塔里木河流域气候—水文过程的复杂性与非线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球暖化现象正在世界各地以加速的节拍在发展,而伴随全球暖化的结果之一就是全球气候及水文循环正在急剧的改变,气候-水文过程因气温的上升及气候极端变化而有明显的调整。塔里木河流域作为一个干旱区典型,是气候水文变化的敏感区域,许多研究人员对其已经展开了大量的研究和讨论。对气候-水文过程的特征及其随时间演变的规律和内在动力学机制的研究,将有助于制定新的环保治理措施和发展更有效气候-水文预测预报方法,从而减缓气候-水文环境的恶化。
     气候-水文系统由多个子系统组成,并受到多圈层、多要素、多尺度的共同作用,子系统之间一种或多种方式发生非线性的内部或者外部的相互作用,导致它们不仅在时间上而且在空间上产生多种复杂形式的关联结构,形成了外有压迫、内有非线性耗散的复杂巨大系统,整体表现出复杂性。其影响因素有很多,例如,人类活动、地理位置、下垫面复杂的特征等等。但这些因素不是相互独立无关的,而是在各种时空尺度内产生复杂的非线性相互作用,从而使得塔里木河流域气候-水文过程的时间演化过程呈现出内在非线性外在复杂性的特征。
     针对上述问题,本文引入分形理论、混沌理论、复杂网络理论等并结合GIS技术对塔里木河流域的气候-水文过的复杂性与非线性特征进行了系统的定性与定量分析;深入研究了气候-水文因子某些复杂的时间演变过程和动力学机制;最后分析了气候-水文过程的临界自组织行为,对其存在的复杂性与非线性进行初步解释。
     本文主要的研究工作及其结论如下:
     1.首先应用重标极差法(R/S分析)、消除趋势波动分析法(DFA分析)以及谱分析法对日平均温度、日降水量、日平均相对湿度、日蒸发量和开都河日径流量序列进行分析,研究其长期持续性特征。结果表明,五个因子时间序列在较短的时间尺度上(约一年),具有明显的标度不变性,均表现出相类似的较高的长记忆性;而五个序列而在较长的时间尺度上(大于一年),不同因子时间尺度上的幂律特征存在着一些明显的差异。然后,借助消除趋势互相关性分析(Detrended Cross-Correlation Analysis, DCCA)揭示五个因子之间的长程互相性。结果发现,F2(S)与s的双对数曲线存在两个甚至三个无标度区间。最后在GIS空间分析技术支撑下,应用联合克利金插值法,分析研究了塔里木河流域气候-水文过程的长记忆强度的空间分布特征。
     2.根据混沌理论,对日平均温度、日降水量、日平均相对湿度、日蒸发量和开都河日径流量序列通过相空间重构,应用Rosenstein算法及G-P算法,分别计算了它们的序列的关联维数D、最大Lyapunov指数λ1以及Kolmogorov熵K等特征量。结果表明五个因子时间序列中存在明显的混沌特性,是非线性混沌动力系统演化的结果;塔里木河流域的气候-水文过程的变化同时具有确定性和随机性。最后在GIS空间分析技术支撑下,应用地统计理论,通过三个特征量分析了塔里木河流域的混沌特征和复杂度的分布。我们发现在气候变化复杂、具有径流、海拔较高的区域的值较大,混沌特性较强,复杂度较高,而受气候-水文过程影响较小的沙漠腹地区域的值较小,混沌特征较弱,复杂度较低,趋势明显。另外,通过关联维数D我们知道,D值越小(大),系统的层次越高(低),趋势越明显(不明显)。通过最大Lyapunov指数λ1,我们还知道五个因子的最大可预报尺度差异显著,低值地区最大可预报时间较长,高值区域较短;气候-水文因子系统的蝴蝶效应强弱程度表现为日平均相对湿度>日平均温度>日降水量≈日蒸发量,年径流量系统蝴蝶效应的平均强弱程度表现为和田河>叶尔羌河>阿克苏河≈开都河。
     3.应用两种多重分形方法(多重分形盒维数)对各气候-水文因子时间尺度和强度尺度上的多重分形结构进行分析。多重分形盒维数的分析表明,各因子在整个时间尺度上具有完全不同的多重分形特征,这些特征可以用三个具有明确物理意义的参数(B,Aa和△f)进行定量表征。进一步,本文将五个时间序列分为5个或者4个年代,分析了各年代因子的多重分形特征的变化,并结合塔里木河流域的气候水文变化进行了分析。最后在GIS空间分析技术支撑下,应用联合克利金插值法,分析研究了塔里木河流域气候-水文过程的多重分形强度的空间分布特征。
     4.根据粗粒化方法,将塔里木河流域的逐日平均温度、日降水量、日平均相对湿度、日蒸发量和开都河日径流量序列转化为由5个特征字符{R,r,e,d, D}构成的气候-水文因子符号序列。以符号序列中的125种3字串组成的温度、降水量、相对湿度、蒸发量、径流量的波动模态为网络的节点(即连续3d的因子波动组合),并按照时间顺序连边,构建有向加权的温度波动网络(TFN)、降水波动网络(PFN)、湿度波动网络(HFN)、蒸发波动网络(EFN)、径流波动网络(RFN)进而将五个因子的波动模态间的相互作用等综合信息蕴含于网络的拓扑结构之中。计算三种网络的度与度分布、聚群系数、最短平均路径长度等动力学统计量,从网络的角度对比研究五种序列内秉性质的差异,体现了五种气候-水文因子变化的复杂性。结果表明,五种因子波动网络均表现出很强的集聚性和较短的最小平均路径长度;TFN和RFN的度分布分别服从三段和双段幂律分布,是具有无标度特性的小世界网络;PFN、HFN和EFN兼具有无标度特性和小世界效应,既是无标度网络又是小世界网络。我们还发现在五种因子波动网络中,一些顶点的顶点度异常高,以这些顶点为代表的温度波动模态发生概率较大,例如,TFN中的节点RRR、dRR、ReR....。在TFN、HFN、EFN和RFN、PFN的重要节点中分别大都包含了R、r和r、e两种符号,这说明塔里木河流域的气候-水文过程的波动主要以上升为主,前三个因子比后两者上升的稍快。五个因子波动网络部分节点的介中向心性能力较强,4.5%(3.2%、3.2%、0.8%、3.2%)的节点承担了网络19.71%(19.71%、13.64%、3.4%、13.88%)的中介中心性功能,这些具有拓扑统计重要性的节点对于理解五个气候-水文因子波动的内在规律和波动信息的传递等有一定指导意义。根据5种顶点的平均度在塔里木河流域23个气象台站中的排行分布,将它们的主要作用区域依次定义为:一级度带、二级度带和三级度带。平均度、相似系数、最短平均路径长度和平均集群系数分布存在一定的区域特征,为通过复杂性来研究气候-水文变化的区域特征提供了理论基础。
     5.首先,五个气候-水文因子的强度-频度关系说明极端气候-水文事件与小因子值变化事件的过程均可归因于同一种动力学机制。然后,建立具有自身衰减因子的数值沙堆模型对气候-水文演变过程进行模拟。模型中仅仅通过改因子值的衰减系数,其结果就可以很好地解释五种气候-水文因子实际的强度-频度关系。模型研究的结果表明,因子自身的临界自组织行为是气候-水文过程时间演化的动力学根源,正是气候-水文因子自身的自组织临界性导致了其时间演变中存在幂律关系。
Global warming has currently accelerating in the troposphere and one of the consequences that derived from climate change is the chaotic variations of weather and water cycle on the earth surface. Extreme weather events have been observed all over the world, particularly for the pattern and intensity of climatological-hydrologic-al process. The Tarim River Basin, a typical arid area, is a sensitive area of climatological-hydrological change; many researchers have launched a lot of research and discussion about it. It seems evident that the understanding of the complex dynamic characteristics of climatological-hydrological process can contribute to developing advanced techniques for climatological-hydrological forecasting. The accurate forecast can help to develop effective warning strategies to reduce impacts on climatological-hydrological environment.
     Climatological-hydrological system is composed by several subsystems, and by the interaction of multi spheres, multi factors, multi scale. One or more ways can be internal or external interaction among subsystems, which result in interaction structure of more complex form not only in the time, but also in the space. The results form complex-huge system with oppression outside and nonlinear dissipative inside, and the whole show its complexity. There are many influence factors of climatological-hydrological system, for example, human activities, geographical location, complex surface characteristics and so on. But these factors are not independent of each other, but there are nonlinear interactions at various spatial and temporal scales. These reasons result in which the time evolution process of climatological-hydrological process shows inherent nonlinear and external complex characteristics.
     For the above question, the author has introduced the fractal theory, chaos theory, complex network theory and GIS technology to study complexity and nonlinear characteristics of regional climatological-hydrological process. On this basis, the authorinvestigates the temporal evolution dynamics of the process further. At last, the author sets up the self-organized critical theory of regionalclimatological-hydrological factors, and interprets the fractal structure of regional climatological-hydrological process.
     The main works and conclusions in this study are as follows:
     1. Firstly, the long memory and scaling properties of average daily temperature, precipitation, relative humidity, evaporation and daily runoff of Kaidu River are investigatedby rescaled range analysis (R/S), detrended fluctuation analysis (DFA) and spectral analysis. The results show that the temporal scaling behaviors in the five series all exhibit two different power laws. In shorter temporal scaling, all series indicate thesimilar persistence corresponding to the annual cycle. However in longer temporalscaling, the trends are different for the five series, which reflect the different inherentdynamic nature of various climatological-hydrological factor series. The fluctuations of Hurst exponent, DFA exponent and power spectrum exponent with increasing the threshold magnitude are analyzed. Secondly, long-range cross correlations between each pair of five indices are revealed by the Detrended Cross-Correlation Analysis method (DCCA). We find that the double logarithm curve F2(s)~s two or even three scale-invariant regions are presented. Lastly, Supported by the GIS technical and based on the CoKriging method, the space distribution for the degree of long memory for climatological-hydrological process in Tarim River Basin is analyzed.
     2. According to chaos theory, through reconstructing the phase-space for the series of average daily temperature, precipitation, relative humidity, evaporation and daily runoff of Kaidu River in Tarim River Basin, and calculates their three characteristic quantities, including the maximum Lyapunov exponent λ1, Kolmogorov entropy K and the correlation dimension D, with Rosenstein and G-P algorithm respectively. All results show obvious chaotic and fractal characteristics in the five series, which are the result of the evolution of non-linear chaotic dynamic system. The climatological-hydrological process in the Tarim River basin also has deterministic and stochastic characteristic. Supported by the GIS technical and based on the CoKriging method, the space distribution for the degree of chaotic and complexity for climatological-hydrological process in Tarim River Basin is analyzed. We find that the bigger for the values of three characteristic quantities is, the stronger the chaotic and complexity are in region with complicated climate change is, runoff and higher altitudes. However, the values of three characteristic quantities are smaller in desert hinterland, which the chaotic and complexity is weaker. Furthermore, the lower (higher) the correlation dimension D, the higher (lower) the level of the system, and the more obvious (less obvious) the trend. The different the maximum Lyapunov exponent λ1indicate that there are significant differences for five series in the the maximum forecasting scale. Specifically, the bigger λ1, the longer the scale is and the smaller λ1, the shorter the scale is. And the average degree of butterfly effect of climatological-hydrological factor system shows average daily relative humidity> average daily temperature>daily precipitationdaily evaporation, as for annual runoff, Hotan River>Yerqiang River>Akesu River(?)Kaidu River.
     3. Multi-fractal methods (multi-fractal box counting method) has been applied to analyze the five climatological-hydrological factor series. It shows that the method can not only identify the scaling invariance but also explain the scaling behavior of the probability distributions in the factor time series. Multifractal characteristics of the five factor series can be described by three multi-fractal parameters, namely B,△α and△f. Further, multifractal characteristics changes of every age are analyzed, combining with the climate and hydrological changes of the Tarim River basin. Lastly, Supported by the GIS technical and based on the CoKriging method, the space distribution for the degree of multifractality of climatological-hydrological process in Tarim River Basin is analyzed. 4. To analyze the dynamics of the climatological-hydrological process in Tarim River Basin, using homogenous partition of coarse graining process, the series of average daily temperature, precipitation, relative humidity, evaporation and daily runoff of Kaidu River is transformed into symbolic sequences consisting of5characters{R, r, e, d, D}. The vertices of the Temperature fluctuant network (TFN), Precipitation fluctuant network (PFN), Relative humidity fluctuant network (HFN), Evaporation fluctuant network (EFN) and Runoff fluctuant network (RFN) are1253-symbol strings (i.e.,125fluctuation patterns in durations of3days), respectively, linked in the networks'topology by time series. They contain integrated information about interconnections and interactions between fluctuation patterns of temperature, precipitation, relative humidity, evaporation and runoff in networks'topology. We calculate the dynamical statistics of the degrees and the distribution of degrees, clustering coefficient and the shortest path length, and compared the difference of these five series from the view point of network. The result shows that the five factor fluctuant networks have good clustering characteristic with obvious characteristic of community structure and shorter average path length. TFN and RFN are scale-free and small-world network with degree distribution obeying a three and double power law, respectively, and with obvious characteristic of local community structure. PFN, HFN and EFN are also scale-free and small-world networks with obvious characteristic of scale-free and small-world effect.
     We also find some vertices' degrees are remarkably high, for example, there are more RRR, dRR, ReR..., which shows these occurrence probabilities of the climatological-hydrological factor fluctuation represented by these5nodes, is greater. Furthermore, the main vertices of each one of TFN, HFN and EFN generally contain the2characters R and r, and the main vertices of both RFN and PFN generally contain r and e, which shows that all the five factors are is mainly ascending, however, the temperature, relative humidity and evaporation are rising faster than the precipitation and runoff of Kaidu river. Futher, some vertices in the five factor fluctuant network have high betweenness centrality (BC),4%,3.2%,3.2%,0.8%and3.2%of vertices bear19.71%,19.71%,13.64%,3.4%and13.88%of betweenness centrality of networks, respectively, these vertices of importance in topological statistics are helpful to understanding the inherent law and information transmission.
     Lastly, supported by the GIS technical and based on the Geostatistics theory, the space distribution for the degree of complexty by the average daily temperature, precipitation, relative humidity, evaporation fluctuant networks of climatological-hydrological process in Tarim River Basin is analyzed. From the distribution graph of the average degree of these5nodes in all the23meteorological stations, we define them by the symbols as the Tarim River Basin wide model, the first-level-degree area, the second-level-degree area and the third-level-degree area. The distribution of the average degree, similarity coefficient, cluster coefficient and average shortest path have a regional characteristics, which provide us with the feasibility for analyzing the regional climatological-hydrological characteristics intheory.
     5. Firstly, the frequency-intensity distribution of five climatological-hydrological factors suggest there are inherent dynamical connection between small factor change and extreme weather events. Then, a numerical sandpile model with decay coefficient is constructed to revealinherent dynamic mechanism of climatological-hydrological process revolution. In this model, changing the number value of decaycoefficient, the frequency-intensity distribution of various factor values can be simulated. And all results are consistent with the actual data very well. Simulating computation shows that the factors act as dynamically self-organized systems and it is the self-organized criticality of the climatological-hydrological processes that results in the temporal variation of the processes.
