沙田柚汁苦味变化及离交法脱苦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以广东梅县沙田柚为原料,采用先进的现代果汁加工技术,针对沙田柚果汁在加工过程中出汁率低下和苦味严重两大工程难题进行研究,并进行了年加工量2500 t的鲜柚生产车间设计。
     1.利用果胶酶处理沙田柚果浆,考察酶解温度、酶解时间及酶添加量对果浆出汁率的影响,优化沙田柚果浆酶解工艺条件。结果表明:最佳酶解条件为酶解温度40-45℃,酶解时间3 h,酶添加量75-100 mg/L,此时出汁率在80%以上;比较酶解前后果汁的主要理化指标的变化,果汁可溶性固形物提高了0.6°Brix,还原糖含量由9.4 g/L提高到10.3 g/L,出汁率提高了18.2%,果汁黏度由30 mPa·s显著下降至2 mPa·s,V_C损失率为28.2%,同时果汁透光率也显著提高,而对果汁总酸、pH值等基本无影响。
     2.通过感官评定,定性研究了柚汁苦味随时间、温度和pH变化的规律;同时比较了不同方法对柚汁的脱苦效果。研究结果表明:柚汁苦味随时间的延长而增加,高温对苦味转化具有促进作用,pH值的变化对柚汁色泽有一定的影响;活性炭和树脂LX-900吸附对柚汁脱苦综合评分较高,树脂D101有一定的脱苦作用,而β-环状糊精包埋法、PVPP吸附法、柚苷酶酶解法和超滤脱苦效果不明显。
     3.分别比较了D101、AB-8、DM130、D4020、LX-900、ZGA451FD六种树脂对柚汁中苦味物质柚皮苷的静态吸附解析性能;选取D101树脂确定其动态吸附解析工艺条件,研究了其再生稳定性,并比较了树脂吸附前后果汁主要指标的变化。树脂静态吸附解析实验结果表明,柚皮苷属于二氢查耳酮类,含有较多的酚羟基,易被非极性或者弱极性的大孔吸附树脂吸附从而达到果汁脱苦的目的;D101型树脂动态吸附解析实验研究了高径比、上液流速、上液pH以及解析液浓度、解析流速对果汁中柚皮苷的吸附解析性能,结果表明:当柚汁调至pH3.5时,以14 mL/min流速通过高径比为6∶1的树脂柱(Φ25),将柚汁中柚皮苷浓度降至300.0 mg/L时,树脂的处理能力为62 BV,吸附量高达53.8 mg/mL,用9 BV 50%(V/V)乙醇溶液以10 mL/min流速通过树脂柱,洗脱完全;再生稳定性试验表明,树脂吸附抗机械强度性好,吸附性能稳定,再生容易,使用周期长,适合工业化生产;果汁主要指标的测定结果表明:D101树脂吸附能够有效解决果汁苦味严重的问题,而对果汁其他成分基本无影响。
     4.进行了年加工量鲜柚2500 t的工厂设计。本设计过程中进行了详细的工艺论证,并在此基础上进行了物料衡算、设备选型、对水、电、汽消耗量进行估算以及人员安排,最后进行了投资估算和成本核算。结果表明该项目总投资为2319万元,年利润额为968万元,估计资金回收期约为2.4年。
Using Shatian pomelo from Mei county in Guangdong as materials, the low juice yield and fierce bitter taste during the juice processing were investigated with the advanced modern juice processing technology; and a workshop with annual processing capacity of 2500 t shatian polemo was designed.
     1. The enzymolysis conditions (temperature, time and the amount of pectinase) were discussed. The results showed that the juice yield rate could reach up to 80% at least by the optimum conditions: temperature, 40-45℃; time, 3 h; amount of pectinase, 75-100 mg/L. After enzymolysis processing, the soluble solids concentration (SSC) of the berry increased by 0.6°Brix, the juice yield increased by 18.2% and the reduction sugar content increased from 9.4 g/L to 10.3 g/L; the viscosity had a significant reduction from 30 mPa·s to 2 mPa·s; the loss rate of V_C was 28.2% and the transparency was greatly improved; however, the juice total acid (TA) and pH changed a bit.
