蛋白质静电吸附平衡与动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于非线性吸附平衡和吸附动力学的研究在蛋白质离子交换制备色谱过程的优化和放大中的重要性和不成熟性,本论文主要开展了以下几个方面的研究工作:
    1.基于统计热力学理论,考虑了蛋白质与吸附剂间作用以及吸附相中蛋白质分子间作用,推导出描述蛋白质离子交换吸附平衡的统计热力学模型(ST模型);从溶液热力学的角度,考虑了吸附相中因蛋白质分子间作用的存在而使吸附相与蛋白质理想稀溶液的偏离,以及因蛋白质-蛋白质作用与蛋白质-反离子作用的差异产生的吸附相局部组成的非理想性,提出了蛋白质离子交换吸附平衡的非理想吸附相模型(NIAP模型)。利用单组分蛋白质BSA的离子交换吸附平衡数据考察了模型的适用性,研究了液相条件(pH、离子强度和缓冲液种类)对模型参数的影响。利用BSA和溶菌酶的双组分蛋白质离子交换吸附平衡数据考察了多组分ST模型的适用性,与Bosma和Wesselingh提出的有效面积模型(AA模型)相比,由于考虑了吸附相中蛋白质分子间的相互作用,ST模型可更好地描述双组分蛋白质的离子交换吸附平衡。
    2.在蛋白质与吸附界面间只存在静电作用的前提下,利用分子平均场理论研究了蛋白质净电荷数、离子强度、缓冲液种类、蛋白质分子大小和吸附方向对单组分蛋白质吸附平衡的影响;考察了蛋白质净电荷数、离子强度和蛋白质分子大小对双组分蛋白质吸附平衡的影响,明确指出了各影响因素的具体作用机理
    3.以化学势梯度作为扩散推动力的Maxwell-Stefan扩散通量方程(MS方程)取代以浓度梯度为扩散推动力的Fick定律,结合平行扩散模型,对BSA在阴离子吸附剂Q-Sepharose FF上的动态吸附数据进行了模拟,研究了溶液pH、盐浓度和溶液主体蛋白质初始浓度对蛋白质内扩散系数的影响。
Whereas the studies of nonlinear adsorption equilibrium and adsorption kineticsis imperfect and important in the optimization and scale-up of preparativeion-exchange chromatography process, the related studies are carried out in the thesis.The details in this work are summarized as follows.
    1. Based on statistical thermodynamic theory, a statistical thermodynamic model(ST model) describing ion-exchange adsorption equilibrium was obtained withprotein-adsorbent and protein-protein interactions considered. Another ion-exchangeadsorption equilibrium model, non-ideal adsorption phase model (NIAP model), wasalso proposed through the approach of solution thermodynamics. The NIAP modeltakes into account the discrepancy of adsorption phase with ideal dilute solution ofprotein arising from interaction between adsorbed protein molecules and localcomposition non-ideality due to the difference between protein-protein andprotein-counterion interaction. Both ST model and the NIAP model fit well with theadsorption equilibrium data of a single-component protein (bovine serum albumin,BSA). The effects of pH, ionic strength and buffer type on model parameters arediscussed. In order to test the validity of multi-component ST model, binary-component adsorption equilibrium data of bovine serum albumin and lysozyme at thecation adsorbent was used. Compared with the available area model (AA model), theST model that takes into consideration of interactions between adsorbed proteinmolecules fit better with the experimental data of binary protein ion-exchangeadsorption equilibrium.
    2. With the presupposition that only electrical interaction act between proteinmolecules and adsorption interface, molecular mean field theory was utilized toexplain the influences of protein net charge, ionic strength, buffer type, proteinmolecular size, adsorption orientation on single-component protein adsorptionequilibrium. Influences of protein net charge, ionic strength and protein molecularsize on binary protein adsorption equilibrium were also investigated. The actingmechanisms of these factors are clarified.
    3. Giving up the Fick law, we adopted the Maxwell-Stefan equation (MS equation)that uses chemical potential gradient instead of concentration gradient as diffusiondriving force to reveal the effect of protein concentration. Simulation of the dynamic
    uptake process of BSA on anion adsorbent Q-Sepharose FF was performed byemploying parallel diffusion model and MS equation. The influences of pH, ionicstrength and initial bulk protein concentration on protein diffusion coefficient werestudied.
引文
[1]孙彦,生物分离工程, 北京: 化学工业出版社, 1998.
    [2]Gupta M N, Mattiasson B. Novel technologies in downstream processing. Chemistry and industry,1994,17:673.
