。
    3、以马来酸酐或富马酸为不饱和酸单体,以癸二酸、十二烷二酸、十三烷二酸之一为饱和酸单体,与乙二醇共聚,制备得到了新型不饱和聚酯材料:聚(马来酸-乙二醇-癸二酸)、聚(富马酸-乙二醇-癸二酸)、聚(富马酸-乙二醇-月桂二酸)、聚(富马酸-乙二醇-十三烷二酸)。一些不饱和聚酯材料用聚酸酐进行了改性以改善
    
    
    降解性能,得到了聚(二聚酸-十三烷二酸)共聚酸酐改性的聚(富马酸-乙二醇)共聚物和聚(月桂二酸-十四烷二酸)共聚酸酐改性的聚(富马酸-乙二醇)共聚物。实验结果表明所有新合成的不饱和聚酯具有可注射、体温下固化速度快等特点。降解及释药实验结果表明,合成的不饱和聚酯材料在0.1mol/L pH7.4 PBS中可降解,对盐酸环丙沙星有好的缓释性能。用小鼠做的组织学试验结果表明,在皮下注射植入新合成的不饱和聚酯材料后,材料在注射植入部位所引起的局部刺激反应比明胶海绵稍轻并可降解,表明该类新型新合成的不饱和聚酯材料在皮下具有较好的生物相容性和生物可降解吸收特性,适合用作药物缓释载体。
    4、以盐酸阿霉素和5-氟尿嘧啶为模型药物,研究了这些药物与不饱和聚酯制成的缓释剂体内的抗癌活性。对小鼠S180鼠肉瘤模型的瘤内注射给药治疗研究表明,以盐酸阿霉素-不饱和聚酯缓释剂能显著延长小鼠S180鼠肉瘤的体积倍增时间,从对照组的7天延长至17~22天,间隔14~17天二次瘤内注射给药治疗效果更好(24~35天),表现出强的抑癌活性。间隔11天二次瘤内注射5-氟尿嘧啶-不饱和聚酯缓释剂给药治疗效果最好,肿瘤几乎消失,表现出良好的抑癌作用,在实体瘤治疗方面呈现出很好的应用前景。
Polyesters and polyanhydrides come under an increasingly recognition in medical application. In this article a new kind of injectable drug controlled release material of unsaturated polyester and several new type of polyanhydrides have been prepared by using C12~15 dibasic acids and other corresponding monomers, they have desired biocompatibility, absorbable biodegradability in vivo and bioactivity after mixed drugs. The main results are as follows:
    .1. Poly(dimer acid-dodecanedioic acid) copolymer, poly(dimer acid-brassylic acid) copolymer, poly(dimer acid-tetradecanedioic acid) copolymer and poly(dimer acid-pentadecanedioic acid) copolymer were prepared by melt polycondensation by using C12~15 dibasic acid copolymerized with dimer acid respectively, poly(dodecanedioic acid- tetradecanedioic acid) copolymer and poly(brassylic acid - pentadecanedioic acid) copolymer were also prepared by using prepolymer of C12~15 dibasic acid respectively. The copolymers in vitro degradation, drug release profiles of hydrophilic model drug, ciprofloxacin hydrochloride, from the copolyanhydrides in 0.1mol/L pH7.4 PBS at 37℃ were also investigated. The copolymers were characterized by FT-IR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide angle X-ray powder-diffraction, and thermal gravimetric analysis (TGA) etc. In vitro degradation, drug release profiles of hydrophilic model drug, ciprofloxacin hydrochloride,from the copolyanhydrides in 0.1mol/L pH 7.4PBS at 37℃ were also investigated. It showed that all the prepared copolyanhydrides meet the essential requirement for polyanhydrides as drug delivery material including high molecular weights, low melting points, and desired thermal stability. In vitro release profiles of gentamicin sulfate and ciprofloxacin hydrochloride from the copolyanhydrides showed relatively steady drug release rate, and followed first order release kinetics as a whole,in some definite monomer ratio conditions the release profiles followed zero order release kinetics,The in vitro degradable characterization of all the copolymers showed the desired erosion rate for drug release. The erosion rate and drug release rate seems in reverse to the content of DA and the degree of crystallinity. The synthesized polyanhydrides were preliminarily injected under mice skin, and the microscopically histopathologic observations revealed that the copolymers produced responses gently than the control, absorbable gelatin sponge. Preliminary in vivo studies under mice skin showed that adriamycin hydrochloride-polyanhydride controlled release preparation can be absorbed completely
    
    
    and no drugs can be checked out in blood of heart. The polymers possess good tissue compatibility,animal degradability and have proper standing drug release profiles and good security of drug release.
    2. In vitro bacteriostatic activity of gentamicin sulfate-polyanhydride and in vivo anti-tumor activity of adriamycin hydrochloride-polyanhydride wafer were preliminarily determined. In vitro bacteriostatic activity studies demonstrated that the beads containing 5% gentamicin sulfate possessed desired bacteriostatic activity, and lasted for 45-60 days for staphylococcus aureus and escherichia coli, which are common bacteria for infections in bone, suggest that the biodegradable sustained-release beads may be promise as a new treatment device for osteomyelitis treatment. In vivo studies showed that antitumor efficacy of polyanhydride(150mg) containing 5% adriamycin hydrochloride in Sarcoma-180 mice bearing tumor exhibited increased volume doubling time between 24~35 days compared to plain subcutaneous injection of adriamycin hydrochloride (7days). All above demonstrated that the novel sustained-release wafer may be promising for the treatment of noumenon tumor.
    3. The new unsaturated polyester resins were prepared by melt polycondensation of the corresponding mixed monomers: sebacic acid or C12~13 dibasic acid, fumaric acid or maleic anhydride and glycol. They were Poly(maleic anhydride-glycol-sebacic acid) cop
引文
Das KG. Controlled Release Techology Bioengineering aspects. Jonh Wiley and Sons, 1983,256~274
    Endo T, Nakagawa T, Kita T, Kim TS, Iguchi F, Naito Y. A novel drug delivery system: A biodegradable gel for the treatment of inner ear diseases. Otolaryngology- Head and Neck Surgery, 2004,131(2):260
    Vuorio M, Murtomaki L, Hirvonen J, Kontturi K. Ion-exchange fibers and drugs: a novel device for the screening of iontophoretic systems. J Controlled Release 2004, 97: 485~ 492
    Chretien C, Boudy V, Allain P, Chaumeil JC Indomethacin release from ion-exchange microspheres: impregnation with alginate reduces release rate. J Controlled Release, 2004, 96: 369~378
    Wood worth J R, DennisS R T, Hinsvark O N, Bioavail-ability evaluation of a controlled release dextromethrophan liquid. Clin Pharmacol, 1987,27:13
    Quick DJ, Anseth KS. DNA delivery from photocrosslinked PEG hydrogels: encapsulationefficiency, release profiles, and DNA quality. J Controlled Release. 2004, 96(2) 341-351
    Tabata Y, Langer R. Polyanhydride microspheres that display near-constant realse of water-soluble model drug compounds. Pharm Res, 1993,10(3): 391~399
    Ouchi T, Sasakawa M, Arimura H, Toyohara M, Ohya Y. Preparation of poly[dl-lactide-co-glycolide]-based microspheres containing protein by use of amphiphilic diblock copolymers of depsipeptide and lactide having ionic pendant groups as biodegradable surfactants by W/O/W emulsion method.Polymer,2004, 45(5):1583~1589
    Ohya Y, Kobayshi H, Ouchi T. Design of poly (a-malic acid-5Fu-saccaride conjugate exhibiting antitumor activity. Reactive Polym, 1991,15:153~163
    Arimira H, Ohya Y, Ouchi T, Yamada H. Preparation of a biodegradable matrix through polyion complex formation by mixing polylactide-based microspheres having oppositely charged?surfaces. Journal of Colloid and Interface Science, 2004,270(2):299~303
    Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Progress in Ratinal and Eye Research, 2004,23(3):253~281
    Siepmanna J, Faisantb N, Akikib J, Richardc, J Benoitb JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory J Controlled Release. 2004,96: 123~ 134
    Cho YW, Lee J, Lee SC, Huh KM, Park K.Hydrotropic agents for study of in vitro
    