引文
1. Abarbanel H D I. Analysis of observed chaotic data[D]. Springer-Verlag,1997, 1-284.
    2. Abe S, Suzuki N. Zipf-Mandelbrot law for time intervals of earthquakes[J].arXiv preprint cond-mat/0208344,2002.
    3. Adamic L A, Lukose R M, Puniyani A R, et al. Search in power-law networks[J]. Physical Review E,2001,64(4):046135.
    4. Aegerter C M. A sandpile model for the distribution of rainfall?[J]. Physica A,2003, 319:1-10.
    5. Albert R, Barabasi A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47-97.
    6. Albert R, Jeong H, Barabasi A L. Internet:Diameter of the world-wide web[J]. Nature,1999,401(6749):130-131.
    7. Alila Y, Mtiraoui A. Implications of heterogeneous flood-frequency distributions on traditional stream-discharge prediction techniques[J]. Hydrological Processes, 2002,16(5):1065-1084.
    8. Amaral L A N, Buldyrev S V, Havlin S, et al. Power law scaling for a system of interacting units with complex internal structure[J]. Physical Review Letters,1998, 80(7):1385.
    9. Andrade Jr J S, Wainer I, Mendes Filho J, et al. Self-organized criticality in the El Nino southern oscillation[J]. Physica A,1995,215(3):331-338.
    10. Andrade R F S, Pinho S T R, Fraga S C, et al. New toppling dynamics for the self-organized critical rainfall model[J]. Physica A,2002,314(1):405-410.
    11. Andrade R F S, Schellnhuber H J, Claussen M. Analysis of rainfall records: possible relation to self-organized criticality [J]. Physica A,1998,254(3):557-568.
    12. Araujo M B, Pearson R G, Thuiller W, et al. Validation of species-climate impact models under climate change[J]. Global Change Biology,2005,11(9):1504-1513.
    13. Arnell N W. A simple water balance model for the simulation of streamflow over a large geographic domain[J]. Journal of Hydrology,1999,217(3):314-335.
    14. Atiem I A, Harmancio N B. Assessment of regional floods using L-moments approach:the case of the River Nile[J]. Water Resources Management,2006, 20(5):723-747.
    15. Ausloos M. Statistical physics in foreign exchange currency and stock markets[J]. Physica A,2000,285(1):48-65.
    16. Axtell R L. Zipf distribution of US firm sizes[J]. Science,2001,293(5536):1818-1820.
    17. Bader M J, Roach W T. Orographic rainfall in warm sectors of depressions [J]. Quarterly Journal of the Royal Meteorological Society,1977,103(436):269-280.
    18. Bak P, Chen K, Scheinkman J, et al. Aggregate fluctuations from independent sectoral shocks:self-organized criticality in a model of production and inventory dynamics[J]. Ricerche Economiche,1993,47(1):3-30.
    19. Bak P. How nature works:the science of self-organized criticality[M]. New York: Copernicus,1996,1-212.
    20. Bak P, Paczuski M, Shubik M. Price variations in a stock market with many agents[J]. Physica A:Statistical Mechanics and its Applications,1997,246(3): 430-453.
    21. Bak P, Tang C. Wiesenfel K J. Journal of Applied Meteorology,1990,29:1167.
    22. Bak P, Tang C, Wiesenfeld K. Self-organized criticality:an explanation of 1// noise[J]. Physical Review Letters,1987,59(4):381-384.
    23. Bak P, Tang C, Wiesenfeld K. Self-organized criticality [J]. Physical Review A, 1988,38(1):364-374.
    24. Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286(5439):509-512.
    25. Barrat A, Barthelemy M, Vespignani A. Dynamical processes on complex networks[M]. New York:Cambridge University Press,2008.
    26. Barrat A, Barthelemy M, Vespignani A. Dynamical processes on complex networks[M]. New York:Cambridge University Press,2008.
    27. Barbulescu A, Serban C, Maftei C. Evaluation of Hurst exponent for precipitation time series[J]. Latest Trends on Computers,2010,2:590-595.
    28. Barna G, Tsuda I. A new method for computing Lyapunov exponents[J]. Physics Letters A,1993,175(6):421-427.
    29. Barrett J W, Prigozhin L. A quasi-variational inequality problem arising in the modeling of growing sandpiles[J]. ESAIM:Mathematical Modelling and Numerical Analysis,2013,47(04):1133-1165.
    30. Batty M, Longley P A. Fractal cities:a geometry of form and function[M]. Academic Press,1994.
    31. Beben M, Orlowski A. Correlations in financial time series:established versus emerging markets[J].The European Physical Journal B-Condensed Matter and Complex Systems,2001,20(4):527-530.
    32. Bedford C W. The chase for chaos[J].The Mathematics Teacher,1998,90 (4):277-281.
    33. Belykh I V, Belykh V N, Hasler M. Blinking model and synchronization in small-world networks with a time-varying coupling[J]. Physica D,2004,195(1): 188-206.
    34. Benettin G, Galgani L, Giorgilli J M A, et al. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1:Theory, part 2:Applications[J]. Meccanica,1980, 15:9-20 and 21-30.
    35. Benettin G, Galgani L, Strelcyn J M. Kolmogorov entropy and numerical experiments[J]. Physical Review A,1976,14(6):2338-2345.
    36. Bergeron T. The problem of artificial control of rainfall on the globe1:ii. the coastal orographic maxima of precipitation in Autumn and Winter[J]. Tellus,1949, 1(3):15-32.
    37. Bergeron T. On the low-level redistribution of atmospheric water caused by orography[C]//Proc. Int. Conf. on Cloud Physics.1965,96-100.
    38. Berlow E L, Dunne J A, Martinez N D, et al. Simple prediction of interaction strengths in complex food webs[J]. Proceedings of the National Academy of Sciences,2009,106(1):187-191.
    39. Berndtsson R, Jinno K, Kawamura A, et al. Dynamical systems theory applied to long-term temperature and precipitation time series[J]. Trends Hydrol,1994,1: 291-297.
    40. Berry M V, Lewis Z V. On the Weierstrass-Mandelbrot fractal function[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1980,370(1743):459-484.
    41. Berube D, Jebrak M. High precision boundary fractal analysis for shape characterization[J]. Computers & Geosciences,1999,25(9):1059-1071.
    42. Bierkens M F P, Van den Hurk B J J M. Groundwater convergence as a possible mechanism for multi-year persistence in rainfall [J]. Geophysical Research Letters, 2007,34(2):L02402.
    43. Blender R, Zhu X, Zhang D, et al. Yangtze runoff, precipitation, and the East Asian monsoon in a 2800 years climate control simulation[J].Quaternary International,2011,244(2):194-201.
    44. Belykh I V, Belykh V N, Hasler M. Blinking model and synchronization in small-world networks with a time-varying coupling[J]. Physica D,2004,195(1): 188-206.
    45. Borgatti S P, Mehra A, Brass D J, et al. Network analysis in the social sciences[J]. Science,2009,323(5916):892-895.
    46. Bossomaier T, Green D. Patterns in the sand:Computers, complexity, and everyday life[M]. Perseus Publishing,1999.
    47. Briggs J. Fractals:The patterns of chaos:A new aesthetic of art, science, and nature[M]. Simon and Schuster,1992.
    48. Briggs J. Fractals:The patterns of chaos:A new aesthetic of art, science, and nature[M]. Simon and Schuster,1992.
    49. Bullmore E, Sporns O. Complex brain networks:graph theoretical analysis of structural and functional systems[J]. Nature Reviews Neuroscience,2009,10(3): 186-198.
    50. Burrough P A, McDonnell R A. Principles of Geographical Information Systems [M]. New York:Oxford University Press,1998.
    51. Cannelli G, Cantelli R, Cordero F. Self-organized criticality of the fracture processes associated with hydrogen precipitation in niobium by acoustic emission[J]. Physical Review Letters,1993,70(25):3923.
    52. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D,1997,110(1):43-50.
    53. Cao L, Xu J H, Chen Y N, et al. Understanding the dynamic coupling between vegetation cover and climatic factors in a semiarid region—a case study of Inner Mongolia, China[J]. Ecohydrology,2013,6(6):917-926.
    54. Carlson J M, Doyle J. Complexity and robustness[J]. Proceedings of the National Academy of Sciences,2002,99(suppl 1):2538-2545.
    55. Chandrappa R, Gupta S, Kulshrestha U C. Climate change and hydro-meteorological risks in Asia[M]//Coping with Climate Change. Springer Berlin Heidelberg,2011:89-101.
    56. Chang C P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I:Roles of the subtropical ridge[J]. Journal of Climate,2000,13(24):4310-4325.
    57. Chang F C, Wang C H. Did sulfur-rich volcanic eruptions affect drought episodes in Taiwan?[J]. International Association of Hydrological Sciences, Publication, 2003 (281):148-157.
    58. Chang H, Su B B, Zhou Y P, et al. Assortativity and act degree distribution of some collaboration networks[J]. Physica A,2007,383(2):687-702.
    59. Changnon S A, Demissie M. Detection of changes in streamflow and floods resulting from climate fluctuations and land use-drainage changes[J]. Climatic Change,1996,32(4):411-421.
    60. Chang C S, Thomas J A. Effective bandwidth in high-speed digital networks[J]. Selected Areas in Communications, IEEE Journal on,1995,13(6):1091-1100.
    61. Chen F, Chen Z, Wang X, et al. The average path length of scale free networks[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(7): 1405-1410.
    62. Chen H, Guo S L, Xu C Y, et al. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin[J] Journal of hydrology,2007,344(3): 171-184.
    63. Chiew F, McMahon T. Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments[J]. Journal of Hydrology,1994, 153(1):383-416.
    64. Chen Z, Ivanov P C, Hu K, et al. Effect of nonstationarities on detrended fluctuation analysis[J]. Physical Review E,2002,65(4):041107.
    65. Chiew F H S, McMahon T A, Dracup J A, et al. El-Nino/Southern Oscillation and streamflow patterns in south-east Australia[J]. Civil Engineering Transactions/the Institution of Engineers, Australia,1994,36(4):285-291.
    66. Christensen N S, Lettenmaier D P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin[J]. Hydrology & Earth System Sciences,2007,11(4): 1417-1434.
    67. Christensen N, Lettenmaier D P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin[J]. Hydrology and Earth System Sciences Discussions,2006,3(6): 3727-3770.
    68. Cek M E, Savaci F A. Analysis of observed chaotic data[D]. Izmir Institute of Technology, Izmir,2004.
    69. Charlton R, Fealy R, Moore S, et al. Assessing the impact of climate change on water supply and flood hazard in Ireland using statistical downscaling and hydrological modelling techniques[J]. Climatic Change,2006,74(4):475-491.
    70. Cheng Q, Russell H, Sharpe D, et al. GIS-based statistical and fractal/multifractal analysis of surface stream patterns in the Oak Ridges Moraine[J]. Computers & Geosciences,2001,27(5):513-526.
    71. Chen X, Lin G X, Fu Z T. Long-range correlations in daily relative humidity fluctuations:A new index to characterize the climate regions over China[J]. Geophysical Research Letters,2007,34(7):L07804.1-L07804.
    72. Chessa A, Stanley H E, Vespignani A, et al. Universality in sandpiles[J]. arXiv preprint cond-mat/9808263,1998.
    73. Chhabra A B, Jensen R V. Direct Determination of the f(α) singularity spectrum. Physical Review Letters,1989a,62(12):1327-1330.
    74. Chhabra A B, Meneveau C, Jensen R V, et al. Direct determination of the f(a) singularity spectrum and its application to fully developed turbulence[J]. Physical Review A,1989b,40(9):5284-5294.
    75. Chu P S, Zhao X. Bayesian change-point analysis of tropical cyclone activity:The central North Pacific case[J]. Journal of Climate,2004,17(24):4893-4901.
    76. Colcombet J, Hirt H. Arabidopsis MAPKs:a complex signalling network involved in multiple biological processes[J]. Biochemical Journal,2008,413:217-226.
    77. Craver C F. Interlevel experiments and multilevel mechanisms in the neuroscience of memory[J]. Philosophy of Science,2002,69(S3):S83-S97.
    78. Creutin J D, Obled C. Objective analyses and mapping techniques for rainfall fields:an objective comparison[J]. Water resources research,1982,18(2):413-431.
    79. Creutin J D, Delrieu G, Lebel T. Rain measurement by raingage-radar combination:a geostatistical approach[J]. Journal of Atmospheric and Oceanic Technology,1988,5(1):102-115.
    80. Crosbie R S, Pickett T, Mpelasoka F S, et al. An assessment of the climate change impacts on ground water recharge at a continental scale using a probabilistic approach with an ensemble of GCMs[J]. Climatic Change,2013,117(1-2):41-53.
    81. Cunnane C. Methods and merits of regional flood frequency analysis[J]. Journal of Hydrology,1988,100(1):269-290.
    82. Dalrymple T. Flood-frequence Analyses[M]. US Geological Survey,1960.
    83. Damtoft J S, Lukasik J, Herfort D, et al. Sustainable development and climate change initiatives [J]. Cement and Concrete Research,2008,38(2):115-127.
    84. da Silva L, Papa A R R, de Souza A M C. Criticality in a simple model for brain functioning[J]. Physics Letters A,1998,242(6):343-348.
    85. De Bartolo S G, Veltri M, Primavera L. Estimated generalized dimensions of river networks[J]. Journal of hydrology,2006,322(1):181-191.
    86. Deidda R, Badas M G, Piga E. Space-time multifractality of remotely sensed rainfall fields[J]. Journal of Hydrology,2006,322(1):2-13.
    87. De Lima M I P, Grasman J. Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal[J]. Journal of Hydrology,1999,220(1):1-11.
    88. Derksen C, Brown R. Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections[J]. Geophysical Research Letters, 2012,39(19), Abstract.
    89. Dessai S, Hulme M. Assessing the robustness of adaptation decisions to climate change uncertainties:A case study on water resources management in the East of England[J]. Global Environmental Change,2007,17(1):59-72.
    90. Dhar D. Theoretical studies of self-organized criticality[J]. Physica A,2006, 369(1):29-70.
    91.Dionisio A, Menezes R, Mendes D A. Mutual information:a measure of dependency for nonlinear time series[J]. Physica A,2004,344(1):326-329.
    92. D'Odorico P, Rodriguez-Iturbe I. Space-time self-organization of mesoscale rainfall and soil moisture[J]. Advances in water resources,2000,23(4):349-357.
    93. Doherty R M, Hulme M, Jones C G. A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974 to 1994[J], International Journal of Climatology,1999,19(2):119-142.
    94. Donges J F, Zou Y, Marwan N, et al. The backbone of the climate network[J]. Europhysics Letters,2009a,87:48007.
    95. Donges J F, Zou Y, Marwan N, et al. Complex networks in climate dynamics[J]. European Physical Journal Special Topics,2009b,174(1):157-179.
    96. Drosdowsky W. Analog (nonlinear) forecasts of the Southern Oscillation index time series[J]. Weather and forecasting,1994,9(1):78-84.
    97. Drossel B, Schwabl F. Self-organized critical forest-fire model[J]. Physical Review Letters,1992,69(11):1629-1632.
    98. Dunne J A, Williams R J, Martinez N D. Network structure and robustness of marine food webs[J]. Marine Ecology Progress Series,2004,273:291-302.
    99. Durbin J, Watson G S. Testing for serial correlation in least squares regression. I[J]. Biometrika,1950,37(3-4):409-428.
    100. Easterling D R, Evans J L, Groisman P Y, et al. Observed variability and trends in extreme climate events:a brief review[J]. Bulletin of the American Meteorologic-al Society,2000,81(3):417-425.
    101.Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors[J]. Reviews of Modern Physics,1985,57(3):617-656.
    102. Eichner J F, Koscielny-Bunde E, Bunde A, et al. Power-law persistence and trends in the atmosphere:A detailed study of long temperature records [J]. Physical Review E,2003,68(4):046133.
    103. Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology[C]. ACM,1999,29(4):251-262.