     2. The variation of bitter taste in the pomelo juice with time, temperature and pH was qualitatively studied by sensory evaluation; and the debittering effects of different methods were also compared. The results showed that bitter taste in pomelo juice increased with time, temperature had a role in promoting transformation of bitterness, and pH led to the color changes. The adsorption of active carbon and LX-900 resins got higher sensory scores, D101 resins play a part role on the decrease of bitter taste but the debittering effects ofβ-cyclodextrin embedding, PVPP adsorption, the enzymatic of nariginase, and ultrafiltration were not obvious.
     3. Static adsorption and elution performance of resins (D101 resin、AB-8 resin、DM130 resin、D4020 resin、LX-900 resin、ZGA451FD resin) on narigin (the bitterness) in pomelo juice were studied; then D101 resin was chosen to study the dynamic adsorption and elution technological conditions and regeneration stability; finally, the changes in typical properties of pomelo juice before and after D101 resin adsorption were compared. The result of static test showed that narigin, a dihydrochalcone, was easily adsorbed by macroporous absorption resin with non-polar or weak polar and thus the juice was debitterized. In the dynamic test, the effects the height/diameter ratio of D101 resin column, feed flow velocity, pH value of pomelo juice on the adorption of narigin and the effects of the eluent concertration and flow velocity on narigin recovery were studied. The results showed that when the narigin concertration in polemo juice was reduced to 300.0 mg/L, the processing capacity of resin column was about 62BV and the adorption could reach up to 53.8 mg/mL with the condition (height/diameter ratio of D101 resin column (Φ25), 6∶1; feed flow velocity, 14mL/min; pH value of pomelo juice, 3.5). After 9 BV 50% (v/v) ethanol solution passed through the resin column, the column was recovered. In the regeneration stability test, D101 resins had good mechanical resistance, stable adsorption properties, long life cycle and was easily renewable, which was greatly suitable for industrial production. The results of changes in typic properties of pomelo juice showed that D101 resin adsorption can resolve the problem of fierce bitter taste and had little impact on other ingredients.
     4. A workshop with annual processing capacity of 2500 t Shatian polemo was designed. During the design, a detailed demonstration of process was conducted; after that, material balance, equipment selection, estimation of water, electricity and gas consumption, staffing, the final estimate of the investment and cost were done. The results showed that the total investment of this project is about 23.19 million, annual profit is 9.68 million, and the estimated payback period is approximately 2.4 years.
引文
[1]姚辉.产柚苷酶菌株的选育及柚子汁酶法脱苦工艺的研究[D].福建:福建农林大学, 2009
    [2]郑淑娟,罗金辉.中国柚类产业现状与发展分析[J].广东农业科学, 2010: 192–195
    [3]冯翀.高透光率柚子汁加工工艺的研究[D].福建:福建农林大学, 2009
    [4]谢岳昌,李国华,邹家杜,等.梅州市沙田柚产业现状及发展对策[J].广东农业科学, 2009, 11: 209–213
    [5]梅县金柚网.网址: http://www.mxyouzi.com/articles/NewsCat_5.html