    
    paclitaxel release from polymeric micelles. J Controlled Release. 2004,97: 249~ 257
    Karsa D R. Encapuslation and controlled release. Royal Society of Chemitry, 1993,138
    Nacht S. Encapuslation and other topical delively systems Cosmetics&Toiletries, 1995,10(9): 25~30
    Redding T W, Schally A V, Tice T R, Meyers W E. Long-acting delivery systems for petides: inhibition of rat prosate tumors by controlled release of [D-Trp6] luteinizing hormone-releasing hormone from injectable microcapsulse. Proc Natl Acad Sci USA, 1984,811(8): 5845~5848
    Dutt M, Khuller GK. Sustained release of isoniazid from a single injectable dose of poly (DL-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. International Journal of Antimicrobial Agents. 2001, 17: 115–122
    Ouchi T, Yamabe E, Hara K, Hirai M, Ohya Y. Design of attachment type of drug delivery system by complex formation of avidin with biotinyl drug model and biotinyl saccharide. J Controlled Release. 2004,94(2-3):281~291
    肖宏亮,高孔荣,谭盈科编译,包覆技术及其控制释放系统的研究开发.日用化学品科学,1996(4)145~147
    Fenga SS, Ruanb G, Lic QT. Fabrication and characterizations of a novel drug delivery device liposomes-in-microsphere (LIM). Biomaterials 2004, 25 :5181~5189
    Touiton E, Junginger H E, Weiner N D. Liposomes as carriers for topical and trasdermal delivery. J Pharm Sci, 1984,83(9): 1189
    Cevc G, Blume G, Schatzlein A. The skin; a pathway for systemic treatment with patches and lipid-based agent carries. Adv Drug Del Rev, 1996,18:349
    郭健新,平其能,孙国庆,等.柔性纳米脂质体作为环孢素经皮渗透载体的体外研究.中国药学杂志,2000,35(9):595~597
    陆彬.药物新剂型与新技术.北京:人民卫生出版社,1998.276~277
    Good WR, Mueller KF. Hydrogels and controlled delivery. Aiche Symposium Series, 1981,77:42~51
    Peppas NA, Khare AR. Preparation structure and diffusion behaviour and hydrogels in controlled release.Adv Drug Deliv Rev, 1993,11(1-2): 1~35
    Nagai T, Machida Y. Buccai delivery systems using hydrogels. Adv Drug Deliv Rev, 1993,11(1-2): 179~191
    Yoshida R, Sakai, K, Okano T, Sakural Y. Pulsatile drug delivery systems using hydrogel. Adv Drug Deliv Rev, 1993,11(1-2): 85~108
    吴明红,陈婕,周瑞敏,等.辐射制备热敏性水凝胶及控制释放.辐射研究与辐射工艺学报,1997,15(1):53~55
    Brogmann B, Beckert TE, Enteric targeting through enteric coating, in: H. Schreier (Ed.), Drugs and the Pharmaceutical Sciences, vol. 115, Marcel Dekker, New York, 2001, 1~ 29.
    
    Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA, Oral delivery of insulin using pH-responsive complexation gels, J. Pharm. Sci. 1999,88 :933–937
    Shiino D, Murata Y, Kubo A, Kim YJ, Kataoka K. Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J Controlled Release, 1995,37:269~276
    汪朝阳. 赵耀明.聚磷酸酯医用材料.高分子通报,2003,12(6):19~27
    Cao X, Lai S, Lee LJ, Design of a self-regulated drug delivery device. Biom. Microdevice, 2001, 3 (2):109~ 117
    Tao SL, Lubeley MW, Desai TA, Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery, J. Controlled Release. 2003,88: 215~228.
    Barroug A, Kuhn LT, Gerstenfeld LC, Glimcher MJ. Interactions of ciplatin with calcium phosphate nanoparticles:in vitro controlled adsorption and release. J Orthopaedic Res,2004,22:703~708
    Li ZZ, Wen LX, Shao L, Chen JF. Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Controlled Release. 2004,98:245~254
    Sinha VR,Bansal K, Kaushik R, Kumria R, Trehan A. Poly-∈-caprolactone microspheres and nanospheres:an overview. Int. J Pharmaceutics,2004,278:1~23
    Kreuter J, Nanoparticle-based drug delivery systems, J Controlled Release. 1991,16: 169~ 176.
    Seijo B, Fattal E, Treupel LR, Couvreur P. Design of nanoparticles of less than 50 nm diameter: preparation, characterization and loading, J. Pharm. 1990,62: 1~7
    Peppas LB. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. J. Pharm. 1995, 116:1~9
    Kawahashi N, Matijevic E, Preparation of hollow sphericalparticles of yttrium compounds, J. Colloid Interface Sci. 1991,143: 103~ 110.
    Giersig M, Ung T, Liz-Marzan LM, Mulvaney P, Direct observation of chemical reactions in silica-coated gold and silver nanoparticles, Adv. Mater. 1997, 9: 570~ 576.
    Jameela SR., Suma N, Misra A, Raghuvanshi R, Ganga S, Jayakrishnan A. Poly (ε-Caprolactone) microspheres asa vaccine carrier. Curr. Sci. 1996,70:669~671.
    Jameela, SR, Suma N, Jayakrishana A. Protein release from poly (epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. J. Biomater. Sci Polym. 1997,8:457~466.
    Perez MH., Zinutti C, Lamprecht A, Ubrich N, Astier A, Hoffman M, Bodmeier R, Maincent P. The preparation and evaluation of poly(ε-caprolactone) microsparticles containing both lipophillic and hydrophilic drug. J. Control. Release. 2000.65:429~438.
    Kim, SY, Lee YM. Taxol-loaded block copolymer nanospheres composed of
    