    104. Fernandez A, Collado J, Cunha L M, et al. Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate [J]. International Journal of Food Microbiology,2002,77(1):147-153.
    105. Feyen L, Dankers R. Impact of global warming on streamflow drought in Europe[J].Journal of Geophysical Research,2009,114(17):D17116.
    106. Fleig A K, Tallaksen L M, Hisdal H, et al. A global evaluation of streamflow drought characteristics[J]. Hydrology & Earth System Sciences,2006,10(4):535-552.
    107. Fontaine T A, Klassen J F, Cruickshank T S, et al. Hydrological response to climate change in the Black Hills of South Dakota, USA[J]. Hydrological Sciences Journal,2001,46(1):27-40.
    108. Fowler H J, Kilsby C G. A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000[J]. International Journal of Climatology,2003, 23(11):1313-1334.
    109. Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A,1986,33(2):1134-1140.
    110. Fraedrich K, Blender R. Scaling of atmosphere and ocean temperature correlations in observations and climate models[J]. Physical Review Letters,2003, 90(10):108501.
    111. Fraedrich K. Estimating the dimensions of weather and climate attractors [J]. Journal of the Atmospheric Sciences,1986,43(5):419-432.
    112. Fraedrich K. Estimating weather and climate predictability on attractors [J]. Journal of the Atmospheric Sciences,1987,44(4):722-728.
    113. Fraedrich K. Fickian diffusion and Newtonian cooling:a concept for noise induced climate variability with long-term memory?[J]. Stochastics and Dynamics, 2002,2(03):403-412.
    114. Franks S W. Identification of a change in climate state using regional flood data[J]. Hydrology and Earth System Sciences,1999,6(1):11-16.
    115. Free M, Seidel D J. Causes of differing temperature trends in radiosonde upper air data sets[J]. Journal of Geophysical Research,2005,110(D7):7101-7115.
    116. Freeman L C, Borgatti S P, White D R. Centrality in valued graphs:A measure of betweenness based on network flow[J]. Social Networks,1991,13(2):141-154.
    117. Freeman L C. Segregation in social networks[J].Sociological Methods & Research,1978,6(4):411-429.
    118. Frette V, Christensen K, Malthe-S(?)renssen A, et al. Avalanche dynamics in a pile of rice[J]. Nature,1996,379(6560):49-52.
    119. Frisch U, Parisi G. Turbulence and predictability in geophysical fluid dynamics and climate dynamics[J]. Ed. By M. Ghil et. al., North-Holland, Amsterdam, 1985.
    120. Frisch U, Sornette D. Extreme deviations and applications[J]. Journal de Physique I,1997,7(9):1155-1171.
    121. Galganil B G, Strelcyn J M. Kolmogorov entropy and numerical experiments [J]. Physical Review A,1976,14(3):2338-2345.
    122. Gellens D. Combining regional approach and data extension procedure for assessing GEV distribution of extreme precipitation in Belgium[J]. Journal of Hydrology,2002,268(1):113-126.
    123. Ghil M, Jiang N. Recent forecast skill for the El Nino/Southern Oscillation[J]. Geophysical research letters,1998,25(2):171-174.
    124. Giorgi F, Marinucci M R, Visconti G. A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model 2. Climate change scenario [J]. Journal of Geophysical Research,1992,97 (D9):10011-10028.
    125. Gleick J. Chaos:making a new science[M].New York:Penguin,1987.
    126. Ditto W L, Pecora L M. Mastering chaos[J]. Scientific American,1993,269(2): 78-84.
    127. Gleick P H. Methods for evaluating the regional hydrologic impacts of global climatic changes[J]. Journal of Hydrology,1986,88(1):97-116.
    128. Glennan S S. Mechanisms and the nature of causation[J]. Erkenntnis,1996, 44(1):49-71.
    129. Goh K I, Oh E, Kahng B, Kim D. Betweenness centrality correlation in social networks[J]. Physical Review E,2003,67(1):017101.
    130. Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks[J]. Physical Review Letters,2001,87(27):278701.
    131. Goldenfeld N, Kadanoff L P. Simple lessons from complexity[J]. Science,1999, 284(5411):87-89.
    132. Goodland R, Anhang J. Livestock and climate change[J]. World Watch Magazine, 2009,22:10-19.
    133. Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall [J]. Journal of Hydrology,2000,228(1):113-129.
    134. Grassberger P, Procaccia I. Characterization of strange attractors[J]. Physical Review Letters,1983a,50(5):346-349.
    135. Grassberger P, Procaccia I. Measuring the strangeness of the strange attractor[J]. Physica D,1983b,9:189-208.
    136. Grassberger P. Generalized dimensions of strange attractors[J]. Physics Letters A, 1983c,97(6):227-230.
    137. Grazzini J, Turiel A, Yahia H, et al. A multifractal approach for extracting relevant textural areas in satellite meteorological images[J]. Environmental Modelling & Software,2007,22(3):323-334.
    138. Greenwood J A, Landwehr J M, Matalas N C. Probability weighted moment: Definition and relation to parameter of severaldistribution expressed in inverse form, Water Resources Research,1979,15(5):1049-1054.
    139. GREHY G D E R E S. Presentation and review of some methods for regional flood frequency analysis[J]. Journal of Hydrology,1996,186(1-4):63-84.
    140. Grieger B. Quaternary climatic fluctuations as a consequence of self-organized criticality[J]. Physica A,1992,191(1):51-56.
    141. Goh K I, Lee D S, Kahng B, et al. Sandpile on scale-free networks[J].Physical Review Letters,2003,91(14):148701.
    142. Goldstone R L. The complex systems see-change in education[J]. The Journal of the Learning Sciences,2006,15(1):35-43.
    143. Gozolchiani A, Yamasaki K, Gazit O, et al. Pattern of climate network blinking links follows El Nino events[J]. EPL (Europhysics Letters),2008,83(2):28005.
    144. GREHY G D E R E S. Presentation and review of some methods for regional flood frequency analysis[J]. Journal of Hydrology,1996,186(1-4):63-84.
    145. Guess D, Sailor W. Chaos theory and the study of human behavior:Implications for special education and developmental disabilities [J]. The Journal of Special Education,1993,27(1):16-34.
    146. Guttman N B, Hosking J R M, Wallis J R. Regional precipitation quantile values for the continental United States computed from L-moments[J]. Journal of Climate,1993,6(12):2326-2340.
    147. Guntner A, Olsson J, Calver A, Gannon Bl. Cascade-based disaggregation of continuous rainfall time series:the influence of climate[J]. Hydrology and Earth System Sciences Discussions,2001,5(2):145-164.
    148. Guo Y J, Ding Y H. Long-Term Free-Atmosphere Temperature Trends in China Derived from Homogenized In Situ Radiosonde Temperature Series[J]. Journal of Climate,2009,22(4):1037-1051.
    149. Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America,1944,34(4):185-188.
    150. Hajian S, Movahed M S. Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations[J].Physica A,2010,389(21): 4942-4957.
    151. Hamlet A F, Lettenmaier D P. Columbia River streamflow forecasting based on ENSO and PDO climate signals[J]. Journal of Water Resources Planning and Management,1999,125(6):333-341.
    152. Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities:the characterization of strange sets[J]. Physical Review A,1986, 33(2):1141-1151.
    153. Hamon W R. Estimating potential evapotranspiration[J]. Journal of Hydraulics Division,1961,87(3):107-120.
    154. Hamlet A F, Lettenmaier D P. Effects of 20th century warming and climate variability on flood risk in the western US[J].Water Resources Research,2007, 43(6):6427.
    155. Hamlet A F, Lettenmaier D P. Effects of climate change on hydrology and water resources in the Columbia river basinl[J]Jawra Journal of the American Water Resources Association,1999,35(6):1597-1623.
    156. Hamlet A F, Lettenmaier D P. Production of temporally consistent gridded precipitation and temperature fields for the continental United States [J]. Journal of Hydrometeorology,2005,6(3):330-336.
    157. Hansen J E, Sato M. Paleoclimate implications for human-made climate change [M]. Climate Change. Springer Vienna,2012:21-47.
    158. Hansen J, Sato M, Ruedy R, et al. Forcings and chaos in interannual to decadal climate change[J]. Journal of Geophysical Research,1997,102(D22):25679-25720.
    159. Hansen J, Sato M, Ruedy R. Perception of climate change[J]. Proceedings of the National Academy of Sciences,2012,109(37):E2415-E2423.
    160. Hartkamp A D, Kirsten D B, Stein A, et al. Interpolat ion Techniques for Cliamate Variables[R]. NRG-GIS Series 99-01. Mexico, D. F.:CIMMYT.1999.
    161. Havens C.The relationship between classical and new science paradigm and organizational and educational leadership[D].Northern Arizona University, Unpublished Dissertation,1996, AAC9710196.
    162. Heneghan C, McDarby G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes[J]. Physical Review E,2000,62(5):6103.
    163. Hense A. On the possible existence of a strange attractor for the southern oscillation[J]. Beitr Physical Atmosphere,1987,60(1):34-47
    164. Herath S, Ratnayake U. Monitoring rainfall trends to predict adverse impacts—a case study from Sri Lanka (1964-1993)[J]. Global Environmental Change,2004, 14:71-79.
    165. Hergarten S, Neugebauer H J. Self-organized criticality in a landslide model[J]. Geophysical Research Letters,1998,25(6):801-804.
    166. Hmelo-Silver C E, Pfeffer M G. Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions[J]. Cognitive Science,2004,28(1):127-138.
    167. Hmelo-Silver C E, Azevedo R. Understanding complex systems:Some core challenges [J]. The Journal of the Learning Sciences,2006,15(1):53-61.
    168. Ho C H, Baik J J, Kim J H, et al. Interdecadal changes in summertime typhoon tracks[J]. Journal of Climate,2004,17(9):1767-1776.
    169. Hoffmann A A, Sgro C M. Climate change and evolutionary adaptation[J]. Nature,2011,470(7335):479-485.
    170. Holme P, Kim B J. Growing scale-free networks with tunable clustering[J]. Physical Review E,2002,65(2):026107.
    171. Hosking J R M, Wallis J R. The effect of intersite dependence on regional flood frequency analysis[J]. Water Resources Research,1988,24(4):588-600.
    172. Hosking J R M. L-moments:analysis and estimation of distributions using linear combinations of order statistics [J]. Journal of the Royal Statistical Society. Series B (Methodological),1990,52(1):105-124.
    173. Houghton J T, Ding Y, Griggs D J, Noguer M, et al. Climate change 2001:the scientific basis[M]. New York:Cambridge university press,2001.
    174. Hsu S K. Plan for a groundwater monitoring network in Taiwan[J]. Hydrogeology Journal,1998,6(3):405-415.
    175. Hu K, Ivanov P C, Chen Z, et al. Effect of trends on detrended fluctuation analysis[J]. Physical Review E,2001,64(1):011114.
    176. Hulme M, Osborn T J, Johns T C. Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations [J]. Geophysical Research Letters,1998,25(17):3379-3382.
    177. Hurst H E. Long-term storage capacity of reservoirs [J]. American Society of Civil Engineers,1951,116:770-808.
    178. Hwang D U, Chavez M, Amann A, et al. Synchronization in complex networks with age ordering[J]. Physical Review Letters,2005,94(13):138701.
    179. IPCC. Climate Change 2001 (UK:Cambridge University Press),2001,24.
    180. IPCC. Climate Change1995 (UK:Cambridge University Press),1995,478.
    181. Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science,2010,328(5984):1382-1385.
    182. Iori G. A microsimulation of traders activity in the stock market:the role of heterogeneity, agents'interactions and trade frictions[J]. Journal of Economic Behavior & Organization,2002,49(2):269-285.
    183. Islam S, Bras R L, Rodriguez-Iturbe I. A possible explanation for low correlation dimension estimates for the atmosphere[J]. Journal of applied meteorology,1993, 32(2):203-208.
    184. Ivanova K, Ausloos M. Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking[J]. Physica A,1999,274(1):349-354.
    185. Ivanova K, Shirer H N, Clothiaux E E, et al. A case study of stratus cloud base height multifractal fluctuations[J]. Physica A:Statistical Mechanics and its Applications,2002,308(1):518-532.
    186. Ivashkevich E V, Priezzhev V B. Introduction to the sandpile model[J], Physica A,1998,254(1):97-116.
    187. Iverson R M. The physics of debris flows[J]. Reviews of geophysics,1997,35(3): 245-296.
    188. Izmailian N S, Hu C K. Amplitude ratios for critical systems in the c=-2 universality class[J]. Physical Review E,2013,87(1):012110.
    189. Jacobson M J, Wilensky U. Complex systems in education:Scientific and educational importance and implications for the learning sciences[J]. The Journal of the Learning Sciences,2006,15(1):11-34.
    190. Janosi I M, Vattay G. Soft turbulent state of the atmospheric boundary layer[J]. Physical Review A,1992,46(10):6386-6389.
    191. Javelle P, Ouarda T B M J, Lang M, et al. Development of regional flood-duration-frequency curves based on the index-flood method[J] Journal of Hydrology,2002,258(1):249-259.
    192. Jayawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series[J]. Journal of Hydrology,1994,153(1):23-52.
    193. Jensen H J. Self-organized criticality:emergent complex behavior in physical and biological systems[M]. New York:Cambridge University Press,1998.
    194. Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature,2000,407(6804):651-654.
    195. Jespersen S, Sokolov I M, Blumen A. Relaxation properties of small-world networks[J]. arXiv preprint cond-mat/0004214,2000.
    196. Jones P D, Hulme M. Calculating regional climatic time series for temperature and precipitation:methods and illustrations[J].International Journal of Climatology,1996,16(4):361-377.
    197. Joshi R R, Selvam AM. Identification of self-organized criticality in atmospheric low frequency variability [J]. Fractals,1999,7(04):421-425.
    198. Jovanovic M A. Modeling large-scale peer-to-peer networks and a case study of Gnutella[D]. University of Cincinnati,2001.
    199. Kamga F M. hnpact 01'greenhouse gas induced clilnate change 011 the runofl 'Of the Upper Benue River (Cameroon)[J]. Journal of Hydrology,2001,252: 145-156.
    200. Kantz, H,Schreiber T. Nonlinear time series analysis[M]. New York:Cambridge University Press,1997.
    201. Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al. Detecting long-range correlations with detrended fluctuation analysis[J]. Physica A,2001,295(3):441-454.
    202. Kantelhardt J W, Rybski D, Zschiegner S A, et al. Multifractality of river runoff and precipitation:comparison of fluctuation analysis and wavelet methods [J]. Physica A,2003,330(1):240-245.
    203. Kantelhardt J W, Koscielny-Bunde E, Rybski D, et al. Long-term persistence and multifractality of precipitation and river runoff records[J]. Journal of Geophysical Research,2006,111(D1):D01106.
    204. Karl T R, Knight R W. Secular trends of precipitation amount, frequency, and intensity in the United States[J]. Bulletin of the American Meteorological Society, 1998,79(2):231-241.
    205. Karl T R, Riebsame W E. The impact of decadal fluctuations in mean precipitation and temperature on runoff:a sensitivity study over the United States[J]. Climatic Change,1989,15(3):423-447.
    206. Kantelhardt J W. Multifractal detrended fluctuation analysis of nonstationary time series[D] Justus-Liebig-Universit at of Germany,2002.
    207. Kantz H, Schreiber T. Nonlinear time series analysis[M]. New York:Cambridge University Press,2004.
    208. Kao S K. Wavenumber-frequency spectra of temperature in the free atmosphere [J]. Journal of the Atmospheric Sciences,1970,27(7):1000-1007.