    [6] Chen Y.C., Shen S.C., Lin H.Y.. Rutinoside at C7 attenuates the apoptosis inducing activity of ?avonoids[J]. Biochemical Pharmacology, 2003, 66: 1139–1150
    [7] Cavia-Saiz M., Mu?iz P., Ortega N., et al. Effect of enzymatic debittering on antioxidant capacity and protective role against oxidative stress of grapefruit juice in comparison with adsorption on exchange resin[J]. Food Chemistry, 2011, 125: 158–163
    [8] Masuoka N., Matsuda M., Kubo I.. Characterisation of the antioxidant activity of ?avonoids[J]. Food Chemistry, 2012, 131: 541–545
    [9] Yokomizo A., Moriwaki M.. Effects of uptake of flavonoids on oxidative stress induced by hydrogen peroxide in human intestinal Caco-2 cells [J]. Biosci. Biotechnol. Biochem, 2006, 70(6): 1317-1324
    [10] Guowen Z., Li H., Mingming H.. Optimized ultrasonic-assisted extraction of ?avonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro[J]. Innovative Food Science and Emerging Technologies, 2011, 12: 18–25
    [11]王贝妮.蜜柚果粒饮料加工工艺研究[D].江苏:江南大学, 2008
    [12]方修贵,祝慕韩. EDTA作为柑桔脱囊衣助剂的研究[J].食品工业科技, 1998, 4: 17–19
    [13]王士刚,潘思轶.柑桔罐藏酶法去囊衣试验研究[J].食品科学, 1992, 5(149): 16–21
    [14]单杨,李高阳,何建新,等.利用酶脱除柑橘囊衣的方法[P].中国, 1943453, 2007
    [15] Pagan A., Conde J., Ibarza A., et al. Albedo hydrolysis modelling and digestion with reused ef?uents in the enzymatic peeling process of grapefruits[J]. J Sci Food Agric, 2010, 90: 2433–2439
    [16] Pretel M.T., Amorós M.A., Botella A.. Study of albedo and carpelar membrane degradation for further application in enzymatic peeling of citrus fruits[J]. Journal of the Science of Food and Agriculture, 2005, 85: 86–90
    [17]刘静.刺梨压榨取汁技术与设备[J].农业机械, 2008(11B): 72–73
    [18]吴文龙,王小敏,李维林,等.不同加工工艺对黑莓浆果出汁率及果汁品质的影响[J].食品科学, 2008, 29(3): 172–175
    [19]张其圣,陈功,吴厚玖,等.酶法处理柑橘果渣回收果汁技术与中试试验[J].农业工程学报, 2010, 26(4): 340–343
    [20]胡斌杰,曹红霞,陈金峰.热水法与酶解法浸提红枣取汁最佳工艺比较[J].食品研究与开发, 2011, 32(1): 46–49
    [21]邵勤,于泽源,李兴国.梨果汁加工中酶解工艺的研究[J].食品工业科技, 2011, 32(2): 227–231
    [22] Sin H.N., Yusof S., Sheikh N., et al. Optimization of hot water extraction for sapodilla juice using response surface methodology[J]. Journal of Food Engineering, 2006, 74: 352–358
    [23] Landbo A.K., Kaack K., Meyer A.S., et al. Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice[J]. Innovative Food Science and Emerging Technologies, 2007, 8: 135–142
    [24] Mingxia Z., Changqing D., Yanyan Z., et al. The ?avonoid composition of ?avedo and juice from the pummelo cultivar (Citrus grandis Osbeck) and the grapefruit cultivar (Citrus paradisi) from China[J]. Food Chemistry, 2011, 129:1530–1536
    [25] Jeanhsu W., Berhow M., George H., et al. Limonoids and flavonoids in juices of Oroblanco and Melogold grapefruit hybrids[J]. Journal of food science, 1998, 63(1): 57–61
    [26] Igual M., García-Martínez E., Camacho M.M., et al. Changes in ?avonoid content of grapefruit juice caused by thermal treatment and storage[J]. Innovative Food Science and Emerging Technologies, 2011, 12: 153–162
    [27] Frydman A., Weisshaus O., Bar-Peled M., et al. Citrus fruit bitter ?avors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2-rhamnosyltransferase,a key enzyme in the biosynthesis of the bitter ?avonoids of citrus [J]. The Plant Journal, 2004, 40: 88–100