    
    methoxy poly(ethylene glycol) and poly (epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials. 2001,22:1697~1704
    Limin M, Yuzhin ZQL, Zhongwel G. Study on preparation and pharmacodynamics of insulin-loaded polyester microparticles. Yaoxue Xuebao 2000,35:850–853.
    Ferranti Y, Maochais H, Chabenat C, Orecchioni AM, Lafont O. Primidone-loaded poly (ε-caprolactone) nanocapsules: incorporation efficiency and in vitro release profile. Int. J. Pharm. 1 1999,93:107~111
    Giersig M, Liz-Marzan LM, Ung T, Su DS, Mulvaney P, Bunsenges B. Chemistry of nanosized silica-coated metal particles EM-study, Phys. Chem. 1997,101: 1617– 1620.
    Zachary HJ. Nanotechnology and biomimetic methods in therapeutics: molecular scale control with some help from nature. Advanced Drug Dlivery Reviews.2004,56:1533~1536
    Geresh S, Gdalevsky GY, Gilbo I, Voorspoels J, Remon JP. Kost J Bioadhesive grafted starch copolymers as platforms for peroral drug delivery: a study of theophylline release. J Controlled Release. 2004,94: 391~ 399
    Kim J, Shin SC.Controlled release of atenolol from the ethylene-vinyl acetate matrix. International Journal of Pharmaceutics. 2004, 273: 23~27
    Mario Jug, Mira Be′cirevi′c-La′can. Influence of hydroxypropyl cyclodextrin complexation on piroxicam release from buccoadhesive tablets. European Journal of Pharmaceutical Sciences. 2004,21: 251~260
    Santos JFR, Doval JV, Concheiro A, Lorenzo CA, Torres-Labandeira JJ.Modulating drug release with cyclodextrins in hydroxypropyl methylcellulose gels and tablets. Journal of Controlled Release.2004, 94: 351~363
    Schnu¨rcha AB, Guggib D, Pinter Y.Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. Journal of Controlled Release. 2004, 94: 177~ 186
    左秀锦,戴小敏,周毅,徐海燕,王湛。氧化淀粉控释材料的研究。大连大学学报.2003,24(4):35~38
    杨小钢,祝志峰。脱乙酰壳多糖—羧甲基纤维素聚电解质复合物的合成和药物控释研究. 离子交换与吸附.1999,15(4):310~316
    Summer M P, Enever R P. Preparation of solid dispersion system containing citric acid and primidone. J Pharm Sci, 1976,65(11): 1613
    Chiou W L. Pharmaceutical applications of solid dispersion system: x- ray diffration and aqueous solubility studies on griseofulvin- PEG6000 systems. J Pharm Sci, 1977,66(7): 989
    Betager G V, Dipali S R. Preparation and in vitro dissolution profiles of tolazamide- polyethylene glycol solid dispersions. Drug Dev Ind Pharm, 1995,21(11): 1347
    Okonogi S, Yonemochi E, oguchi T, Enhanced dissolution of ursodeoxycholic acid
    
    
    from the solid dispersion. Drug Dev Ind Pharm, 1997,23(11): 1115
    王普。乙基纤维素固分散物对药物释放度影响因素的研究.中国药学杂志,2000,35(3):166~168
    Calvo P, Remunan-lopex C, Vila-jata JL. Chitosan and Chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccincs. Pharma Sci, 1993,82:912~919
    Mumper RJ, Hoffman AS, Puolakkainen PA. Calcium alginate beads for the oral delivery of transforming growth factor-β1(TGF-β1):stabilization of TGF-β1 by the addition of poly acrylic acid withen acid-trented beads. J Controll Rel,1994,30:241~249
    Hari PR, Chandy T, Sharma CP, Chitosan/calcium-alginate beads for oral delivery of insulin. J Appl Polym Sci, 1996,59:1795-1806
    Maysinger D, Krienglstein K, Grcic JF. Microencapsulated ciliary neurotrophic factor:physical properties and biological activities. Exp Neurol, 1996,138:177~186
    Iwata M, Mc Ginity J w. Dissolution, stability and morphological properties and multiphase poly(d,l-lactic-co-glycol-ic acid) microspheres containing water-soluble compounds. Pharm Res, 1993,10(8): 1219
    徐凌昕.在控制药物投递中应用可生物降解微球和超微球的最新进展.国外医学:生物医学工程分册,1996,19(1). 45~51
    魏民,常津,姚康德.生物可降解高分子材料—聚原酸酯.北京生物医学工程,1999,18(1).60~64
    Schwach-Abdellaoui K, Moreau M, Schneider M, Boisramc B, Gurny R .Controlled delivery of metoclopramide using an injectable semi-solid poly(ortho ester) for veterinary application. International Journal of Pharmaceutics. 2002, 248: 31~37
    Velge RF, Breton P, Lescure F,Guillon X, Bont D, Hoebeke J. Analysis of human CD4-antibody interaction using the BIAcore system. Journal of Immunological Methods, 1995,183(1):141~148
    Kataoka K, Kown GS,Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J Controlled Release, 1993,24:119~132
    张海连, 刘孝波,可生物降解聚酯酰胺的合成及其对药物缓释作用的研究。合成化学,2002,10(5) : 425~427
    周志彬,黄开勋,徐辉碧, 生物可降解高分子材料—聚酸酐.北京生物医学工程,2001,20(1): 76~79
    Cai QX, Zhu KJ, Chen D, Gao LP.Synthesis, characterization and in vitro release of 5-aminosalicylic acid and 5-acetyl aminosalicylic acid of polyanhydride – P(CBFAS). European Journal of Pharmaceutics and Biopharmaceutics 2003, 55: 203~208
    Berkland C, Kipper MJ, Narasimhan B, Kim K, Pack DW Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres.J Controlled Release. 2004, 94:129–
    
    
    141
    Chan CK, Chu IM. Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol). Biomaterials. 2003, 24: 47~54
    Delivering DNA from photocrosslinked, surface eroding polyanhydrides. Quick DJ, Macdonald KK, Anseth KS. J Controlled Release. 2004,97: 333– 343
    Dhruba JB, Sanjeeb Kumar S, Subho M, Amarnath M. Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs .Journal of Colloid and Interface Science 2003,258: 415–423
    Teresa C, Barbara L, Federica B, Isabella O, Vittorio Z. Substituted polyvinylalcohol as a drug carrier for b-carotene. European Journal of Pharmaceutics and Biopharmaceutics 2003,56 : 401–405
    Langer R.Bioomaterials in drug delivery and tissue engineering:one laboratory’s experience.Acc Chem Res,2000,33(2):94-101
    Sampath P, Brem H. Implantable slow-release chemotherapeutic polymers for the treatment of malignant brain tumors. Cancer Control, 1998,5(2):130-137
    Park ES, Maniar M, Shah JC. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J Control Release, 1998, 52(1-2):179-189
    Stephens D, Li L, Robinson D. Investigation of the in vitro release of gentamicin from a polyanhydride matrix. J Control Release, 2000:63(3):305-317
    Masters DB, Berde CB, Dutta S. S ustained local-anesthetic release from bioerodible polymer matrices-a potential method for prolonged regional anesthesia. Pharmaceut Res, 1993, 10(10):1527-1532
    Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release, 2000,65(1-2):261-269
    Uhrich KE, Gupta A, Thomos TT, et al. Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules,1995,2184-2193
    Burkoth AK, Anseth KS. MALDI-TOF characterization of highly crosslinked, degradable polymer networks. Macromolecules1998,32:1438-1444
    Li HY, Chen YF, Xie YS. Nanocomposites of cross-linking polyanhydrides and hydroxyapatite needles: mechanical and degradable properties. Materials Letters. 2004, 58: 2819– 2823
    Erdmann L, Macedo B, Uhrich KE. Degradable poly(anhydride-ester) implants: effects of localized salicylic acid release on bone. Biomaterials,2000,21(24): 2507-2512
    Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. The Lancet, 1995,345(8956):1008-1012
    Bucher JE and Slade WC. The anhydrides of isophthalic and terephthalic acids. J Amer Chem Soc, 1909,32:1319-1325
    