    209. Kenkel N C, Walker D J. Fractals in the biological sciences[J]. Coenoses,1996, 11:77-100.
    210. Kavasseri R G, Nagarajan R. A multifractal description of wind speed records[J]. Chaos, Solitons & Fractals,2005,24(1):165-173.
    211. Kawamura A, McKerchar A I, Spigel R H, et al. Chaotic characteristics of the Southern Oscillation Index time series[J]. Journal of Hydrology,1998,204(1): 168-181.
    212. Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A,1992,45(6):3403-3411.
    213. Kiely G. Climate change in Ireland from precipitation and streamflow observations[J]. Advances in Water Resources,1999a,23(2):141-151.
    214. Kiely G, Ivanova K. Multifractal analysis of hourly precipitation[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,1999b,24(7): 781-786.
    215. Kijko A, Sellevoll M A. Triple exponential distribution, a modified model for the occurrence of large earthquakes[J]. Bulletin of the Seismological Society of America,1981,71(6):2097-2101.
    216. Kim C H, Kim S Y. Scaling exponents in foreign exchange markets[J]. Journal of the Korean Physical Society,2007,51(1):245-248.
    217. Kiraly A, Janosi I M. Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia[J]. Meteorology and Atmospheric Physics, 2005,88(3-4):119-128.
    218. Kistler R, Kalnay E, Collins W, et al. The NCEP/NCAR 50-year reanalysis: documentation and monthly-means CD-ROM[J], Bulletin of the American Meteorological Society,2001,82:247-267.
    219. Kitano H. Biological robustness[J]. Nature Reviews Genetics,2004,5(11): 826-837.
    220. Kitano H. Towards a theory of biological robustness[J]. Molecular Systems Biology,2007,3(1):137-144.
    221. Kjeldsen T R, Lundorf A, Rosbjerg D. Use of a two-component exponential distribution in partial duration modelling of hydrological droughts in Zimbabwean rivers[J]. Hydrological Sciences Journal,2000,45(2):285-298.
    222. Kjeldsen T R, Smithers J C, Schulze R E. Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method[J]. Journal of Hydrology,2002,255(1):194-211.
    223. Koscielny-Bunde E, Bunde A, Havlin S, et al. Indication of a universal persistence law governing atmospheric variability [J]. Physical Review Letters, 1998,81(3):729-732.
    224. Koscielny-Bunde E, Kantelhardt J W, Braun P, et al. Long-term persistence and multifractality of river runoff records:Detrended fluctuation studies[J]. Journal of Hydrology,2006,322(1):120-137.
    225. Koscielny-Bunde E, Bunde A, Havlin S, et al. Analysis of daily temperature fluctuations[J]. Physica A,1996,231(4):393-396.
    226. Krajewski W F. Cokriging radar-rainfall and rain gage data[J]. Journal of Geophysical Research,1987,92(D8):9571-9580.
    227. Kravchinsky V A, Langereis C G, Walker S D,et al. Discovery of Holocene millennial climate cycles in the Asian continental interior:Has the sun been governing the continental climate?[J].Global and Planetary Change,2013,110: 386-396..
    228. Ktitarev D V, Lilbeck S, Grassberger P, et al. Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model[J]. Physical Review E,2000,61(1):81.
    229. Kumar R, Chatterjee C, Kumar S, et al. Development of regional flood frequency relationships using L-moments for Middle Ganga Plains Subzone 1 (f) of India[J]. Water Resources Management,2003,17(4):243-257.
    230. Kumar V. An early warning system for agricultural drought in an arid region using limited data[J]. Journal of Arid Environments,1998,40(2):199-209.
    231. Ladoy P, Lovejoy S, Schertzer D. Extreme variability of climatological data: scaling and intermittency[M]. Non-linear variability in geophysics. Springer Netherlands,1991:241-250.
    232. Laherrere J, Sornette D. Stretched exponential distributions in nature and economy:"fat tails" with characteristic scales[J].The European Physical Journal B-Condensed Matter and Complex Systems,1998,2(4):525-539.
    233. Lall U, Sangoyomi T, Abarbanel H D I. Nonlinear dynamics of the Great Salt Lake:Nonparametric short-term forecasting[J]. Water Resources Research,1996, 32(4):975-985.
    234. Langousis A, Veneziano D, Furcolo P, Leporeb C. Multifractal rainfall extremes: Theoretical analysis and practical estimation[J]. Chaos, Solitons & Fractals,2009, 39(3):1182-1194.
    235. Lebel T, Bastin G, Obled C, et al. On the accuracy of areal rainfall estimation:a case study[J]. Water Resources Research,1987,23(11):2123-2134.
    236. Le Doussal P, Wiese K J. Avalanche dynamics of elastic interfaces [J], Physical Review E,2013,88(2):022106.
    237. Lee C K. Multifractal characteristics in air pollutant concentration time series[J]. Water, Air & Soil Pollution,2002,135(1-4):389-409.
    238. Lee C K, Juang L C, Wang C C, et al. Scaling characteristics in ozone concentration time series (OCTS)[J]. Chemosphere,2006,62(6):934-946.
    239. Lee H T, Chen W P, Zhang Z W, et al. Triggered star formation in the orion bright-rimmed clouds[J]. The Astrophysical Journal,2005,624(2):808.
    240. Lehner B, Doll P, Alcamo J, et al. Estimating the impact of global change on flood and drought risks in Europe:a continental, integrated analysis[J]. Climatic Change,2006,75(3):273-299.
    241. Lehman M, Rechester A B, White R B. Symbolic analysis of chaotic signals and turbulent fluctuations[J]. Physical Review Letters,1997,78(1):54-57.
    242. Le Mehaute A. Fractal Geometries Theory and Applications[M]. CRC Press, 1991.
    243. Lesh R. Modeling students modeling abilities:The teaching and learning of complex systems in education[J]. The Journal of the Learning Sciences,2006, 15(1):45-52.
    244. Li J, Chen Y, Mi H. 1/< i> f< sup> β temporal fluctuation:detecting scale-invariance properties of seismic activity in North China[J]. Chaos, Solitons & Fractals,2002,14(9):1487-1494.
    245. Li L A, Wang C H, Liaw S H, et al. The impact of worldwide volcanic activities on local precipitation-Taiwan as an example[J]. Journal of the Geological Society of China,1997,40:299-311.
    246. Lilley M, Lovejoy S, Desaulniers-Soucy N, et al. Multifractal large number of drops limit in rain[J]. Journal of Hydrology,2006,328(1):20-37.
    247. Lim Y H, Lye L M. Regional flood estimation for ungauged basins in Sarawak, Malaysia[J]. Hydrological Sciences Journal,2003,48(1):79-94.
    248. Lin G X, Fu Z T. A universal model to characterize different multi-fractal behaviors of daily temperature records over China[J].Physica A,2008,387(2): 573-579.
    249. Li P, Xu J H, Chen Z S, et al. Impact of climate change and human activity on the runoff in the upper reaches of the Shiyang River, Northwest China[R]. PeerJ PrePrints,2014. Doi:10.7287/peerj.preprints.187v1
    250. Liu Q, Islam S, Rodriguez-Iturbe I, et al. Phase-space analysis of daily streamflow:characterization and prediction[J]. Advances in water resources,1998, 21(6):463-475.
    251. Liu Z H, Xu J H, Chen Z S, et al. Multifractal and long memory of humidity process in the Tarim River Basin[J]. Stochastic Environmental Research and Risk Assessment,1-18. Doi:10.1007/s00477-013-0832-9
    252. Liu Z H, Xu J H, Shi K. Self-organized criticality of climate change[J]. Theoretical and Applied Climatology,2014,115(3-4):685-691.
    253. Li Y, Cai W, Campbell E P. Statistical modeling of extreme rainfall in southwest Western Australia[J]. Journal of Climate,2005,18(6):852-863.
    254. Lo A W. Long-term memory in stock market prices[J]. Econometrica,1991, 59(5):1279-1313.
    255. Lorenz E N. Dimension of weather and climate attractors[J].Nature,1991, 353(6341):241-244.
    256. Lorenz E N. The Butterfly Effect[J]. The chaos avant-garde:Memories of the early days of chaos theory,2000,39:91.
    257. Lovejoy S, Schertzer D. Non-linear variability in geophysics[M]. Ed. Daniel Schertzer. Kluwer Acad. Publ.,1991.
    258. Lubeck S. Moment analysis of the probability distributions of different sandpile models[J]. arXiv preprint cond-mat/9910374,1999.
    259. Lubeck S, Usadel K D. Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model[J]. Physical Review E,1997,55(4):4095.
    260. Lv J Q, Shen B, Mo S H. Driving forces of the water resource and the environment in Oasis region, China[C]//Electric Technology and Civil Engineering (ICETCE),2011 International Conference on. IEEE,2011: 5880-5883.
    261. Lyapunov A M. Probleme general de la stabilite du mouvement[J]. Ann. de laFacultd de Toulouse (2),1907,9:406.
    262. McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales [C]//Proceedings of the 8th Conference on Applied Climatology. Boston, MA:American Meteorological Society,1993,17(22): 179-183.
    263. Malamud B D, Turcotte D L. Self-organized criticality applied to natural hazards[J]. Natural Hazards,1999,20(2-3):93-116.
    264. Malamud B D, Turcotte D L. Self-affine time series:measures of weak and strong persistence[J]. Journal of Statistical Planning and Inference,1999,80(1): 173-196.
    265. Malamud B D, Morein G, Turcotte D L. Forest fires:an example of self-organized critical behavior [J]. Science,1998,281(5384):1840-1842.
    266. Mane R. On the dimension of the compact invariant sets of certain non-linear maps[M].Dynamical systems and turbulence, Warwick 1980. Springer Berlin Heidelberg,1981,230-242.
    267. Manna S S. Two-state model of self-organized criticality[J]. Journal of Physics A: Mathematical and General,1991,24(7):L363.
    268. Mandelbrot B B. Information theory and psycholinguistics [M]. NewYork:Basic Books Publishing Co,1965.
    269. Mandelbrot B B. Statistical methodology for Non-Period cycles:from the covariance to R/S[J].Annals of Economic and Social Measurement,1972,1:259-290.
    270. Mandelbrot B B. Fractals:Form, chance and dimension[D].San Francisco,CA: Freeman,1977.
    271. Mandelbrot B B. Random walks, fire damage amount and other Paretian risk phenomena[J]. Operations Research,1964,12(4):582-585.
    272. Mandelbrot B B. The fractal geometry of nature[M]. Macmillan,1983.
    273. Mandelbrot B B. The fractal geometry of nature. [J]. San Francisco,CA:Freeman, 1982.
    274. Mandelbrot B B, Wallis J R.Computer experiments with fractional Gaussian noises. Part 1 and Part 2[J]. Water Resources Research,1969a,5(1):228-259
    275. Mandelbrot B B, Wallis J R. Noah, Joseph and Operational Hydrology [J]. Water Resources Research,1968,4(5):909-918
    276. Mandelbrot B B, Wallis J R. Some long-run properties of geophysical records[J]. Water Resources Research,1969b,5(2):321-340.
    277. Malderbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science,1967,156(3775):636-638.
    278. Manoukian E B. Modern concepts and theorems of mathematical statistics[M]. Springer,1986.
    279. Markovic D, Koch M. Wavelet and scaling analysis of monthly precipitation extremes in Germany in the 20th century:Interannual to interdecadal oscillations and the North Atlantic Oscillation influence[J]. Water Resources Research,2005, 41(9), Abstract.
    280. Markovic D, Gros C. Power laws and self-organized criticality in theory and nature[J]. Physics Reports,2013.
    281. Maslov S, Sneppen K, Zaliznyak A. Detection of topological patterns in complex networks:correlation profile of the internet[J]. Physica A,2004,333:529-540.
    282. Matondo J I, Peter G, Msibi K M. Evaluation of the impact of climate change on hydrology and water resources in Swaziland:Part II[J]. Physics and Chemistry of the Earth, Parts A/B/C,2004,29(15):1193-1202.
    283. Matsoukas C, Islam S, Rodriguez-Iturbe I. Detrended fluctuation analysis of rainfall and streamflow time series[J] Journal of Geophysical Research,2000, 105(D23):29165-29172.
    284. Meehl G A, Covey C, Taylor K E, et al. The WCRP CMIP3 multimodel dataset: A new era in climate change research[J].Bulletin of the American Meteorological Society,2007,88(9):1383-1394.
    285. Milgram S. The small world problem[J]. Psychology today,1967,2(1):60-67.
    286. Mimikou M, Kouvopoulos Y, Cavadias G, et al. Regional hydrological effects of climate change[J]. Journal of Hydrology,1991,123(1):119-146.
    287. Mishra V, Cherkauer K A, Shukla S. Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States[J]. Journal of Hydrometeorology,2010,11(1):46-68.
    288. Mitchell Jr J M. An overview of climatic variability and its causal mechanisms [J]. Quaternary Research,1976,6(4):481-493.
    289. Nagel K, Raschke E. Self-organizing criticality in cloud formation?[J]. Physica A,1992,182(4):519-531.
    290. Najafi M N. Numerical determination of the boundary condition changing operators[J]. Physica A,2013,392(20):5179-5185.
    291. Nemec J, Schaake J. Sensitivity of water resource systems to climate variation[J]. Hydrological Sciences Journal,1982,27(3):327-343.
    292. Newman M E J. Assortative mixing in networks[J]. Physical Review Letters, 2002,89(20):208701.
    293. Newman M E J. Clustering and preferential attachment in growing networks[J]. Physical Review E,2001,64(2):025102.
    294. Newman M E J. Networks:An Introduction[D]. Oxford University Press,2010.
    295. Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications[J]. Physical Review E,2001,64(2):026118.
    296. Newman M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2):167-256.
    297. Newman M E J. The structure of scientific collaboration networks[J]. Proceedings of the National Academy of Sciences,2001,98(2):404-409.
    298. Newman M E J. The mathematics of networks[J]. The New Palgrave Encyclopedia of Economics,2008,2:1-12.
    299. Nicolis G, Prigogine I. Self-organization in nonequilibrium systems[J]. Wiley, New York,1977.
    300. Nicolis C, Nicolis G. Is there a climatic attractor?[J].Nature,1984,311:529-532.
    301. Olami Z, Feder H J S, Christensen K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes [J]. Physical Review Letters,1992,68(8):1244.
    302. Olsson J. Validity and applicability of a scale-independent, multifractal relationship for rainfall[J]. Atmospheric Research,1996,42(1):53-65.
    303. Over T M, Gupta V K. A space-time theory of mesoscale rainfall using random cascades[J]. Journal of Geophysical Research,1996,101(D21):26319-26331.
    304. Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series[J]. 1980,45(9):712-716.
    305. Palla G, Derenyi I, Farkas Ⅰ, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature,2005,435(7043): 814-818.
    306. Palmer R N. Climate impacts on municipal water supplies in new england:A comparison of two systems[J]. Bridges,2014, Doi:10:9780784412312.338.
    307. Panagoulia D, Dimou G. Sensitivity of flood events to global climate change[J]. Journal of Hydrology,1997,191(1):208-222.
    308. Pandey G, Lovejoy S, Schertzer D. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years[J]Journal of Hydrology,1998,208(1):62-81.
    309. Pargellis A N. Digital life behavior in the amoeba world[J]. Artificial Life,2001, 7(1):63-75.
    310. Parida B P, Kachroo R K, Shrestha D B. Regional flood frequency analysis of Mahi-Sabarmati Basin (Subzone 3-a) using index flood procedure with L-moments[J]. Water Resources Management,1998,12(1):1-12.
    311. Pedron IT. Correlation and multifractality in climatological time series[C]// Journal of Physics:Conference Series. IOP Publishing,2010,246(1):012034.