    [28]梁开.β-环状糊精在柑桔汁脱苦中的应用[J].渝州大学学报(自然科学版), 1994, 11(3): 30–34
    [29] Binello A., Robaldo B., Barge A., et al. Synthesis of Cyclodextrin-Based Polymers and Their Use as Debittering Agents[J]. Journal of Applied Polymer Science, 107: 2549–2557
    [30] Fronza G., Fuganti C., Genesio E., et al. Structural Features of theβ-CD Complexes with Naringin and its Dihydrochalcone and Aglycon Derivatives by HNMR[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 225–228
    [31] Fontananova E., Basile A., Cassano A.,et al. Preparation of Polymeric Membranes Entrappingβ-Cyclodextrins and Their Molecular Recognition of Naringin[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2003, 47: 33–37
    [32] Divakar S.. A Structural Study of the Naringin-β-Cyclodextrin complex[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1993, 15: 305–316
    [33] Yoji A., Osamu M., Hiroaki M.D.. Process for minimizing bitterness in citrus fruit juice [P]. America: US5049402(A), 1991
    [34]徐仲伟,刘心茹.三种脱苦方法脱除柑桔汁苦味的研究[J].食品与发酵工业, 1992, (4):6213–6215
    [35]丁筑红,丁小燕.β-CD在银杏叶果汁饮料中的包结脱苦作用[J].山地农业生物学报,1999, 18(3): 171–174
    [36]万萍,张芳晓.柑橘汁脱苦条件的研究[J].食品与机械, 2001, 82(2): 14–15
    [37]刘晓艳,白卫东,梁桂彩.新会柑脱苦工艺研究[J].食品工业科技, 2008, 29(6): 200–205
    [38]董乃霞.琯溪蜜柚果汁脱苦及加工工艺的研究[D].江苏:江南大学, 2008
    [39] Lee H.S., Kim J.G.. Effects of debittering on res grapefruit juice concentrate[J]. Food Chemistry, 2003, 82: 177–180
    [40]高彦祥,陈静,李绍振,等.大孔吸附树脂对橙汁的脱苦效率[J].食品与发酵工业, 2005, 31(3): 71–73
    [41] Maria H.L., Ribeiro D.S., Suzana F.D. Selective adsorption of limonin and naringin from orange juice to natural and synthetic adsorbents[J]. Eur Food Res Technol, 2002, 215:462–471
    [42] Kola O., Kaya C., Duran H., et al. Removal of limonin bitterness by treatment of ion exchange and adsorbent resins[J]. Food Sci. Biotechnol, 2010, 19(2): 411–416
    [43] Mishra P., Karl R.. Treatment of grapefruit juice for bitterness removal by Amberlite IR 120 and Amberlite IR 400 and alginate entrapped naringinase enzyme[J]. Journal of food science, 2003, 68(4): 1229–1232
    [44] Ying Z., Shufen L., Xiwen W., et al. Macroporous resin adsorption for purification of flavonoids in houttuynia cordata thumb[J].Chia. J. Chem. Eng., 2007, 15(6): 872–876
    [45] Dongdong J., Shufen L., Zhipeng G.. Preparative isolation of flavonoids from mulberry (morus albal) leaves by macroporous resin adsorption [J]. Journal of Food Process Engineering, 2011, 34: 1319–1337
    [46]梁泽建,蒲彪,彭训亮,等.活性硅酸镁对柑桔汁中柠檬苦素吸附的研究[J].食品工业科技, 2007, 28(9): 132–135
    [47] Chien Po.J., Shen Fu., Yuan T.. Monitoring enzymatic debittering in grapefruit juice by high performance liquid chromatography[J]. Journal of Food and drug Analysis, 2001, 9(2): 115–120
    [48]王鸿飞.柚皮苷酶对柑桔类果汁脱苦效果的研究[J].农业工程报, 2004, 20(6): 174–177.
    [49]黄高凌,倪辉,胡阳,等.柚皮苷酶对琯溪蜜柚果汁脱苦效果工艺优化[J].食品科学, 2010, 31(8): 70–73
    [50]徐国胜,潘利华,杨阳,等.β-环糊精对柑橘类果汁脱苦效果的研究[J].安徽农业科学, 2006, 34(20): 5366–5367
    [51] Ellenrieder G., Blanco S., Daz M.. Hydrolysis of supersaturated naring solutions by free and immobilized naringinase[J]. Biotechnology Techniques, 1998, 12 (1):63–65
    [52]杜吉涛,宋洪波,安凤平,等.超滤脱苦澄清柚子汁的研究[J].福建轻纺, 2006, 11: 13-16
    [53]杜冰,温升南,李燕杰,等.沙田柚保健果醋酿造工艺研究[J].食品科学, 2008, 29(12): 255–258