    Hill JW, Carothers WH. Studies of polymerization and ring formation. XIV A linear superpolyanhydride and cyclic dimeric anhydride from sebacic acid. J Amer Chem Soc, 1932,54:1569-1579
    Yoda N. Synthesis of polyanhydride. II. Makromol Chem, 1959,32:1-11
    Langer R. Bioomaterials in drug delivery and tissue engineering:one laboratory’s experience.Acc Chem Res,2000,33(2):94-101
    Domb AJ, Langer R. Polyanhydrides. I. Preparation of high molecular weight polyanhydrides. J Polym Sci, Part A:Polym Chem, 1987, 25:3373-3386
    Li Z;Hao JY;Yuan ML. Ring opening polymerization of adipic anhydride initiated by dibutylmagnesium initiator European polym J., 2003,39:313~317
    Muggli DS, Burkoth AK, Keyser SA. Reaction behavior of biodegradable photo-cross-linkable polyanhydride. Macromolecules, 1998,31:4120-4125
    周志彬,黄开勋,徐辉碧。 庆大霉素-聚酸酐缓释制剂的制备及释药特性。华中科技大学学报2001,29(4)112~114
    Domb AJ, Mathiowitz E, Langer R. Polyanhydrides. IV. Unsatured and crosslinked polyanhydrides. J Polym Sci, Part A: Polym Chem, 1991,29:571-579
    Teomim D, Domb AJ, Fatty acid terminated polyanhydrides.J. of Polymer Science, Part A, Polymer Chem. 1999, 37: 3337~3344
    Domb AJ,Nudelman R. Biodegradable polymers derived from natural fatty acids. J Polym Sci, Part A: Polym Chem ,1995,33(4):717-725
    Shuai XT,Ai H,Nasongkla N,Kim S,Gao J. Micellar carriers based on block copolymers of poly(?-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 2004,27(3): 415-426
    Teomim D, Nyska A, Domb AJ . Ricinoleic acid-based biopolymers. J Biomed Mater Res, 1999,45(3):258-267
    Jiang HL, Zhu KJ. Pulsatile protein release from a laminated device comprising of polyanhydrides and pH-sensitive complexes. Int J Pharm,2000,194(1):51-60
    Chan,Cheng-kuang;Chu,I-Ming, Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol).Biomaterials, 2003,24:47~54,
    Cai QX, Zhu KJ, Chen D, Gao LP. Synthesis, characterization and in vitro release of 5-aminosalicylic acid and 5-acetyl aminosalicylic acid of polyanhydride – P(CBFAS).European journal of pharmaceutics and biopharmaceutics,2003,55:203~208
    周传军(Zhou Chuan-jun), 范昌烈(Fan Chang-lie), 主链含己烷雌酚的聚酸酐的合成及其降解性能研究。高等学校化学学报(Chem. J. Chinese Universities), 1998, 19(5): 990~992.
    Teomim D, Fishbien I, Golomb G, et al. Perivascular delivery of heparin for the reduction of smooth muscle cell proliferation after endothelial injury. J Control Release, 1999,60(1):129-142
    Walter KA, Tamargo RJ, Olive A. Intratumoral chemotherapy. Neurosurgery,
    
    
    1995,37(6):1128-1145
    Domb AJ, Maniar M. Absorb biopolymers derived from dimmer fatty acids. J Polym Sci, Part A:Polym.Chem.,1993,31:1275-1285
    Hanes J , Chiba M, Langer R . Synthesis and characterization of degradable anhydride-co-imide terpolymers containing trimellitylimido-L-tyrosine: novel polymers for drug elivery . Macromolecules, 1996,29:5279-5287
    Fu J, Zhuo RX, Fan CL. Studies on the syntheses and drug release properties of polyanhydrides containing phosphonoformic (or acetic) and ethyl ester in the main chain. Chem J Chinese U,1997,18(10):1706-1710
    Fu J, Zhuo RX, Fan CL. Studies on the syntheses and properties of phosphorus-containing polyanhydrides for DDS. Chem J Chinese U, 1997,18(5):813-817
    Domb AJ, Nudelman R. In vivo and in vitro elimination of aliphatic polyanhydrides. Biomaterials, 1995,16(4):319-323
    Gopferich A, Sched1 L, Langer R. The precipitaion of monomers during the erosion of a class of polyanhydrides. Polymer, 1996,37(17):3861-3869
    Gopferich A, Langer R.Modeling monomer release from bioerodible polymers. J Control Release, 1995,33(1):55-69
    Gopferich A. Bioerodible implants with programmable drug release. J Control Release, 1997,44(2-3):271-281
    Akbari H, D’Emanuele A, Attwood D. Effect of geometry on the erosion characteristics of polyanhydrides matrices. Int J Pharm, 1998,160(1):83-89
    Akbari H, D’Emanuele A, Attwood D. Effect of fabrication technique on the erosion characteristics of polyanhydrides matrices. Pharm Dev Technol, 1998,3(2):251-259
    Domb AJ, Rock M, Schwartz J. Metabolic disposition and elimination studies of a radiolabelled biodegradable polymeric implant in the rat brain. Biomaterials, 1994,15(9):681-688
    Domb AJ, Rock M, Perkin C. Excretion of a radiolabeled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials, 1995,16(14):1069-1072
    Leong KW, Brott BC, Langer R. Bioerodible polyanhydride as drug carrier matrices.I.:Characterization,degradation, and release characteristics. J Biomed Mater Res,1985,19:941-955
    Mccann DL, Heatley F, D’Emanuele A. Characterization of chemical structure and morphology of eroding polyanhydride copolymers by liquid-state and solid-state 1HNMR.Polymer, 1999, 40(8):2151-2162
    Shieh L, Tamada J, Chen I. Erosion of a new family of biodegradable polyanhydrides. J Biomed Mater Res, 1994,28(12):1465-1475
    Santos CA, Freedman BD, Leach KJ. Poly(fumaric-co-sebacic anhydride): A degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction.J Control Release, 1999, 60(1):11-22
    
    Chiba M, Hanes J, Langer R. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres. Biomaterials, 1997,18(13):893-901
    Hanes J, Chiba M, Langer R. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials, 1998:19(1-3):163-172
    美国生物材料评价标准ASTMF-748-87和ASTMF-981-87
    中华人民共和国国家国家技术监督局,中华人民共和国国家标准一医疗器械生物学评价(1997:GB/T 16886)。中国计量出版社,1997
    Leong KW,Amore PD,Marletta M. Bioerodible polyanhydrides as drug carrier matricesII:Biocompatibility and chemical reactivity. J Biomed Mater Res,1986,20:51-64
    Laurencin C, Domb A, Morris C. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. J Biomed Mater Res, 1990,24(11):1463-1481
    Brem H, Kader A, Epstein JI. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther, 1989,5(2):55-65
    Tamargo RJ, Epstein JI, Reinhard CS. Brain biocompatibility of a biodegradable, controlled-release polymer in rats. J Biomed Mater Res. 1989:23(2):253-266
    Brem H, Tamargo RJ, Olivi A. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg, 1994:80(2):283-290
    Domb AJ, Israel ZH, Elmalak O. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res,1999,16(5):762-765
    Walter KA, Cahan MA, Gur A. Intersitial Taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res, 1994,54(8):2207-2212
    Shikani AH, Eisele DW, Domb AJ. Polymer delivery of chemotherapy for squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg, 1994, 120(11):1242-1247
    Shikani AH, Eisele DW, Domb AJ. Polymer delivery of chemotherapy for squamous cell cancer. Laryngoscope,2000,110(6):907-917
    Olivi A, Ewend MG, Utsuki T. Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat. Cancer Chemother Pharmacol, 1996,(1-2):90-96
    Judy KD, Olivi A, Buahin KG. Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas. J Neurosurg, 1995,82(3):481-486
    Chickering DE, Jacob JS, Mathiowitz E. Bioadhesive Microspheres, II, characterization and evaluation of Bioadhesive involving hard, bioerodible
    