    312. Peitgen H O, Jiirgens H, Saupe D. Chaos and fractals:new frontiers of science[M]. Springer,2004.
    313. Peitgen H O, Jurgens H, Saupe D. Chaos and fractals:new frontiers of science[J]. Verlag, New York, NY,1992.
    314. Pelletier J D. Analysis and modeling of the natural variability of climate[J]. Journal of Climate,1997,10(6):1331-1342.
    315. Pelletier J D, Turcotte D L. Long-range persistence in climatological and hydrological time series:analysis, modeling and application to drought hazard assessment[J]. Journal of Hydrology,1997,203(1):198-208.
    316. Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E,1994,49(2):1685.
    317. Peng C K, Havlin S, Stanley H E, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J]. Chaos,1995,5(1): 82-87.
    318. Pesin Y B. Characteristic Lyapunov exponents and smooth ergodic theory[J]. Russian Mathematical Surveys,1977a,32(4):55-114.
    319. Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature,2010,467(7311):43-51.
    320. Petit J R, Jouzel J, Raynaud D, et al.Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature,1999,399(6735): 429-436.
    321. Peters O, Christopher H, Kim C. A complexity view of rainfall[J]. Physical Review Letters,2002,88(5):054302.
    322. Peters O, Christensen K. Rain viewed as relaxational events[J]. Journal of Hydrology,2006a,328(1):46-55.
    323. Peters O, Neelin J D. Critical phenomena in atmospheric precipitation[J]. Nature Physics,2006b,2(6):393-396.
    324. Pethkar J S, Selvam A M. Nonlinear dynamics and chaos:applications for prediction of weather and climate[J]. arXiv preprint physics/0104056,2001.
    325. Phillips J D. Changes, perturbations, and responses in geomorphic systems [J]. Progress in Physical Geography,2009,33(1):17-30.
    326. Pinho S T R, Andrade R F S. An Abelian model for rainfall[J]. Physica A,1998, 255(3):483-495.
    327. Plotnick R E, Sepkoski J J. A multiplicative multifractal model for originations and extinctions[J]. Paleobiology,2001,27(1):126-139.
    328. Porporato A, Ridolfi L. Nonlinear analysis of river flow time sequences[J]. Water Resources Research,1997,33(6):1353-1367.
    329. Price D S. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science,1976, 27(5):292-306.
    330. Priestley M B.Spectral analysis and time series[M]. London:Academic Press, 1981.
    331. Puente C E, Obregon N. A deterministic geometric representation of temporal rainfall:Results for a storm in Boston[J].Water Resources Research,1996,32(9): 2825-2839.
    332. Rangarajan G, Ding M. Stability of synchronized chaos in coupled dynamical systems[J]. Physics Letters A,2002,296(4):204-209.
    333. Ray A. Symbolic dynamic analysis of complex systems for anomaly detection[J]. Signal Processing,2004,84(7):1115-1130.
    334. Reconstruction and/or for Future Climate Change Study[J]. Bridges,2014, Doi:10:9780784412312.198.
    335. Redner S, Petersen M R. Role of global warming on the statistics of record-breaking temperatures [J]. Physical Review E,2006,74(6):061114.
    336. Reed W J. The Pareto law of incomes—an explanation and an extension[J]. Physica A,2003,319:469-486.
    337. Reed W J, Jorgensen M. The double Pareto-lognormal distribution—a new parametric model for size distributions[J]. Communications in Statistics-Theory and Methods,2004,33(8):1733-1753.
    338. Resnick M, Wilensky U. Diving into complexity:Developing probabilistic decentralized thinking through role-playing activities[J]. The Journal of the Learning Sciences,1998,7(2):153-172.
    339. Revelle R R, Waggoner P E. Effects of a Carbon Dioxide-Induced Climatic Change on Water Supplies in 7 the Western United States[J]. Month,1983, 419-432.
    340. Rial J A. Abrupt climate change:Chaos and order at orbital and millennial scales[J]. Global and Planetary Change,2004,41(2):95-109.
    341. Robeson S M. Spatial Interpolation, Network Bias, and Terrestrial Air Temperature Variability [J].Publications in Climatology, C.W. Thornthwaite Associates Laboratory of Climatology,1993,51-52.
    342. Roden G I. A modern statistical analysis and documentation of historical temperature records in California, Oregon and Washington,1821-1964[J]. Journal of Applied Meteorology,1966,5(1):3-24.
    343. Rodriguez-Iturbe I, Febres de Power B, Sharifi M B, et al. Chaos in rainfall [J]. Water Resources Research,1989,25(7):1667-1675.
    344. Rodriguez-Iturbe Ⅰ, D'Odorico P, Rinaldo A. Possible self-organizing dynamics for land-atmosphere interaction[J]. Journal of Geophysical Research,1998, 103(D18):23071-23077.
    345. Rodriguez-Iturbe I. Exploring complexity in the structure of rainfall[J]. Advances in water resources,1991,14(4):162-167.
    346. Rodriguez-Iturbe, A. Rinaldo. Fractal river basins-Change and self-organization [M].New York:Cambridge University Press,1997:99-190.
    347. Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature,2003,421(6918):57-60.
    348. Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D,1993,65(1): 117-134.
    349. Rosenstein M T, Collins J J, De Luca C J. Reconstruction expansion as a geometry-based framework for choosing proper delay times [J]. Physica D,1994, 73(1):82-98.
    350. Prigogine I, Stengers I. Order out of Chaos[M]. New York:Bantam,1984.
    351. Rybczynski M, Wodarczyk Z, Wilk G. Self-organized criticality in atmospheric cascades[J]. Nuclear Physics B-Proceedings Supplements,2001,97(1):81-84.
    352. Rybski D, Bunde A, Havlin S, et al. Detrended fluctuation studies of long-term persistence and multifractality of precipitation and river runoff records[M]//In Extremis. Springer Berlin Heidelberg,2011:216-248.
    353. Salas J D, Kim H S, Eykholt R, et al. Aggregation and sampling in deterministic chaos:implications for chaos identification in hydrological processes[J]. Nonlinear Processes in Geophysics,2005,12(4):557-567.
    354. Sangoyomi T B, Lall U, Abarbanel H D I. Nonlinear dynamics of the Great Salt Lake:dimension estimation[J]. Water resources research,1996,32(1):149-159.
    355. Saroiu S, Gummadi P K, Gribble S D. Measurement study of peer-to-peer file sharing systems[C]//Electronic Imaging 2002. International Society for Optics and Photonics,2001:156-170.
    356. Sato S, Sano M, Sawada Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems[J]. Progress of Theoretical Physics,1987,77(1):1-5.
    357. Scanlon T M, Caylor K K, Levin S A, et al. Positive feedbacks promote power-law clustering of Kalahari vegetation[J]. Nature,2007,449(7159):209-212.
    358. Schaake J C, Koren V I, Duan Q Y, et al. Simple water balance model for estimating runoff at different spatial and temporal scales[J]. Journal of Geophysical Research,1996,101(D3):7461-7475.
    359. Seshadri M, Machiraju S, Sridharan A, et al. Mobile call graphs:beyond power-law and lognormal distributions[C].In KDD'08:Proceeding of the 14th ACM SIGKDD. international conference on Knowledge discovery and data mining. ACM,2008,596-604.
    360. Setegn S G, Melesse A M, Rayner D, et al. Climate Change Impact on Water Resources and Adaptation Strategies in the Blue Nile River Basin[M].Nile River Basin. Springer International Publishing,2014:389-404.
    361. Shang M S, Lu L, Zhang Y C, et al. Empirical analysis of web-based user-object bipartite networks[J]. EPL (Europhysics Letters),2010,90(4):48006.
    362. Sharifi M B, Georgakakos K P, Rodriguez-Iturbe Ⅰ. Evidence of deterministic chaos in the pulse of storm rainfall [J]. Journal of the Atmospheric Sciences,1990, 47(7):888-893.
    363. She Z S, Leveque E. Universal scaling laws in fully developed turbulence [J]. Physical Review Letters,1994,72(3):336-339.
    364. Shiau J T. Fitting drought duration and severity with two-dimensional copulas [J]. Water Resources Management,2006,20(5):795-815.
    365. Shiau J T. Return period of bivariate distributed extreme hydrological events [J]. Stochastic Environmental Research and Risk Assessment,2003,17(1-2):42-57.
    366. Shiau J T, Shen H W. Recurrence analysis of hydrologic droughts of differing severity[J]. Journal of Water Resources Planning and Management,2001,127(1): 30-40.
    367. Shimizu Y U, Thurner S, Ehrenberger K. Multifractal spectra as a measure of complexity in human posture[J]. Fractals,2002,10(01):103-116.
    368. Shlesinger M F. Fractal time in condensed matter[J]. Annual Review of Physical Chemistry,1988,39(1):269-290.
    369. Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters,2008,35(2):L02405.
    370. Simon H A. A behavioral model of rational choice[J]. The Quarterly journal of Economics,1955,69(1):99-118.
    371. Sivakumar B. Rainfall dynamics at different temporal scales:A chaotic perspective[J]. Hydrology and Earth System Sciences,1999,5(4):645-652.
    372. Sole R V, Manrubia S C. Are rainforests self-organized in a critical state?[J]. Journal of Theoretical Biology,1995,173(1):31-40.
    373. Song W G, Wang J, Satoh K, et al. Three types of power-law distribution of forest fires in Japan[J]. Ecological Modelling,2006,196(3):527-532.
    374. Stam C J. Nonlinear dynamical analysis of EEG and MEG:review of an emerging field[J]. Clinical Neurophysiology,2005,116(10):2266-2301.
    375. Stephens D J. Objective criteria for estimating the severity of drought in the wheat cropping areas of Australia[J]. Agricultural Systems,1998,57(3):333-350.
    376. Stine R A. Analysis of observed chaotic data[J]. Technometrics,1997,39(3): 334-335.
    377. Sterelny K, Griffiths P E. Sex and death:An introduction to philosophy of biology[M]. University of Chicago Press,1999.
    378. Stockton C W, Boggess W R. Geohydrological implications of climate change on water resource development[R]. STOCKTON (CW) AND ASSOCIATES INC TUCSON AZ,1979.
    379. Strogatz S H. Exploring complex networks[J]. Nature,2001,410(6825):268-276.
    380. Stuart A. Kauffman. The origins of order:Self-organization and selection in evolution[M]. Oxford University Press,1993,1-734.
    381. Stutzbach D, Rejaie R. Capturing accurate snapshots of the Gnutella network[C].INFOCOM 2005.24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE. IEEE,2005a,4: 2825-2830.
    382. Stutzbach D, Rejaie R. Characterizing the two-tier gnutella topology[C].ACM SIGMETRICS Performance Evaluation Review. ACM,2005b,33(1):402-403.
    383. Stutzbach D, Rejaie R. Characterizing today's Gnutella topology[R]. Technical Report CIS-TR-04-02, Department of Computer Science, University of Oregon, 2004.
    384. Sun D Y, Huang Q, Wang Y M. The study of river runoff long memory based on the rescaled variance statistic[C].Water Resource and Environmental Protection (ISWREP),2011 International Symposium on. IEEE,2011,1:509-511.
    385. Sun X, Chen H P, Wu Z Q, Yuan Y Z. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A,2001,291(1):553-562.
    386. Su Z, Yacob A, Wen J, et al. Assessing relative soil moisture with remote sensing data:theory, experimental validation, and application to drought monitoring over the North China Plain[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(1):89-101.
    387. Svensson C, Olsson J, Berndtsson R. Multifractal properties of daily rainfall in two different climates[J]. Water Resources Research,1996,32(8):2463-2472.
    388. Tabios G Q, Salas J D. A comparative analysis of techniques for spatial interpolation of precipitation1[J]. Journal of the American Water Resources Association,1985,21(3):365-380.
    389. Takens F. Detecting strange attractors in turbulence[M]. Dynamical systems and turbulence, Warwick 1980. Springer Berlin Heidelberg,1981:366-381.
    390. Talkner P, Weber R O. Power spectrum and detrended fluctuation analysis: Application to daily temperatures[J]. Physical Review E,2000,62(1):150-160..
    391. Tapsoba D, Hache M, Perreault L, et al. Bayesian rainfall variability analysis in west Africa along cross sections in space-time grid boxes[J]. Journal of climate, 2004,17(5):1069-1082.
    392. Tebaldi C, De Menech M, Stella A L. Multifractal scaling in the Bak-Tang-Wiesenfeld Sandpile and edge events[J]. Physical Review Letters,1999,83(19): 3952.
    393. Telesca L, Lapenna V, Macchiato M. Mono-and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences[J]. Chaos, Solitons & Fractals,2004,19(1):1-15.
    394. Telesca L, Macchiato M. Time-scaling properties of the Umbria-Marche 1997-1998 seismic crisis, investigated by the detrended fluctuation analysis of interevent time series[J]. Chaos, Solitons & Fractals,2004,19(2):377-385.
    395. Tian Y, Xu Y, Booij M J, et al. Trends in precipitation extremes and long-term memory of runoff records in Zhejiang, east China[J].IAHS-AISH Publication, 2011,344:227-232.
    396. Tong H. Non-linear time series:A dynamical system approach[M].Clarendon Press,1990.
    397. Trees B R, Saranathan V, Stroud D. Synchronization in disordered Josephson junction arrays:Small-world connections and the Kuramoto model[J]. Physical Review E,2005,71(1):016215.
    398. Trefry C M, Watkins Jr D W, Johnson D. Regional rainfall frequency analysis for the state of Michigan[J]. Journal of Hydrologic Engineering,2005,10(6):437-449.
    399. Trygestad J A. Chaos in the classroom:An application of chaos theory [M]. ERIC Document Reproduction Service,1997.
    400. Tsonis A A, Roebber P J, Elsner J B. Long-Range Correlations in the Extratropical Atmospheric Circulation:Origins and Implications[J]. Journal of Climate,1999,12(5):1534-1541.
    401. Tsonis A A. Widespread increases in low-frequency variability of precipitation over the past century[J]. Nature,1996,382,700-702.
    402. Tsonis A A, Swanson K, Kravtsov S. A new dynamical mechanism for major climate shifts[J]. Geophysical Research Letters,2007,34(13):L13705.
    403. Tsonis A A, Swanson K L, Roebber P J. What do networks have to do with climate?[J]. Bulletin of the American Meteorological Society,2006,87(5):585-594.
    404. Tsonis A A, Swanson K L. Topology and predictability of El Nino and La Nina networks[J]. Physical Review Letters,2008,100(22):228502.
    405. Turcotte D L. Fractals and chaos in the geology and geophysics[M].New York: Cambridge University Press,1997,158-162.
    406. Turcotte D L, Malamud B D. Landslides, forest fires, and earthquakes:examples of self-organized critical behavior[J]. Physica A,2004,340(4):580-589.
    407. Turcotte D L, Malamud B D, Guzzetti F, et al. Self-organization, the cascade model, and natural hazards[J]. Proceedings of the National Academy of Sciences, 2002,99(suppl 1):2530-2537.
    408. Turcotte D L. Self-organized criticality:Does it have anything to do with criticality and is it useful?[J]. Nonlinear Processes in Geophysics,2001,8(4/5): 193-196.
    409. Unganai L S, Kogan F N. Drought monitoring and corn yield estimation in Southern Africa from AVHRR data[J]. Remote Sensing of Environment,1998, 63(3):219-232.
    410. Van Bath B S, Fabiao L C. Historia agraria da Europa ocidental 500-1850[M]. 1974.
    411. Van De Wiel M J, Coulthard T J. Self-organized criticality in river basins: Challenging sedimentary records of environmental change[J].Geology,2010,38 (1):87-90.