    [54]缪晓平,谭梅唇,邓开野.沙田柚果酒酿造工艺研究[J].安徽农业科学, 2010, 38 (9): 4813–4815
    [55]丘秀珍,陶敬奇,王辉,等.沙田柚果肉汁中呋喃香豆素类化合物的液相色谱—质谱联用研究[J].分析测试学报, 2008, 27(2): 170–173
    [56]杨辉,陈永康,张智锋,等.果胶酶提高苹果出汁率工艺条件的优化[J].食品科技, 2006(5): 76–80
    [57]黄国清,肖仔君,梁小颖,等.西番莲果汁加工工艺研究[J].食品科学, 2006, 27(8): 187–201
    [58]王元秀,庄海燕.微量滴定法测定猕猴桃中维生素C的含量[J].济南大学学报(自然科学版), 2001, 15(4): 375–377
    [59]冯翀.高透光率柚子汁加工工艺的研究[D].福建:福建农林大学, 2009
    [60]孙志高,黄学根,焦必宁,等.柑桔果实主要苦味成分的分布及橙汁脱苦技术研究[J].食品科学. 2005, 26(6): 146–148
    [61]邬应龙,胡阳,黄高凌,等.几种柑橘类果汁中主要苦昧物在力p-r-过程中含量变化的研究[J].中国食品学报, 2008, 8(5): 104–107
    [62] Vikram A., Jayaprakasha G.K., Patil B.S., et al. Simultaneous determination of citrus limonoid aglycones and glucosides by high performance liquid chromatography[J]. Analytica Chimica Acta , 2007, 590: 180–186
    [63] Ribeiro I.A., Ribeiro H.L.. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method[J]. Food Control, 2008, 19: 432–438
    [64] Jia-Ping L., Yew H.L., Jin S., Identi?cation and characterization of major ?avonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS[J]. Journal of Chromatography B, 2007, 848: 215–225
    [65] Dugo P., Presti M.L., Ohman M., et al. Determination of flavonoids in citrus juices micro-HPLC-ESI/MS[J]. J. Sep. Sci, 2005, 28: 1149–1156
    [66] Ferreres F., Llorach R., Gil-Izquierdo A.. Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated ?avonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry[J]. J. Mass Spectrom, 2004, 39: 312–321
    [67] Marcha R., Brodbelt J.. Analysis of ?avonoids: Tandem mass spectrometry, computational methods, and NMR[J]. J. Mass Spectrom, 2008, 43: 1581–1617
    [68]杨爽,边清泉,王劲,等.柚果中柚皮苷含量与果实苦味相关性研究[J].四川大学学报(自然科学版), 2007(10), 44(5): 1138-1141
    [69]左安连,毛海舫,李琼,等.柑橘类果汁脱苦方法研究综述[J].香料香精化妆品, 2008(3): 33–37
    [70]崇德,涂晓赘,张智平,等.柑橘类果汁苦味物质去除方法的研究进展[J].江西科学: 2007(12), 25(6): 720–724
    [71]钱庭宝,刘维林,编.离子交换树脂应用手册[M].天津:南开大学出版社, 1989
    [72]徐青,卢莹莹,辛建美,等.大孔树脂吸附分离海芦笋中黄酮类化合物工艺[J].食品科学, 2011, 32(2): 115–119
    [73]元晓梅,刘贵贤,胡正之.比色法测定柑桔饮料及柚皮制剂中总黄酮含量[J].食品与发酵工业, 1996, 3: 13–18
    [74]李和生,王鸿飞,周石磊,等.柑橘类果汁中柚皮苷的分析[J].农业机械学报, 2006, 37(4): 76–79
    [75] Singh S.V., Gupta A.K., Jain R.K.. Adsorption of naringin on nonionic (neutral) macroporus adsorbent resin from its aqueous solutions[J]. Journal of Food Engineering, 2008, 86: 259–271
    [76]李平.山茱萸多糖化学、生物活性及树脂吸附法分离植物有效成分研究[D].北京:北京化工大学, 2004
    [77]张国治.软饮料加工机械[M].北京:化学工业出版社, 2005
    [78]陆振曦,陆守道.食品机械原理与设计[M].北京:中国轻工业出版社, 1995
    [79]张裕中.食品加工技术装备(第二版)[M].北京:中国轻工业出版社, 2007
    [80]李勇(主编).现代软饮料生产技术[M].北京:化学工业出版社, 2006
    [81]刘玉德.食品加工设备选用手册[M].北京:化学工业出版社, 2006
    [82]陆亚俊,马最良,庞志庆.制冷技术与应用[M].北京:中国建筑工业出版社, 1992
    [83]钱清.年产6000吨速冻蔬菜工厂设计[D].江苏:江南大学, 2006
    [84]无锡轻工业学院,轻工业部上海轻工业设计院.食品工厂设计基础[M].北京:中国轻工业出版社, 1992
    [85]锅炉房实用设计手册编写组.锅炉房实用设计手册第2版[M].北京:机械工业出版社, 2001
    [86]李海峰,张海红.超高温瞬时灭菌(UHT)奶的生产工艺及设备选型[J].食品工程, 2009, (04): 18–23
    [87]柴宝华.年产1500吨无糖糖果车间设计[D].江苏:江南大学, 2005
    [88]何东平.食品工厂设计[M].北京:中国轻工业出版社, 2009
    [89]杨芙莲(主编).食品工厂设计基础[M].北京:机械工业出版社,2007 .
    [90]周坤.年产9万吨液态奶的生产车间设计[D].江苏:江南大学, 2005.
    [91]王颉.食品工厂设计与环境保护[M].北京:化学工业出版社, 2006.
    [92]赵履祥.组合式中药液浓缩、乙醇回收装置[P].中国: 200420079030.8, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700