    
    polymers and sort tissue. React Polym, 1995,25:189-206
    Chichering DE, Jacob JS, Mathiowitz E. Poly (fumaric-co-sebacic) microspheres as oral drug delivery systems. Biotechnology and Bioengineering, 1996,52:96-101
    Mathiowitz E, Jacob JS, Jong YS. Biologically erodable microspheres as potential oral drug delivery systems. Nature, 1997:386(6623):410-414
    Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release, 2000,65(1-2):261-269
    Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Deliv Rev, 1999,35(2-3):249-257
    Yapp DT, Lloyd DK, Zhu J. Tumor treatment by sustained intratumoral release of cisplatin: effects of drug alone and combined with radiation. Int J Radiat Oncol Biol Phys, 1997,39(2):497-504
    Grossman SA, Reinhard C, Colvin OM. The intracerebral distribution of BCNU deliverd by surgically implanted biodegradable polymers. J Neurosurg, 1992,76(4):640-647
    Strasser JF, Fung LK Eller S. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther, 1995,275(3):1647-1655
    Fung LK, Shin M, Tyler B. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res, 1996, 13(5):671-682
    Mathiowitz E, Langer R. Polyanhydride microspheres as drug carriers. I. Hot melt microencapsulation. J Control Release, 1987,5:13-22
    Bindschaedler C, Leong K, mathiowitz E. Polyanhydride microsphere formulation by solvent extraction. J Pharm Sci, 1988,77(8):696-698
    Mathiowitz E, Bernstein H, Giannos S. Polyanhydride microsphere. 4. Morphology and characterization of systems made by spray drying. J Appl Polym Sci, 1992,45(1):125-134
    Domb AJ, Langer R. Solid state and solution stability of poly(anhydrides) and poly(ester). Macromolecules, 1989,22:2117-2122
    Domb AJ, Turovsky L, Nudelman R. Chemical interactions between drugs containing reactive amines with hydrolysable insoluble biopolymers in aqueous solutions. Pharm Res, 1994,11(6):865-868
    Krishnan M, Flanagan DR. FTIR-ATR spectroscopy for monitoring polyanhydride/ anhydride-amine reactions. J Control Release, 2000,69(2):273-281
    Langer R.Bioomaterials in drug delivery and tissue engineering:one laboratory’s experience.Acc Chem Res,2000,33(2):94-101
    Brem H. Polymers to treat brain tumours. Biomaterials, 1990,11(9):699-701
    Sipos EP, Brem H. New delivery systems for brain tumor therapy. Neurol Clin, 1995,13(4):813-825
    Sampath P, Brem H. Implantable slow-release chemotherapeutic polymers for the
    
    
    treatment of malignant brain tumors. Cancer Control, 1998,5(2):130-137
    Nelson CL, Hickmon SG, Skinner RA, Treatment of experimental osteomyelitis by surgical debridement and the implantation of bioerodable, polyanhydride-gentamicin beads. J Orthop Res, 1997.15(2):249-255
    Laurencin CT, Gerhart T, Witschger P. Bioerodible polyanhydrides for antibiotic drug delivery-in vivo osteomyelitis treatment in a rat model system. J Orthop Res, 1993,11(2):256-262
    Mathiowitz E, Jacob JS, Jong YS. Biologically erodable microspheres as potential oral drug delivery systems. Nature, 1997:386(6623):410-414
    Kipper MJ; Shen E; Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials,2002,23(11):4405~4412
    Berkland C, Pollauf E, Pack DW. Kim K. Uniform double-walled polymer microspheres of controllable shell thickness.J Controlled Release. 2004, 96(1): 101-111
    Berkland C, pollauf E, Pack DW. Kim K. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(d,l-lactide-co-glycolide).Biomaterials, 2004,25(25): 5649-5658
    Berkland C, Kipper MJ, Narasimhan BK, Kim K, Pack DW. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres J Controlled Release. 2004, 94(1) 129-141
    Ron E, Turek T, Mathiowitz E. Proceedings of the National Academy of Sciences, U.S.A, 1993, 90(9); 4176~4180.
    Burdick JA; Peterson AJ,Anseth KS. Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials 2001,22(13):1779~1786
    Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application intissue engineering and drug delivery. Journal of Controlled Release. 2002,78:199–209
    Muggli DS, Burkoth AK, Anseth KS. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res, 1999,46(2):271-278
    Young JS, Gonzales KD, Anseth KS. Photopolymers in orthopedics: characterization of novel crosslinked polyanhydrides. Biomaterials,2000, 21(11):1181-1188
    Anseth KS, Shastri VR, Langer R. Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol, 1999,17(2):156-159
    Quick DJ, Macdonald KK, Anseth KS.. Delivering DNA from photocrosslinked, surface eroding polyanhydrides. J Controlled Release. 2004, 97(2):333-343
    Heller J, Polymers for controlled parenteral delivery of peptides and proteins, Adv.
    
    
    Drug Deliv. Rev. 1993,10:163-204
    Langer R, New methods of drug delivery, Science 249 (1990) 1527-1533
    Reddy KR, Controlled release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs, Ann. Pharmacother. 2000,34: 915-922.
    Tipton AJ, Dunn RL, In situ gelling systems, in : J. H. Senior, M. Radomsky (Eds.),Sustained Release Injectable Products, Interpharm Press, Denver, CO, 2000, 71-102.
    Hollister LE, Site-specific drug delivery to central nervous system, Neurobiol. Aging. 1989,10:628-631.
    Levy RJ, Vinod L, Strickberger SA, Underwood T, Davis J, Controlled release implant dosage forms for cardiac arrhythmias: review and perspectives, Drug Deliv. 1996, 3: 137-142.
    Collins-Gold LC, Lyons RT, Batholow LC, Parenteral emulsions for durg delivery, Adv. Drug Deliv. Rev. 1990, 5189-208.
    Davis SS, Illum L, Colloidal drug delivery systems:opportunities and challenges, in: E. Tomlinson, S. S. Davis (Eds.), Site-Specific Drug Delivery, Wiley, New York, 1986, 210-224.
    Florence AT, Whitehill D, The formulation and stability of multiple emulsions, Int. J. Pharm. 1982,11: 277-308.
    Allen TM, Hansen CB, Guo LS, Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection, Biochim. Biophys. Acta 1993,115: 09-16
    Anderson PM, Katsanis SE, Sencer SF, Hasz D, Bostrom B, Depot characteristics and biodistribution of interleukin-2 liposomes: importance of route of administration, J. Immunother. 1992,12:19-31.
    Bonetti A, Chatelut E, Kim S, An extended-release formulation of methotrexate for subcutaneous administration, Cancer Chemother. Pharmacol. 33(1994)303-306.
    Sharma A, Sharma US, Liposomes in drug delivery: progress and limitations, Int. J. Pharm. 1997,154: 123-140.
    Shendrova A, Burke TG, Schwendeman SP, Stabilization of 10-hydroxycamptothecin in poly (lactide-co-glycolide) microsphere delivery vehicles, Pharm. Res. 1997, 14(10):1406-1414.
    Chen L, Apte RN, Cohen S, Characterization of PLGA microspheres for the controlled delivery of IL-I for tumor immunotherapy, J. Control. Release 43 (1997)261-272.
    Cleland JL, Jones AJ, Stable formulations of recombinant human growth hormone and interferon gamma for microencapsulation in biodegradable polymers, Pharm. Res. 1996,13: 1462-1473.
    Zhang X, Jackson JK, Bert HM, Development of amphiphilic diblock copolymers as micellar carriers of taxol, Int. J. Pharm. 1996,132: 195-206.
    