    412. Vassoler R T, Zebende G F. DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity[J]. Physica A,2012,391(7): 2438-2443.
    413. Vazquez A. Growing network with local rules:Preferential attachment, clustering hierarchy, and degree correlations [J].Physical Review E,2003,67(5): 056104.
    414. Veneziano D, Furcolo P, Iacobellis V. Imperfect scaling of time and space-time rainfall[J]. Journal of Hydrology,2006,322(1):105-119.
    415. Voss R. Self-affinity in noise, music, mountains and clouds[J]. In:Feder, J., Aharony, A. (Eds.), Fractals in Physics, North-Holland, Amsterdam,1990.
    416. Waggoner P E. Climate change and US water resources[M]. John Wiley and Sons Inc.,1990.
    417. Waldrop M M. Complexity:The emerging science and the edge of order and chaos[M]. Simon & Schuster,1992.
    418. Wang J, Yang H. Complex network-based analysis of air temperature data in China[J]. Modern Physics Letters B,2009,23(14):1781-1789.
    419. Wang P, Yamanaka T, Qiu G Y. Causes of decreased reference evapotranspiration and pan evaporation in the Jinghe River catchment, northern China[J]. The Environmentalist,2012,32(1):1-10.
    420. Wang W X, Wang B H, Hu B, et al. General dynamics of topology and traffic on weighted technological networks[J]. Physical Review Letters,2005,94(18): 188702.
    421. Wang X F, Chen G. Complex networks:small-world, scale-free and beyond[J]. Circuits and Systems Magazine, IEEE,2003,3(1):6-20.
    422. Wang Y L, Zhou T, Shi J J, et al. Empirical analysis of dependence between stations in Chinese railway network[J]. Physica A:Statistical Mechanics and its Applications,2009,388(14):2949-2955.
    423. Wang Z L, Huang C Y. Self-organized criticality of rainfall in central China[J]. Advances in Meteorology,2012, Volume 2012, Article ID 203682,8 pages.
    424. Warfield J N. Science of generic design:managing complexity through systems design[M]. Iowa State Press,1994.
    425. Watts D J, Strogatz S H. Collective dynamics of'small-world'networks[J]. Nature,1998,393(6684):440-442.
    426. Wegehenkel M, Kersebaum K C. An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in Northeast Germany [J]. Journal of Plant Nutrition and Soil Science,2009,172(6):737-744.
    427. Wesnousky S G. The Gutenberg-Richter or characteristic earthquake distribution, which is it?[J]. Bulletin of the Seismological Society of America,1994,84(6): 1940-1959.
    428. Wilby R L, Harris I. A framework for assessing uncertainties in climate change impacts:Low-flow scenarios for the River Thames, UK[J]. Water Resources Research,2006,42(2):W02419.
    429. Wilbur M P, Roberts-Wilbur J, Torres Rivera E, et al. Future directions:Chaos theory and nonlinear counseling[J]. Journal for the Professional Counselor,1995, 10:73-90.
    430. Wilcox B P, Seyfried M S, Matison T H. Searching for chaotic dynamics in snowmelt runoff[J]. Water Resources Research,1991,27(6):1005-1010.
    431. Wilding L P, Drees L R. Spatial variability and pedology[J]. Pedogenesis and soil taxonomy/edited by LP Wilding, NE Smeck, and GF Hall,1983,83-117.
    432. Wilhite DA. Drought:a global assessment V.1[M]. Routledge, London,2000.
    433. Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D:Nonlinear Phenomena,1985,16(3):285-317.
    434. Wolfram S. A new kind of science[M]. Champaign:Wolfram media,2002, 465-469.
    435. Xu J H, Xu Y W, Song C N. An integrative approach to understand the climatic-hydrological process:a case study of Yarkand River, Northwest China[J]. Advances in Meteorology,2013, Volume 2013, Article ID 272715,9 pages.
    436. Xie C, Pan Y. Analysis of Large-Scale Hybrid Peer-to-Peer Network Topology[C] GLOBECOM,2006.
    437. Xu J H, Chen Y N, Li W H, et al. Long-term trend and fractal of annual runoff process in mainstream of Tarim River [J]. Chinese Geographical Science,2008a, 18(1):77-84.
    438. Xu J H, Chen Y N, Ji M H, et al. Climate change and its effects on runoff of Kaidu River, Xinjiang, China:A multiple time-scale analysis[J]. Chinese Geographical Science,2008b,18(4):331-339.
    439. Xu J H, Chen Y N, Li W H, et al. Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959-2006[J]. Chinese Geographical Science,2009a,19(4):306-313.
    440. Xu J H, Li W H, Ji M H, et al. A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, Western ChinafJ]. Hydrological Processes,2010,24(2):136-146.
    441. Xu J H, Chen Y N, Lu F, et al. The nonlinear trend of runoff and its response to climate change in the Aksu River, western China[J]. International Journal of Climatology,2011a,31(5):687-695.
    442. Xu JH, Chen Y N, Li W H, et al. The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River[J]. Journal of Geographical Sciences,2009b,19(1):25-35.
    443. Xu J H, Chen Y N, Li W H, et al. An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors[J]. Stochastic Environmental Research and Risk Assessment,2011b,25(2): 223-233.
    444. Xu Z X, Chen Y N, Li J Y. Impact of climate change on water resources in the Tarim River basin[J]. Water Resources Management,2004,18(5):439-458.
    445. Yamasaki K, Gozolchiani A, Havlin S. Climate networks around the globe are significantly affected by El Nino[J]. Physical Review Letters,2008,100(22): 228501.
    446. Yang Y, Xu J H, Hong Y L, et al. The dynamic of vegetation coverage and its response to climate factors in Inner Mongolia, China[J]. Stochastic Environmental Research and Risk Assessment,2012,26(3):357-373.
    447. Yano J I, Liu C, Moncrieff M W. Self-Organized criticality and homeostasis in atmospheric convective organization[J]. Journal of the Atmospheric Sciences, 2012,69(12).
    448. Yitayew M, Melesse A M. Critical Water Resources Issues in the Nile River Basin[M]. Nile River Basin. Springer Netherlands,2011:401-416.
    449. Yu B, Huang C M, Liu Z H, et al. A chaotic analysis on air pollution index change over past 10 years in Lanzhou, northwest China[J]. Stochastic Environmental Research and Risk Assessment,2011,25(5):643-653.
    450. Yue W Z, Xu J H, Liao H J, et al. Applications of spatial interpolation for climate variables based on geostatistics:a case study in Gansu Province, China[J]. Geographic Information Sciences,2003,9(1-2):71-77.
    451. Yu P S, Yang T C, Wu C K. Impact of climate change on water resources in southern Taiwan[J]. Journal of Hydrology,2002,260(1):161-175.
    452. Zebende G F. DCCA cross-correlation coefficient:quantifying level of cross-correlation[J]. Physica A,2011,390(4):614-618.
    453. Zhang B, Shi K, Liu C Q, et al. Scaling behavior of magnitude clusters in aftershock sequence:An example of the Wenchuan Earthquake, China[J]. Science China Earth Sciences,2012,55(3):507-512.
    454. Zhang J G, Hall M J. Regional flood frequency analysis for the Gan-Ming River basin in China[J]. Journal of Hydrology,2004,296(1):98-117.
    455. Zhang P P, Chen K, He Y, et al. Model and empirical study on some collaboration networks[J]. Physica A,2006,360(2):599-616.
    456. Zhang Q, Zhang J Q, Yan D H, et al. Extreme precipitation events identified using detrended fluctuation analysis (DFA) in Anhui, China[J]. Theoretical and Applied Climatology,2013:1-6. Doi:10.1007/s00704-013-0986-x
    457. Zhang S. Universality and self-similarity of an energy-constrained sandpile model with random neighbors[J]. Physical Review E,1999,60(1):259.
    458. Zhang X, Lindstrom G. Development of an automatic calibration scheme for the HBV hydrological model[J].Hydrological Processes,1997,11(12):1671-1682.
    459. Zhao B F, Xu J H, Chen Z S, et al. Air temperature change in the southern Tarim River Basin, China,1964-2011[J]. The Scientific World Journal,2013. Doi:10.1155/2013/894851
    460. Zheng J F, Gao Z Y, Zhao X M. Clustering and congestion effects on cascading failures of scale-free networks[J]. Europhysics Letters,2007,79(5):58002.
    461. Zhou T, Yan G, Wang B H. Maximal planar networks with large clustering coefficient and power-law degree distribution[J]. Physical Review E,2005,71(4): 046141.
    462. Zhou W X. Multifractal detrended cross-correlation analysis for two nonstationary signals[D]. East China University of Science and Technology of China,2008.
    463. Zquiza E P. Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography[J]. International Journal of Climatology,1998,18:1031-1047.
    464.方锦清,毕桥,李永,等.复杂动态网络的一种和谐统一的混合择优模型及其普适特性[J].中国科学G辑,2007,37(2):230-249.
    465.常福宣,丁晶.年最大洪峰区域变化的标度性[J].四川大学学报,2001,33(1):5-8.
    466.常福宣,丁晶,姚健.降雨随历时变化标度性质的探讨[J].长江流域资源与环境,2002,11(1):79-83.
    467.陈创买.广东灾害性气候的分析和预测研究[M].广州:中山大学出版社,1999,3-61.
    468.陈慧娴,陈创买,林爱兰.广东春季水资源的时空分布特征和预测研究[J].热带气象学报,2007,23(6):601-610.
    469.陈建珍.复杂网络系统:小世界网络的信息导航和圈量子引力自旋网络模型的自组织临界性[D].北京师范大学,2007.
    470.陈树群,黄美君.水文混沌现象之研究[J].中华水土保持学报,1995,26(1):31-42.
    471.陈冬花,邹陈,王苏颖,等.基于DEM的伊犁河谷气温空间插值研究[J].光谱学与光谱分析,2011,31(7):1925-1929.
    472.陈宪宗,曾宏伟,林锦源,等.气候变迁情境下曾文水库集水区水文干旱特性推估[J].农业工程学报,2011,57(3):44-60.
    473.陈亚宁,徐宗学.全球气候变化对新疆塔里木河流域水资源的可能性影响[J].中国科学:D辑,2004,34(11):1047-1053.
    474.陈亚宁,杨青,罗毅.西北干旱区水资源问题研究思考[J].干旱区地理,2012,35(1):1-9.
    475.陈贻圣.沙堆模型之动态蒙地卡罗重整群研究[D].国立中正大学,2005.
    476.陈颙,陈凌.分形几何学[M].北京:地震出版社,1998.
    477.丑纪范.大气动力学的新进展[M].兰州:兰州大学出版社,1990,214.
    478.丛振涛,倪广恒,杨大文,等.“蒸发悖论”在中国的规律分析[J].水科学进展,2008,19(2):147-152.
    479.范冬萍,颜泽贤.复杂系统的下向因果关系[J].哲学研究,2011,11:100-104.
    480.范冬萍,张华夏.突现理论:历史与前沿[J].自然辩证法研究,2005,21(6):5-10.
    481.Falconer K J著,曾文曲,刘世耀,戴连贵等译.分形几何-数学基础及其应用[M].沈阳:东北大学出版社,1991.
    482.范文涛,贾武,丁义明.建立系统科学基础理论框架的一种可能途径与若干具体思路(之十)-复杂网络上的自组织临界性模型[J].系统工程理论与实践,2006,26(1):1-8.
    483.封国林,董文杰,龚志强,等.观测数据非线性时空分布理论和方法[M].北京:气象出版社,2006,110-130.
    484.封国林,王启光,侯威等.气象领域极端事件的长程相关性[J].物理学报,58(4):2583-2661.
    485.冯国章,李佩成.论水文系统混沌特征的研究方向[J].西北农业大学学报,1997,25(4):97-101.
    486.冯新灵,冯自立,罗隆诚,等.青藏高原冷暖气候变化趋势的R/S分析及Hurst指数试验研究[J].干旱区地理,2008,31(2):175-181.
    487.冯新灵,罗隆诚,邱丽,等.青藏高原至中国东部年雨日变化趋势的分形研究[J].地理研究,2007,26(4):835-843.
    488.傅国斌,刘昌明.全球变暖对区域水资源影响的计算分析[J].地理学报,1991, 46(3):277-288.
    489.傅丽听.近50年塔里木河源流区气候变化及其对径流量的影响[D].新疆农业大学,2008.
    490.付新峰,杨胜天,刘昌明.雅鲁藏布江流域NDVI变化与主要气候因子的关系[J].地理研究,2007,26(1):60-66.
    491.丁晶,傅军.洪水相空间预测[J].成都科技大学学报,1995(4):7-11.
    492.丁晶,王文圣,金菊良.论水文学中的尺度分析[J].四川大学学报(工程科学版),2003,35(3):9-13.
    493.丁晶,王文圣.水文相似和尺度分析[J].水电能源科学,2004,22(1):1-4.
    494.丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究[J].水利学报,2004,12(12):1-7.
    495.邓铭江.中国塔里木河治水理论与实践[M].北京:科学出版社,2009.
    496.丁一汇.中国西部环境变化的预测[M].北京:科学出版社,2002,54-59.
    497.佟春生,黄强,刘涵.基于复杂性理论的径流时间序列动力学特征分析[J].系统工程理论与实践,2004,24(9):102-107.
    498.董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社,1991.
    499.董山,徐建华,陈亚宁,等.塔里木盆地年平均气温的分形特征研究[J].干旱区地理,2009,32(1):17-22.
    500.董山.塔里木河流域气候的非线性分析[D].华东师范大学,2008.
    501.杜荣鸿.应用MODIS影像估算潜势蒸发散量之研究[D].成功大学,2005.
    502.高惠璇.SAS/ETS软件使用手册[M].北京:中国统计出版社,1998,450-460.
    503.高国栋,陆渝蓉,李怀瑾.我国最大可能蒸发量的计算和分布[J].地理学报,1978,33(2):102-107.
    504.高国栋,陆渝蓉,李怀瑾.我国陆面蒸发量和蒸发耗热量的研究[J].气象学报,1980,38(2):165-176.
    505.高建明,孙兆刚.论复杂性,非线性及其相互关系[J].系统辩证学学报,2002,10(4):34-37.
    506.高力浩,付遵涛.中国地区相对湿度与温度多分形特征对比分析[J].北京大学学报(自然科学版),2012,48(3):399-404.
    507.高力浩.中国地区相对湿度变化的多分形特征及与温度的对比分析[D].北京大学,2011.
    508.高振会,杨建强,费立淑.分形分析方法在海冰趋势预测中的应用[J].海洋通报,2003,22(4):66-69.
    509.龚志强,封国林.基于非线性分析方法的多种代用资料的相似性研究[J].物理学报,2007,56(6):3619-3629.
    510.龚志强,周磊,支蓉,等.1-30d尺度温度关联网动力学统计性质的研究[J].物理学报,2008,57(11):5351-5360.
    511.封国林,龚志强,等.气候变化检测技术研究进展[J].气象学报,2009,66(6):892-904.
    512.龚志强,支蓉,侯威,等.基于复杂网络的北半球遥相关年代际变化特征研究[J].物理学报,2012,61(2):029202.
    513.关丽娟.中国外汇市场相对效率分形分析[D].青岛大学,2005.
    514.郭广猛.黄土高原西缘三万年以来古气候学研究[D].中国地质大学(武汉),2001.
    515.郭军,任国玉.黄淮海流域蒸发量的变化及其原因分析[J].水科学进展,2005,16(5):666-672.
    516.谷湘潜,康红文,江剑民.用复数自回归模式预报月平均气温[J].应用气象学报,2007,18(4):435-441
    517.郭煌炳.利用混沌系统之重建相空间预测降雨量[M].义守大学,1995.
    518.韩晓,王乃昂,李卓仑.近50年兰州市城市化过程的气候环境效应[J].干旱区资源与环境,2012,26(9):22-25.
    519.韩敏.混沌时间系列预测理论与方法[M].北京:中国水利水电出版社,2007,5.
    520.韩曦英.长记忆模型参数的估计[D].东北师范大学,2007.
    521.郝祖龙,郝雷,常太华等.电站锅炉炉膛压力信号的复杂性测度分析[J].现代电力,2007,24(1):55-57.
    522.何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[D].高等教育出版社,2009.
    523.贺可强,孙林娜,王思敬.滑坡位移分形参数Hurst指数及其在堆积层滑坡预报中的应用[J].岩石力学与工程学报,2009,28(6):1107-1115.
    524.何洁琳,万齐林,管兆勇,等.亚洲一西太平洋夏半年季节内振荡:热带气旋活动强、弱年的对比[J].热带气象学报2011,27(1):22-30.
    525.何丽华.全面质量管理在企业组织运作之探讨-以系统科学理论[D].私立中原大学,2003.
    526.何强勇.流化床压力信号的混沌特性分析及流型识别方法[D].东北电力大学,2010.
    527.和宛琳,徐宗学.渭河流域气温与蒸发量时空分布及其变化趋势分析[J].北京师范大学学报:自然科学版,2006,42(1):102-106.
    528.郝兴明,李聪,李卫红,等.北疆西部近50a来气候,水文变化趋势及其与北大西洋/北极涛动的关系[J].中国沙漠,2011,31(1):191-198.
    529.何旭强,张勃,等.气候变化和人类活动对黑河上中游径流量变化的贡献率[J].生态学杂志,2012,31(11):2884-2890.
    530.侯钦磊,白红英,任园园,等.50年来渭河干流径流变化及其驱动力分析[J].资源科学,2011,33(8):1505-1512.
    531.侯威.极端事件检测、评价方法及中国近40年极端温度和降水事件时空变化研究[D].兰州大学,2009.
    532.胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-895.
    533.胡顺军,王举林,宋郁东,等.塔里木盆地水面蒸发量的实验研究[J].干旱区资源与环境,2003,17(6):95-98.
    534.胡顺军,郭谨,王举林,等.应用常规气象观测资料估算塔里木盆地水面蒸发量[J].干旱区地理,2004a,27(2):212-215.
    535.胡顺军,康绍忠,宋郁东,等.塔里木盆地潜水蒸发规律与计算方法研究[J].农业工程学报,2004b,20(2):49-53.
    536.胡顺军,田长彦,宋郁东,等.塔里木河流域水面蒸发折算系数分析[J].中国沙漠,2005,25(5):649-651.
    537.胡雪琴.企业问题复杂度之探讨及量化研究--以DEMATEL为分析工具[D].中原大学,2003.
    538.胡永宁,张国盛,秦艳,等.内蒙古地区气象要素空间内插方法比较[J].内蒙古农业大学学报:自然科学版,2011,32(3):107-113.
    539.黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2004,193-198.
    540.黄国如,芮孝芳.流域降雨径流时间序列的混沌识别及其预测研究进展[J].水科学进展,2004,15(2):255-260.
    541.黄美君.水文混沌现象之研究[D].国立中兴大学,1993.
    542.黄惠君.积云参数化对台湾地区降雨模拟的影响[J].国立中央大学,2001.
    543.黄荣辉,韦志刚,李锁锁,等.黄河上游和源区气候,水文的年代际变化及其对华北水资源的影响[J].气候与环境研究,2006,11(3):245-258.
    544.黄建国.使用沙堆晶格模型仿真地震活动之研究[D].国立中正大学,1999.
    545.黄润生,黄浩.混沌及其应用[M].武汉:武汉大学出版社,2005.
    546.黄饴蓉.中国股市分形结构的理论研究与实证分析[D].厦门大学,2004.
    547.黄琮逢模拟雷达与地面雨量资料整合方法之研究[D].国立台湾大学,1995.
    548.霍玉洪.基于非线性时间序列分析的气象分析[D].安徽大学,2009.
    549.霍玉洪.基于去趋势波动的温度记录分析[J].楚雄师范学院学报,2009,24(3):103-108.
    550.贾武,范文涛,丁义明.自组织临界性模型-Bak-Sneppen模型的研究进展及其展望[J].系统工程理论与实践,2006,12:1-8.
    551.江洲.基于分布特征与宏观经济因素的证券市场收益率描述与预测[D].湖南大学,2008.
    552.江田汉,邓莲堂.Hurst指数估计中存在的若干问题一以在气候变换研究中的应用为例[J].地理科学,2004,24(2):177-182.
    553.蒋艳.塔里木河流域水文过程分析与模拟[D].中国科学院地理科学与资源研究所,2006.
    554.蒋磊.中国地区温度序列的长程相关性及其年代际变化[D].北京大学,2008.
    555.金宁德,董芳,赵舒.气液两相流电导波动信号复杂性测度分析及其流型表征[J].物理学报,2007,56(2):720-729.
    556.金以文,鲁世杰.分形几何原理及其应用[M].杭州:浙江大学出版社,1998,156-170.
    557.雷强.人民币汇率与国际汇率的非线性动力学研究[D].东华大学,2007.
    558.赖世刚,高宏轩.都市复杂空间系统自我组织临界性之初探[J].建筑与城乡研究学报,2001(10):31-43.
    559.廖顺宝,李泽辉.气温数据栅格化中的几个具体问题[J].气象科技,2004,30(5):49-53.
    560.孔亚珍.海洋时间序列的谱分析方法[J].华东师范大学学报(自然科学版),1997,43(3):61-68.
    561.李崇银.气候动力学(第2版)[M].北京:气象出版社,2000,515.
    562.李海滨,林忠辉,刘苏峡.Kriging方法在区域土壤水分估值中的应用[J].地理研究,2001,20(4):446-452.
    563.李丽娟,王娟,李海滨.无定河流域降雨量空间变异性研究[J].地理研究,2002,21(4):434-440.
    564.李红军.近50年塔里木河流域干湿变化特征及其成因分析[D].南京信息工程大学,2012.
    565.李平,汪秉宏.DNA序列分析法在金融数据时间序列中的应用[J].中国科学院研究生院学报,2003,20(2):201-204.
    566.李清滕,卢孟明.适当气候平均统计模式应用于台湾地区温度预报[J].大气科学,2009,37(2):87-98.
    567.李荣峰,沈冰,张金凯.基于相空间重构的水文自记忆预测模型[J].水利学报,2006,37(5):583-587.
    568.李仕雄.沙堆演化动态特性及自组织临界现象研究[D].西南交通大学,2004.
    569.李天浩.台风观测分析与统计预报整合研究—台风观测分析与统计预报整合研究-子计划:应用雷达数据与统计气候模式建立北台湾定量降水预报模式之研究(Ⅱ)[C].行政院国家科学委员会专题研究计划成果报告,2000.
    570.李炜.演化中的标度行为和雪崩动力学[D].武汉:华中师范大学,2001.
    571.李小亚.1960-2011年我国华北地区极端降水变化研究[D].西北师范大学,2013.
    572.李新,程国栋,卢玲.青藏高原气温分布的空间插值方法比较[J].高原气象,2004,22(6):565-573.
    573.李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265.
    574.李志杰,赵跃龙,戴祖雄.基于小世界理论的自组织计算网络有效调度算法[J].计算机工程,2006,32(9):181-182.
    575.林诚谦.临界现象和重整群理论[J].物理会刊,1987,9(3):206-211.
    576.林光星.中国地区相对湿度与温度的长程相关性及其多分形现象[D].北京大学,2007.
    577.林金树,陈峰盛.空间统计之半变异数模式对推估降雨量空间分布之影响[R].中华地理信息学会年会暨学术研讨会,2002.
    578.林敏,陈天仑.基于小世界网络的一种简单神经元模型的自组织临界性[J].中国科技论文在线,2005.http://www.paper.edu.cn/releasepaper/content/200501-45
    579.林淑玲.宜兰地区台风降雨与地形、空间分布关系之探讨[D].国立中兴大学,2001.
    580.林淑真,刘长龄,游保杉.日流量时间序列值混沌动力探求.[J].台湾水利,1996,44(2):13-23.
    581.林淑真,游保杉.以混沌动力理论为基础值集水区雨量预报.[J].台湾水利,2000,12(1):159-170.
    582.林振山.长期预报的相空间理论和模式[M].北京气象出版社,1993.
    583.林宗明.管理问题因果复杂度分析模式建立之研究:以DEMATEL为方法论[D].中原大学,2005.
    584.李后强.分形与分维[M].成都:四川教育出版社,1990.
    585.凌伟峻.车流之混沌现象及交通流量之预测[M].义守大学,1995.
    586.刘春琼,史凯,衰志忠.上海市空气质量状况的分形结构分析[J].中国环境科学学会2009年学术年会论文集(第二卷),2009.
    587.刘道格,岳士刚,程慧祥.上海市近8年PM10污染指数变化的DFA分析[J].安徽农业科学,2012,39(35):21965-21967.
    588.刘东,周方录,王维过,等.三江平原农业水文系统复杂性测度方法与应用[M].中国水利水电出版社,2011.
    589.刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112.
    590.刘式达,梁福明,刘式适,等.自然科学中的混沌和分形[M].北京:北京大学出版社,2003.
    591.刘式达,刘式适.非线性动力学和复杂现象[M].北京:气象出版社,1989,249.
    592.刘文博.混沌时间序列分析与计算方法及应用研究[D].大连理工大学,2008.
    593.刘志雨,杨大文,胡健伟.基于动态临界雨量的中小河流山洪预警方法及其应用[J].北京师范大学学报:自然科学版,2010,46(3):317-321.
    594.刘宗华.混沌动力学基础及应用[M].北京:高等教育出版社,2006.
    595.刘祖涵,张斌,王莉莉,等.汶川大地震余震等待时间序列-基于混沌理论的研究[J].自然灾害学报,2011,20(5):181-187.
    596.栾兆擎,胡金明,邓伟,等.人类活动对挠力河流域径流情势的影响[J].资源科学,2007,29(2):46-51.
    597.卢孟明,陈佳正,林昀静.1951-2005年台湾极端降雨事件发生频率之变化[J].大气科学,2007,35(2):87-103.
    598.洛仑兹(刘式达,刘式适,严中伟译).混沌的本质[M].北京:气象出版社,1997.
    599.陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    600.陆振波,蔡志明,姜可宇.基于改进的CC方法的相空间重构参数选择[J].系统仿真学报,2007,19(11):2527-2529.
    601.罗旖旎.局部放电非线性动力学特征研究[D].长沙理工大学,2008.
    602.吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    603.吕小红,罗冠炜.碰撞振动系统Lyapunov指数谱的计算[J].兰州交通大学学报,2012,31(3):161-164.
    604.吕义生.基于弱信号混沌检测理论的心电信号分析[D].长春理工大学,2010.
    605.买买提,玉苏甫,刘海涛,等.和田市近40年蒸发量的变化特征[J].气象,2006,32(8):92-96.
    606.马宏伟,王乃昂,李卓仑.50年石羊河流域气候变化的R/S分析[J].兰州大学学报(自然科学版),2010,46(4):42-45.
    607.马建华,管华.系统科学及其在地理学中的应用[M].北京:科学出版社,2003,134.
    608.马景富.复杂网络理论在贵阳公共交通网络中的应用基础研究[M].贵州大学,2009.
    609.马龙,吴敬禄.新疆湖泊沉积记录的气候水文变化及其环境效应[J].干旱区研究,2009,26(6):786-792.
    610.马千里,郑启伦,彭宏,等.基于相空间重构理论与递归神经网络相结合的股票短期预测方法[J].计算机应用研究,2007,24(4):239-241.
    611.孟欣,沈恩华,陈芳,等.脑电图复杂度分析中的粗粒化问题Ⅰ.过分粗粒化 和三种复杂度的比较[J].生物物理学报,2000,16(4):707-710.
    612.苗东升.论复杂性[J].自然辩证法通讯,2000,22(6):87-92.
    613.米艳娇.和田河流域融雪径流模拟及其对未来气候变化的响应[D].北京师范大学,2009.
    614.齐冬梅,李跃清.高原季风研究主要进展及其科学意义[J].干旱气象,2007,25(4):74-79.
    615.覃世龙,杨飞,司红玉,等.谱分析方法在医院时间序列资料分析中的应用[J].中国医院统计,2006,13(3):243-245.
    616.邱新法,刘昌明,曾燕.黄河流域近40年蒸发皿蒸发量的气候变化特征[J].自然资源学报,2003,18(4):437-442.
    617.权先璋,温权.混沌预测技术在径流预报中的应用[J].华中理工大学学报,1999,27(12):41-43.
    618.奇异吸引子--数学百科知识,http://8.80008.cn/80008/316/shuxue/2008/200801011122388.html
    619.任国玉,郭军.中国水面蒸发量的变化[J].自然资源学报,2006,21(1):31-44.
    620.任学藻,杨紫陌,汪秉宏.演化网络的Mandelbrot律[J].电子科技大学学报,2011,40(2):164-167.
    621.钱学森,于景元,戴汝为.一个科学新领域—开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    622.邱红.关于无标度网络的理论探讨及其在信息分析中的运用研究[D].上海大学,2009.
    623.任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征[J].气象学报,2005,63(6):942-956.
    624.沈然.基于复杂网络的美国西部电网实证研究[D].华中科技大学,2008.
    625.史定华.网络度分布理论[D].高等教育出版社,2011.
    626.史凯.城市空气质量的分形结构与临界自组织研究—以上海市为例[D].四川大学,2008a。
    627.史凯,刘春琼,艾南山.上海市空气质量变化的多重分形分析环境污染与防治2008b,30(9):60-65。
    628.史凯,张斌,艾南山,等.元谋干热河谷近50 a降水量时间序列的DFA分析[J].山地学报,2008c,26(5):553-559.
    629.施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号,影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    630.史玲娜,董光先,鲁皓.自组织临界性的相空间重构[J].四川大学学报:自然科学版,2005,42(3):518-522.
    631.孙钦明.天山北部植被覆被变化与区域极端降水发生的关联性研究[D].石河子大学,2012.
    632.宋丽莉,吴战平,秦鹏,等.复杂山地近地层强风特性分析[J].气象学报,2009,67(3):452-460.
    633.宋学锋.复杂性科学研究现状与展望[J].复杂系统与复杂性科学,2005,2(1):10-17.
    634.宋学锋.系统复杂性的度量方法[J].系统工程理论与实践,2002,22(1):9-15.
    635.孙霞,吴自勤,黄畇.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003.
    636.孙凡.复杂网络中地震模型自组织临界行为的研究[D].华中科技大学,2006.
    637.孙恒强.雷达与地面雨量计整合估计与应用-以中正机场雷达为例[D].国立台湾大学,1998.
    638.孙然好,刘清丽,陈利顶.基于地统计学方法的降水空间插值研究[J].水文,2010,30(1):14-17.
    639.孙霞,吴自勤,黄畇.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003.
    640.苏致远,伍次寅.音乐序列之多重碎形特性分析[J].中国机械工程学会第二十一届全国学术研讨会论文集,2004.
    641.苏蓉,史凯,黄正文,等.基于自组织临界的上海PM10污染预警与风险评价[J].中国环境科学,2010(7):888-892.
    642.汤伟君,邱美虹.复杂系统,突现及其对科学教育的启示[J].科学教育,2007(301):17-25.
    643.陶辉.塔里木河流域水循环要素时空演变特征及其对气候变化的响应研究[D].中国科学院研究生院,2010.