    Alkan-Onyuksel H, Ramakrishnan S, Chai HB, Pezzuto JM, A mixed micellar formulation suitable for the parenteral administration of taxol, Pharm. Res. 1994, 11: 206-212.
    Yim Z, Zupon MA, Chaudry IA, Stable oleaginous gel, US Pat. 4851 220, 25 July 1989.
    Woudenberg IAJM, Kate MT, Storm G, van Etten EWM, Administration of liposomal agents and the phagocytic function of the mononuclear phagocyte system, Int. J. Pharm. 1998,162: 5-10
    Moghimi SM, Opsono-recognition of liposomes by tissue macrophages, Int. J. Pharm. 1998, 162:11-18.
    Sharma A, Sharma US, Liposomes in drug delivery: progess and limitations, Int. J. Pharm. 1997,154:123-140.
    Tipton AJ, Fujita SM, A biodegradable injectable delivery system for nonsteroidal anti-inflammatory drugs, Pharm. Res. Suppl. 1991,9:189-196.
    Allen C, Eisenberg A, Maysinger D, Nano-engineering block copolymer aggregates for drug deliver, Colloids Surfaces B: Biointerfaces. 1999,16: 3-27.
    Espuelas MS, Legrand P, Irache JM, Gamazo C, Orecchinioni AM, Devissaguet JP, Ygartua P, Poly caprolactone nanospheres as an alternative way to reduce amphotericin B toxicity, Int. J. Pharm. 1997,158: 19-27.
    Herrero-Vanrell R, Barcia E, Negro S, Refojo MF, Development of gancyclovir microspheres from poly DL-lactide-co-glycolide for the treatment of AIDS-related cytomegalovirus retinitis, Stp Pharma Sci. 1998,8(4): 237-240.
    Allen C, Eisenberg A, Maysinger D, Copolymer drug carriers: Conjugates, micelles and microspheres, Stp Pharma Sci. 1999, 9 (1): 139-151.
    Florence AT, Atwood D (Eds.), Physicochemical Principles of Pharmacy, Macmillan Press, Hampshire, London, 1998, 224-234
    Lambert WJ, Peck KD, Development of an in situ forming biodegradable poly-lactide-co-glycolide system for the controlled release of proteins, J. Control. Release 1995, 33:189-195.
    Gombotz WR, Pettit DK, Biodegradable polymers for protein and peptide drug delivery, Bioconjug. Chem. 1995,6: 332-351.
    Woodd DA, Biodegradable drug delivery systems. Int. J. Pharm. 7 (1980) 1-18.
    Bezwada RS, Liquid copolymers of epsilon-caprolactone and lactide, US Pat. 5 442 033, 15 August 1995.
    Bezwada RS, Arnold SC, Liquid absorbable copolymers for parenteral applications. US Pat. 5 653 992m 5 August 1997.
    Painter PC, Coleman MM (Eds), Fundamentals of Polymer Science, Technomic, Lancaster, PA, 1994, 4-5.
    Einmahl S, Behar-Cohen F, Tabatabay C, Savoldelli M, Hermies FD, Chauvaud D, Heller J, Gurny R, A viscous bioerodible poly(ortho ester) as a new biomaterial for intraocular application, J. Biomed. Mater, Res. 2000, 50: 566-577
    
    Jackson JK, Min W, Cruz TF, Cindric S, Arsenault L, Von Hoff DD, Degan D, Burt HM, Polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice, Br. J. Cancer. 1997, 75 (7): 1014-1020.
    Holland SJ, Tighe BJ, Gould PL, Polymers for biodegradable medical devices. L. The potential of polyesters as controlled macromolecular release systems, J. Control. Release. 1986, 4: 155-180.
    Deshpande AA, Heller J, Gur4ny R, Bioerodible polymers for ocular drug delivery, Crit., Rev. Ther. Drug Carrier Syst. 1998,15 (4): 381-420.
    Dunn RL, English JP, Cowsar DR, Vanderbelt DD, Biodegradable in-situ forming implants and methods of producing the same, US Pat. 5 278 201 ,11 January 1994.
    Dunn RL, English JP, Cowsar DR, Vanderbelt DD, Biodegradable in-situ forming implants and methods of producing the same, US Pat. 5 278 202, 11 January 1994.
    Scopelianos AG, Bezwada RS, Arnold SC, Injectable liquid copolymers for soft tissue repair and augmentation, US Pat. 5 824 333,20 October 1998.
    Janzen E, Hockstra JJ, Dutrieux RP, Injectable compositions for soft tissue augmentation, US Pat. 5 523 291,4 June 1996.
    Walter KA, Cahan MA, Gur A, Tyler B, Hilton J, Colvin OM, Burger PC, Domb A, Brem H, Interstitial Taxol delivered from a biodegradable polymer implant against experimental malignant glioma, Cancer Res. 1994, 54: 2207-2212.
    Zhang X, Jackson JK, Wong W, Min W, Cruz T, Hunter WL, Burt HM, Development of biodegradable polymeric paste formulations for taxol: an in-vivo and in-vitro study, Int. J. Pharm. 1996,137:199-208.
    Liu F, Wilson BC, Hyperthermia and photodynamic therapy, in: l. Tannock, R. P. Hill(Eds.), Basic Science of Oncology, McGraw-Hill, New York, 1998,.443-453.
    Dordanoo SK, Oktaba AMC, Hunter W, Min W, Cruz T, Burt HM, Release of Taxol from poly caprolactone pastes: effect of water soluble additives, J. Control. Release 1997, 44: 87-94.
    Pitt CG, Poly-∈-caprolactone and its copolymers, in: M. Chasin, R. Langer (Eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Decker, New York, 1990, 71-120.
    Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG, In-vitro degradation of a poly(propylene fumarate)/β-tricalcium phosphate composite orthopedic scaffold, Tissue Eng. 1997,3: 207-215.
    Burkoth AK, Anseth KS, A Review of photocrosslinked polyanhydrides; in-situ forming degradable networks, Biomaterials. 2000, 21: 2395-2404.
    Dunn RL, English JP, Cowsar DR, Vanderbelt DD, Biodegradable in-situ forming implants and methods for producing the same, US Pat. 5 340 849,23 August 1994.
    Moore LA, Norton RL, Whitman SL, Dunn RL, An injectable biodegradable drug delivery system based on acrylic terminated poly ∈-caprolactone, presented at the 21st Annual Meeting of the Society of Biomaterials, CA, 1995.
    Sund G, Rosequist J, Morphological changes in bone following implantation of
    