    644.王安良,杨春信.评价奇怪吸引子分形特征的Grassberger-Procaccia算法[J].物理学报,2002,51(12):2719-2729.
    645.汪宝龙.1960-2009年新疆极端气温和降水事件的变化研究[D].西北师范大学,2013.
    646.王国亚,沈永平,秦大河.1860-2005年伊塞克湖水位波动与区域气候水文变化的关系[J].冰川冻土,2006,28(6):854-860.
    647.王国杰.水文气候过程中的幂律波动—以长江流域和西北地区为例[D].中国科学院南京地理与湖泊研究所,2007.
    648.王海燕,卢山.非线性时间序列分析及其应用[M].北京:科学出版社,2006.
    649.王海鹏,张斌,刘祖涵,等.基于混沌理论的武汉、宜昌近60年来月降水特征的对比研究[J].自然灾害学报,2012,21(6):111-117.
    650.王红瑞,宋宇,刘昌明,等.混沌理论及在水科学中的应用与存在的问题[J].水科学进展2004,15(3):400-407.
    651.王慧明.微震监测评价卸压爆破效果的方法[J].煤矿开采,2009,14(3):95-97.
    652.徐奴文.高陡岩质边坡微震监测与稳定性分析研究[D].大连理工大学博士论文,2011.
    653.王建,丁永建,刘时银,等.新疆阿克苏地区近40a气候,水文变化特征分析[J].干旱区研究,2005,22(3):336-340.
    654.王鲲菲,徐长春,阿热依·阿布代西.孔雀河流域水资源需求预测分析[J].安徽农学通报,2012,18(19):126-128.
    655.王佩,邱国玉,尹婧,等.泾河流域温度与器皿蒸发量时空特征及变化趋势[J].干旱气象,2008,26(1):17-22.
    656.王巧丽.分形理论及其在水文学中的应用[J].山西水利科技,2003,149(3):21-23.
    657.王强,么枕生.功率谱分析中几个重要问题的讨论[J].地理学报,1990,45(3):363-372.
    658.王启猛,张捷斌,付意成.变化环境下塔里木河径流变化及其影响因素分析[J].水土保持通报,2010,30(4):99-103.
    659.王顺德,王彦国,王进,等.塔里木河流域近40a来气候,水文变化及其影响[J].冰川冻土,2003,25(3):315-320.
    660.王霞.基于混沌分形理论的我国期货市场波动性研究[D].青岛大学,2006.
    661.汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006,10.
    662.汪小帆,刘亚冰.复杂网络中的社团结构算法综述[J].电子科技大学学报2009,38(5):537-543.
    663.王亚敏,张勃,戴声佩,等.河西地区1960年至2008年潜在蒸发量的时空变化分析[J].资源科学,2010,32(1):139-148.
    664.王以恩.基于去趋势波动分析法对外汇市场多重分形研究[D],铭传大学,2013.
    665.汪中和.台湾降雨的长期变化及对环境的冲击[C].自然与文化研讨会,2004,50-54.
    666.王艳君,姜彤,许崇育,等.长江流域1961-2000年蒸发量变化趋势研究[J].气候变化研究进展,2005a,1(3):99-105.
    667.王艳君,姜彤,许崇育.长江流域蒸发皿蒸发量及影响因素变化趋势[J].自然资源学报,2005b,20(6):864-870.
    668.王艳君,姜彤,许崇育.长江流域20cm蒸发皿蒸发量的时空变化[J].水科学进展,2006,17(6):830-833.
    669.王艳君,姜彤,刘波.长江流域实际蒸发量的变化趋势[J].地理学报,2010,65(9):1079-1088.
    670.王勇,云晓春,李奕飞.对等网络拓扑测量与特征分析[J].软件学报,2008,19(4):981-992.
    671.王展.基于agent的城市人口空间迁移模型—关于Zipf律形成机制的研究[D].浙江工商大学,2007.
    672.王卫红,徐鹏,田世民.分形理论在河型研究中的应用探讨[J].泥沙研究,2010(2):35-42.
    673.王红红.亚洲高纬地区不同高度温,湿度的变化比较[D].湖南师范大学,2011.
    674.王军,傅伯杰,邱扬,等.黄土高原小流域土壤养分的空间分布格局[J].地理研究,2003,22(3):373-379.
    675.王小霞.非均匀介质对Sr,U迁移的影响实验研究[D].成都理工大学,2007,38-56.
    676.万仕全,封国林,董文杰,等.气候代用资料动力学结构的区域与全球特征[J].物理学报,2005,54(11):5487-5493.
    677.温融.应对气候变化政府间合作法律问题研究[D].重庆大学,2011.
    678.伍次寅.DNA序列之多重碎形特性分析[J].行政院国家科学委员会补助专题研究计划成果报告,2002.
    679.吴敬禄,王苏民.湖泊沉积物中有机碳同位素特征及其古气候[J].海洋地质与第四纪地质,1996,16(2):103-108.
    680.韦家振.台湾气候特性下之水库操作策略研究[D].中央大学,2007.
    681.魏季瑄.数理统计基础及其应用[M].四川:四川大学出版社,1991.
    682.卫强,郑克声.应用气象卫星影像于台湾中部山区小型集水区进行雨量预报之可行性研究[J].中华水土保持学报,2007,38(2):147-157.
    683.吴金克.基于多重分形与混沌理论的金融市场研究[D].天津大学,2005
    684.吴今培.复杂性科学与现代管理[J].五邑大学学报:自然科学版,2009,23(3):1-7.
    685.吴明进,江志红.台湾地区日降水量变化的区域特征[J].大气科学,2002,30(3):259-273.
    686.吴畏.突现论的三种理论类型[J].长沙理工大学学报:社会科学版,2013,28(2):9-13.
    687.谢平,陈晓宏,王兆礼,等.东江流域实际蒸发量与蒸发皿蒸发量的对比分析[J].地理学报,2009,64(3):270-277.
    688.谢平,陈晓宏’王兆礼,等.东江流域蒸发皿蒸发量及其影响因子的变化特征分析[J].热带地理,2008,28(4):306-310.
    689.谢淑云,鲍征宇.地球化学场的连续多重分形模式[J].地球化学,2002,31(2):191-200.
    690.萧政宗,杨志杰.台湾地区之区域干旱频率分析[J].农业工程学报,2006,52(2):83-101.
    691.徐凤,朱金福,杨文东.高铁-民航复合网络的构建及网络拓扑特性分析[J].复杂系统与复杂性科学,2013,10(3):1-11.
    692.徐海量,叶茂,宋郁东.塔里木河源流区气候变化和年径流量关系初探[J].地理科学,2007,27(2):219-224。
    693.徐长春,陈亚宁,李卫红,等.塔里木河流域近50年气候变化及其水文过程响应[J].科学通报,2006,51(1):21-30.
    694.徐长春,陈亚宁,李卫红,等.45a来塔里木河流域气温,降水变化及其对积雪面积的影响[J].冰川冻土,2007,29(2):183-190.
    695.徐长春.塔里木河流域气候变化及其水文过程响应[D].中国科学院新疆生态与地理研究所,2007.
    696.薛永先,袁运生,杨永赤,等.相空间重构在引信信号检测中的应用[J].探测与控制学报,2009,31(5):29-32.
    697.徐明,史玉光,张家宝,等.新疆气温长期变化可预报性的初步研究(二)—分维、可预报期限分析[J].新疆气象,1994,17(5):11-15.
    698.徐守德,柯素琴,戴妙玲.国际股价指数的长记忆探讨[J].台湾银行季刊,2009,63(3):277-299.
    699.许志敏,臧庆春.龙川江流域年径流特性的地区综合法分析[J].人民长江,2011,42(10):73-76.
    700.徐宗学,和宛琳.黄河流域近40年蒸发皿蒸发量变化趋势分析[J].水文,2006,25(6):6-11.
    701.燕爱玲.河川径流时间序列的分形特征研究[D].西安理工大学,2007.
    702.燕爱玲,黄强,王义民.河川径流演变的非趋势波动分析[J].水力发电学报,2007,26(3):1-4.
    703.杨富程,夏自强,黄峰,等.额尔齐斯河流域降水变化特征[J].河海大学学报(自然科学版),2012,40(4):432-437.
    704.杨名杰.分形市场假说的应用研究[D].华中师范大学,2006.
    705.杨萍,侯威,封国林.基于去趋势波动分析方法确定极端事件阈值[J].物理学报,2008,57(8):5333-5342.
    706.杨楠.海河流域气候因子对径流的影响分析[D].华北电力大学(北京),2012.
    707.杨青,何清.塔里木河流域的气候变化、径流量及人类活动间的相互影响[J].应用气象学报,2003,14(3):309-321.
    708.杨姝.激光混沌的相空间重构研究[D].长春理工大学,2008,14-18.
    709.杨雪丽.气候变化对漳卫南流域水资源安全影响研究[D].济南大学,2012.
    710.杨余辉.新疆北部地区气候变化及其对地表径流的影响[D].中国科学院研究生院,2011.
    711.杨展如.分形物理学[M].上海科技教育出版社,1996.
    712.闫敏.企业系统演化复杂性与企业发展问题研究[D].吉林大学,2004,48-50.
    713.严绍瑾,彭永清,张运刚.一维气温时间序列的多重分形研究[J].热带气象学报,1996,12(3):207-211.
    714.夜海偶拾之壹佰捌拾--复杂性_漠风.http://blog.sina.com.cn/s/blog_54fc75880102ebg3.html
    715.仪垂祥,伍荣生.一个自组织气候模型[J].大气科学,1994,18(2):129-140.
    716.伊利亚·普利高津,著.确定性的终结—时间、混沌与新自然法则[M].上海:上海科技出版社,1998.
    717.殷光伟.中国股票市场预测方法的研究[D].天津大学,2003.
    718.余波,周英,刘祖涵,王海鹏.基于混沌理论的兰州市近十年空气污染指数时间序列分析[J].干旱区地理,2014,37(3):1-9.
    719.余俊,方爱丽,熊文海.国际股票市场收益的长记忆性比较研究[J].中国管理科学2008,16(4):24-29.
    720.约日古丽卡斯木.且末绿洲时空变化过程及其环境效应研究[D].新疆大学,2012.
    721.于洪强.CVaR在商业银行汇率风险评估中的应用研究[D].中国海洋大学,2008.
    722.余钟波.流域分布式水文学原理及应用[M].北京:科学出版社,2008.
    723.曾燕,邱新法,刘昌明,等.1960-2000年中国蒸发皿蒸发量的气候变化特征[J].水科学进展,2007,18(3):311-318.
    724.翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化[J].地理学报,2003,58(1):1-10.
    725.张本祥.不可计算复杂性的机理与意义[D].华南师范大学,2006.
    726.张本祥.复杂性的概念界定及复杂性的基本问题[J].系统辩证学学报,2002,10(4):21-24.
    727.张斌,史凯,刘春琼,等.元谋干热河谷近50年分季节降水变化的DFA分析[J].地理科学,2009,29(4):561-566.
    728.张春涛,应宏,向瑞银,等.基于联合熵的多变量混沌时间序列相空间重构[J].西南师范大学学报(自然科学版),2011,36(4):83-87.
    729.张科星.基于混沌时间序列理论的民航发动机性能参数预测模型研究[D].中国民航大学,2009.
    730.张济忠.分形[M].北京:清华大学出版社,2001.
    731.张佃中.非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究[J].物理学报,2007,56(6):3152-3157.
    732.张强.长江与沱江交汇河段通航水位研究[D].重庆交通大学,2010.
    733.张维迎.博弈论与信息经济学[M].上海:上海三联书店/上海人民出版社,1996.
    734.张永欣.以多变量地质统计方法进行雨量空间内插[D].国立台湾大学,2007.
    735.张小咏,刘耕年,李永化,等.高斯函数参量法及其在山区降水计算中的应用[J].地理研究,2008,27(3):594-602.
    736.张钟俊,姚勇.非线性系统学[J].信息与控制,1987,5:32-35.
    737.郑吉宏.区域蒸发散推估方法[D].成功大学,2011.
    738.赵建华,张雨.采用符号序列Shannon熵的机器信息提取方法[J].武汉理工大学学报(交通科学与工程版),2009,33(2):321-324.
    739.郑小波,罗宇翔,于飞,等.西南复杂山地农业气候要素空间插值方法比较[J].中国农业气象,2008,29(4):458-462.
    740.郑小亚.基于和谐理论的云南社会公共服务体系研究[D].昆明理工大学,2010,18.
    741.周广柱,王翠珍,刘意章,等.多重分形理论在环境科学领域的研究进展[J].矿物岩石地球化学通报,2013(1):107-113.
    742.周磊.复杂网络对中国温度变化的研究[D].扬州大学,2010.
    743.周磊,龚志强,支蓉,等.利用复杂网络研究中国温度序列的拓扑性质[J].物理学报,2008,57(11):7380-7390.
    744.周磊,龚志强,支蓉,等.基于复杂网络研究中国温度变化的区域特征[J].物理学报,2009,58(10):7351-7358。
    745.周维,张斌,刘祖涵,等.混沌理论在NH3-N污染指数时间序列分析中的应用[J].水土保持通报,2011,31(2):138-141.
    746.周云龙,何强勇.气固流化床压力脉动信号的多重分形分析[J].自动化仪表,2010,31(7):5-11.
    747.赵晶,王乃昂.近50年来兰州城市气候变化的R/S分析[J].干旱区地理,2002,5(1):90-95.
    748.赵晶,徐建华.1950~1997年我国洪涝灾害成灾面积的分形特征研究[J].自然灾害学报,2005,12(1):31-35.
    749.赵俊虎,王启光,支蓉,等.中国极端温度的群发性研究[J].气象学报,2012,70(2):302-310.
    750.赵运洪.一个新超混沌系统的控制与同步[D].重庆大学,2009.
    751.郑祚芳,张秀丽,曹鸿兴,等.用去趋势涨落分析研究北京气候的长程变化特征[J].地球物理学报,2007,50(2):420-424.
    752.支蓉,龚志强,王德英,等.基于幂律尾指数研究中国降水的时空演变特征[J].物理学报,2006,55(11):6185-6191.
    753.朱爱平.社会有源集的运行研究[D].天津大学,2003.
    754.朱抱真,金飞飞,刘征宇.大气和海洋的非线性动力学概率[M].北京:海洋出版社,1991,328.
    755.朱建林.大气酸沉降复杂性研究[D].湖南大学,2010.
    756.朱建林,曾光明,赵星,等.大气酸沉降的自组织临界性[J].大气科学,2007,31(4):708-716.
    757.朱子虎,吴华稳,翁振松,等.基于分形理论的铁路客货运量预测[J].铁道运输与经济,2011,33(7):80-84.
    758.庄晓翠,张林梅,李海花.新疆阿勒泰地区20cm蒸发皿蒸发量的变化特征[J].中国农业气象,2010(1):53-58.
    759.庄晓翠,张林梅,阿志肯,等.新疆阿勒泰地区暖季蒸发变化特征及与气象因子的关系[J].第26届中国气象学会年会气候变化分会场论文集,2009.
    760.庄新田,黄小原.证券市场的标度理论及实证研究[J].系统工程理论与实践,2003,23(3):1-8.
    761.邹勇,Jonathan D F, Jurgen K.气候网络研究新进展[J].复杂系统与复杂性科学,2011,8(001):27-38.
    762.左洪超,鲍艳,张存杰,等.蒸发皿蒸发量的物理意义、近40年变化趋势的分析和数值试验研究[J].地球物理学报,2006,49(3):680-688.
    763.左洪超,李栋梁,胡隐樵,等.近40a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系[J].科学通报,2005,50(11):1125-1130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700