    
    methyl methacrylate, Acta Orthop. Scand. 1983, 54:148-156.
    Temenoff JS, Mikos AG, Injectable biodegradable materials for orthopedic tissue engineering, Biomaterials 2000, 21: 2405-2412.
    Biehl G, Hanser U, Harms J, Experimental studies on heat development in bone during polymerization of bone cement. Intra-operative measurement of temperature in normal blood circulation and in bloodlessness, Arch. Orthop. Unfallchir. 1974,78: 62-69.
    Saleem MA, Ahmed SI, Tephrosia purpurea ameliorates benzoyl peroxide-induced coetaneous toxicity in mice: diminution of oxidative stress, Pharm. Pharmacol. Commun. 1999, 5 (7): 455-461.
    Gimenez-Conti IB, Binder RL, Johnston D, Slaga TJ, Comparison of the skin tumor-promotin potential of different organic peroxides in SENCAR mice, Toxicol. Appl. Pharmacol. 1998, 149 (1): 73-79.
    Zhao JL, Sharma Y, Chatterjee ML, Agarwal R, inhibitory effect of a falvonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory response in SENCAR mouse skin, Carcinogenesis 2000, 21 (4): 811-816.
    He S, Yaszemski MJ,. Yasko AW,. Engel PS, Mikos AG., Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly (ethylene glycol)-dimethacrylate, Biomaterials. 2000, 21: 2389-2394.
    Suggs LJ, Mikos AG, Development of poly (propylene fumarate –co - ethylene glycol)as an injectalbe carrier for endothelial cells, Cell Transplant. 1999, 8: 345-350.
    Lu S, Anseth KS, Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release, J. Control. Release. 1999, 57:291-300.
    Hubbell JA, Hydrogel systems for barriers and local durg delivery in the control of wound healing, J. C ontrol. Release. 1996, 39: 305-313.
    Anseth KS, Newman SM, Bowman CN, Polymetric dental composites: properties and reaction behaviour of multimethacrylate dental restorations, Biopolymers. 1995, 122: 177-217.
    Ruyter IE, Oysaed H, Composites for use in posterior teeth composition and conversation, J. Biomed. Mater. Res. 1987, 21:11-23.
    Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA, Inhibition of thrombosis and intimal thickening by in-sity photopolymerization of thin hydrogel barriers, Proc, Natl. Acad. Sci. 1994, 91: 5967-5971.
    Sawhney AS, Pathak CP, van Rensburg JJ, Dunn RC, Hubbell JA, Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention, J. Biomed. Mater, Res. 1994,28: 831-838.
    Hubbell JA, Pathak CP, Sawhney AS, Desai NP, Hill JL, Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled release carriers, US Pat. 5 410 016, 25 April 1995.
    
    Fleming MG, Maillet WA, Photopolymerization of composite resin using the argon laser, J. Can. Dent. Assoc. 1999, 65 (8): 447-450.
    West JL, Hubbell JA, Localized intravascular protein delivery from photopolymerized hydrogels, Proc, Int. Symp. Control. Rel. Bioact. Mater, 1995, 22: 17-18.
    Shah NH, Railkar AS, Chen FC, TarantinoR, Kumar S, Murjani M, Palmer D, Infeld MH, Malick AW, A biodegradable injectable implant for delivering micro and macromolecules using poly(lactic-co-glycolic)acid copolymers, J. Control. Release 1993, 27:139-147.
    Eliaz RE, Kost J, Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins, J. Biomed, Mater, Res. 2000, 50: 388-396.
    Jeong B, Bae YH, Kim SW, In-situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof, J. Biomed. Mater. Res. 2000, 50: 171-177.
    Paavola A, Yliruusi J, Rosenberg P, Controlled release and dura mater permeability of lidocaine and ibuprofen from injectable poloxamer-based gels, J. Control. Release. 1998, 52 (1-2): 169-178.
    Siegel RA, Firestone BA, Ph-dependent equilibrium swelling properties of hydrophobic poly-electrolyte copolymer gels, Macromolecules.1988, 21: 3254-3259.
    Tanaka T, Phase transitions in ionic gels, Phys. Rev. Lett. 1980, 45: 1636-1639.
    Dunn RL, English JP, Cowsar DR, Vanderbelt DP, Biodegradable in-situ forming implants and methods of producing the same, US Pat. 4 938 763, 3 July 1990.
    Dunn R, Hardee G, Polson A, Bennett A, Martin S, Wardley R, Moseley W, Krinick N, Foster T, Frank K, Cox S, In-situ forming biodegradable implants for controlled release veterinary applications. Controlled Release Society, In,. Proc, Intern. Symp. Rel. Bioact, Mater., 1995.22.
    Duysen EG, Whitman SL, Krinick NL, Fujita SM, Yewey GL, An injectable, biodegradable delivery system for antineoplastic agents. AAPS, Pharm. Res., American Association of Pharmaceutical Scientists, presentation 7575, 1974.
    Sherman JM, Fujita SM, Localized delivery of bupivacaine from Atrigel formulations for the management of postoperative pain. AAPS, Pharm. Res., American Association of Pharmaceutical Scientists, presentation 7574,1994.
    Dunn RL, Yewey GL, Duysen EG, Frank KR, Huffer, WE Pieters R, Bone regeneration with the Atrigel polymer system, presented at the Portland Bone Symposium, Portland, OR, 1995.
    Frank KR, Duysen EG, Yewey GL, Huffer WE, Pieters R, Controlled release of bioactive growth factors from a biodegradable delivery system. Pharm. Res., American Association of Pharmaceutical Scientists, presentation 2070, 1994.
    Lowe BK, Norton RL, Keeler EL, Frank, Tipton AJ, The effects of gamma
    
    
    irradiation on poly D. L-lactide as a solid and in N-methy1 2-pyrrolidone solutions, presented at the 19th Annual Meeting of the Society of Biomaterials, AL, 1993.
    Dunn RL, Tipton AJ, Southard GL, Rogers JA, Biodegradable polymer composition, US Pat, 5 599 552, 4 February 1997.
    Radomsky ML rouwer GB, Floy BJJ, Loury DJ, Chu F, Tipton AJ, Sanders LM, The controlled release of Ganirelix from the Atrigel injec table implant system, Proc Intern. Symp. Control. Rel. Bioact. Mater, 20, 1993.
    Shively ML, Bennett AT, Coonts BA, Renner WD, Southard JL, Physico-chemical characterization of polymeric injectable implant delivery system, J. Control. Release 1995. 33: 237-243.
    Chandrashekar BL, Zhou M,. Jarr EM, Dunn RL, Controlled release liquid delivery compositions with low initial drug burst, US Pat. 6 143 314, 2000.
    Royals MA, Fujuta SM, Yewey GL, Rodriguez J, Schultheiss PC, Dunn RL, Biocompatibility of a biodegradable in-situ forming implant system in rhesus monkeys, J. Biomed. Mater. Res. 1999, 45: 231-239.
    Kranz H, Brazeau GA, Napaporn J, Martin RL, Millard W, Bodmeier R, Myotoxicity studies of injectable biodegradable in-situ forming drug delivery systems, Int. J. Pharm. 2001, 212: 11-18.
    Chandrashekar G, Udupa N, Biodegradable injectable implant systems for long term drug delivery using poly(lactic-co-glycolic)acid copolymers, J. Pharm. Pharmacol. 1996, 48: 669-674.
    Singh UV, Udupa N, Kamath R, Umadevi P, Enhanced antitumor efficacy of methoteraxate poly(lactic-co-glycolic)acid injectable gel implants in mice bearing sarcoma-180, Pharm. Sci. 1997, 3: 133-136.
    Cherng-Chyi Fu R, Lidgate DM, Whatley JL, McCul-lough T, The biocompatibility of parenteral vehicles in vivo/in vitro screening comparison and the effect of excipients on haemolysis, J. Parent. Sci. Technol. 41(5): 164-168.
    Medlicott NJ, Foster KA, Audus KL, Gupta S, Stella VJ, Comparison of the effects of potential parenteral vehicles for poorly water soluble anticancer drugs, J. Pharm. Sci. 1998, 87 (9): 1138-1143.
    Eioaz RE, Wallach D, Kost J. Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: in-vivo, Pharm. Res. 2000, 17 (12): 1546-1550.
    Kibbe AH, Wade A, Weller PJ, Hand Book of Pharmaceutical Excipients, Am. Pharm. Assoc, and Pharm. Soc. GB. 1994.
    Crowther MA, Pilling A, Owen K, The evaluation of glycofurol as a vehicle for use in toxicity studies, Hum. Exp. Toxicol. 1997, 16: 406.
    Spiegel AJ, Noseworthy MM, Use of non-aqueous solvents in parenteral products, J. Pharm. Sci. 1963, 52: 917-926.
    Budden VR, Kuhl UG, Buschmann G, Studies on pharmacodynamic activity of several drug solvents, Arzneim. Forsch. Drug Res. 1978, 28: 1571-1579.
    
    Stile RA, Burghardt WR, Healy KE, Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in-vitro, Macromolecules 1999, 32: 7370-7379.
    Hoffman AS, Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics, J. Control. Release. 1987, 6: 297-305.
    Bae YH, Okano T, Hsu R, Kim SW, Thermosensitive polymers as on-off switches for drug release, Makromol. Chem. Rapid Commun. 1987, 8 (10): 481-485.
    Schild HG, Poly(N-isopropylacrylamide): experiment, theory and application, Prog, Polym. Sci. 1992,17:163-249.
    Hirotsu S, Coexistence of phases and the nature of first order phase transition in poly(N-isopropylacrylamide )gels, Adv. Polym. Sci. 1993,110: 1-26.
    Irie M, Stimuli responsive poly(N-isopropylacrylamide). Photo and chemical induced phase transitions, Adv. Polym. Sci. 1993: 110: 49-65.
    Eliassaf J, Aqueous solutions of poly(N-isopropylacrylamide), J. Appl. Polym. Sci. 1978, 22: 873-874.
    Schild HG, Tirrell DA, Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions, J. Phys. Chem. 1990, 94: 4352-4356.
    Taylor LD, Cerankowski LD, Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions: a study of lower consolute behavior, J. Polym. Sci. Part A: Polym. Chem. 1975, 13: 2551-2570.
    Galaev IY, attiasson BM, Thermoreactive water soluble polymers, non-ionic surfactants and hydrogels as reagents in biotechnology, Enzyme Microb. Technol. 1993, 15: 345-366.
    Hirotsu S, Hirokawa Y, Tanaka T, Volume-phase transitions of ionized N-isoprpylacrylamide gels, J. chem.. Phys. 1987, 87: 1392-1395.
    Hoffman F, Cinatl Jr J, Kabickova H, Cinatl J, Kreuter J, Stieneker F, Preparation, characterization and cytotoxicity of methylmethacrylate copolymer nanoparticles with permanent positive surface charge, Int. J. Pharm. 1997,157: 189-198.
    Merril EW, Pekala RW, Hydrogel for blood contact, in: N. A. Peppas (Ed.), Hydrogels in Medicine and Pharmacy, Vol. III, crc press, 1987.
    Jeong B, Bae YH, Lee DS, Kim SW, Biodegradable block copolymers as injectable drug delivery systems, Nature. 1997, 388: 860-862.
    BASF Performance Chemicals. FDA and EPA status, BASF, North Mount Olive, NJ, 1993.
    Engarrom S, Engstrom L, Phase behavior of the lidocaine-monoolein-water system, Int. J. Pharm. 1992, 79: 113-122.
    Ericsson B, Ericsson PO, Lofroth JE, Engstrom S, Cubic phases as drug delivery systems for peptide drugs, ACS Symp. Ser. 1991: 469: 251-265.
    Gao Z, Crowley WR, Shakla AJ, Johnson JR, Reger JF, Controlled release of contradceptive steroids from biodegradable and injectable gel formulations: in-vivo evaluation, Pharm. Res. 1998,12 (6): 864-868.
    
    Gao Z. Shukla AJ, Johnson JR, Crowley WR, Controlled release of contraceptive steroid from biodegradable and injectable gel formulations: in-vitro evaluation, Pharm. Res. 1995, 12 (6): 857-864.
    Mathiowitz E, Ron E, Mathiowitz G, et al . Morphological characterization of bioerodible polymers.I. Crystallinity of polyanhydride copolymers, Macromolecules 1990, 23: 3212-3218
    Calvaruso G, Cavasino FP, Dio ED.Effects of hydrochloric acid upon the kinetics and mechanism of hydrolysis of para-substituted benzoic anhydrides in dioxan-water. J.Chem Soc Perkin Trans 1974, 2.1108-1115
    Langer R. Polymer-controlled drug delivery systems. Acc Chem Res,1993,26:537-542
    于美丽,王勇,方淑昌。聚酸酐的合成及在生物医学上的应用,生物医学工程学杂志,2003, 20(1):135~138
    Wen-xun Guo, Kaixun Huang, Preparation and properties of poly(dimer acid-dodecanedioic acid) copolymer and poly(dimer acid-tetradecandioic acid) copolymer. Polymer degradation and stability, 2004,84:375-381
    Hui-Bi Xu, Zhi-Bin Zhou, Kai-Xun Huang, Preparation and properties of poly(dimer acid-sebacic acid) copolymer. Polymer Bulletin 2001, 46: 435-442
    Sampath S, Robinson D H. Comparision of New and Existing Spectrophotometric Methods for the Analysis of Tobramycin and Other Aminoglycosides. J. Pharrn Sci., 1990, 79(5): 428~431
    Peppas N, Ritger PL. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs,cylinders and disks. J Control Release, 1987, 5(1): 23-36
    Peppas N, Ritger PL. A simple equation for description of solute release. II. Fickian and non-Fickian release from non-swellable devices. J Control Release, 1987, 5(1): 36-42
    中华人民共和国药典编委会编,中华人民共和国药典(2000版)附录Ⅺ A,抗生素微生物检定法,化学工业出版社,2000
    Tamargo RJ, Myseros JS, Epstein JI, Intestitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res,1993, 53(2):329-333
    Shilong C, Taifu L, Zhenhua W, Jue Z,Kangmei H, Weiqiang Y, Xiaolan S. DNA flow cyclometric analysis of human nasopharyngeal carcinoma in nude mice. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16:343-350
    Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. Journal of Controlled Release,2002,80: 9–28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700