    [3]严希康, 生物分离技术, 上海: 华东理工大学出版社, 1996, 80-99.
    [4]Bonnerjea J, Oh S, Hoare M, et al. Protein purification: the right step at the right time. Biotechnology,1986,4:954.
    [5]秦启宗, 毛家骏, 金浩忠, 陆志仁, 化学分离法, 北京: 原子能出版社, 1984.
    [6]何炳林, 黄文强, 离子交换与吸附树脂, 上海: 上海科技教育出版社, 1995.
    [7]Linda L L. Rigid macroporous copolymers as stationary phases in high per-formance liquid chromatography. J.Chromatogr.,1991,544:201.
    [8]Chang S H, Gooding K M, Regnier F E. Use of oxiranes in the preparation of bonded phase supports. J.Chromatogr.,1976,120:321.
    [9] Horváth J, Boschetti E,Guerrier L,et al. High performance protein separation with novel strong ion-exchangers. J.Chromatogr. A,1994,679:11.
    [10]Peterson E A, Sober H A. Chromatography of proteins.Ⅰ.Cellulose ion-exchange adsorbents.J.Amer.Chem.Soc.,1956,78:751.
    [11]Luo E G and Hsu J T. Rate parameters and gradient correlations for gradient-eluent chromatography. AIChE J.,1997,43:464.
    [12]Tauc P, Cochets S,Bertrand O. Ion-exchange chromatography of proteins: modulation of selectivity by addition of organic solvents to mobile phase Application to single-step purification of a proteinase inhibitor from corn and study of the mechanism of selectivity modulation. J.Chromatogr.A, 1998,825: 17-27.
    [13]邹汉法, 张玉奎, 卢佩章, 分析化学丛书, 第三卷, 第三册, 高效液相色谱法, 北京: 科学出版社, 1998, 477-541.
    [14]师治贤, 王俊德, 生物大分子德液相色谱分离和制备(第二版), 科学出版社, 1996, 143-173.
    [15]Moore S, Stein W H. Chromatography of amino acids on sulfonated polystyrene resins.J.Biol.Chem.,1951,192:663.
    [16]Alpert A J, Regnier F E. Preparation of a porous microparticulate anion-exchange chromatography support for proteins.J.Chromatogr.,1979,185:375.
    [17]Muller W. New ion-exchangers for the chromatography of biopolymers. J. Chromatogr.,1990,510:133.
    [18]Irvine R F, Letcher A J, Landa D, et al. Inositol triphosphates in carbochal-stimulated rat parotid glands.Biochem.J.,1984,223:237.
    [19]Meek J L .Inositol bis-tris-and tetrakis-phosphate(s):Analysis in tissue by HPLC .Proc. Natl. Acad. Sci. USA,1986,83:4162.
    [20]Chew C S, Brown M R. Release of intra-cellular Ca+ and elevation of inositol triphosphates by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta.,1986,88:116.
    [21]Scott C S, Patel M, Stark A N, Roberts B E. FPLC of leukaemia cell N-Acetyl β-D-Hexosaminidases. Leukaemia Res.,1987,11:437.
    [22]Gadam S D, Cramer S M. Salt effects in anion exchange displacement chromatography:comparison of pentosan polysulfate and dextran, sulfate displacers.Chromatographica,1994,39(7/8):409.
    [23]Lundell N, Markides K. Two-dimentional liquid chromatography of peptides: An optimization strategy. Chromatographia,1992,34(5-8):369.
    [24]Cysewki P, Jaulmes A, Lemque R, et al. Multivalent ion-exchange model of biopolymer chromatography for mass overloaded conditions. J. Chromatogr., 1991,548:61-79.
    [25]Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria. Process Biochem.,1993,28:365-376.
    [26]Boardman N K, Partridge S M. Separation of neutral proteins on ion-exchange resins. Biochem. J.,1955,59:543-552.
    [27]Kopaciewicz W, Rounds M A, Fausnaugh J, et al. Retention model for high-performance ion-exchange chromatography.J.Chromatogr.,1983,266:3-21.
    [28]Rounds M A, Regnier F E. Evaluation of a retention model for high performance ion-exchange chromatography using two different displacing salts. J. Chromatogr., 1984,283:37-45.
    [29]Bellot J C, Condoret J S. Theoretical study of the ion-exchange preparative chromatography of a two-protein mixture. J. Chromatogr.,1993,635:1-17.
    [30]Velayudhan A. Studies in non-linear chromatography, Doctoral Dissertation, Yale University, New Haven,CT,1990.
    [31]Brooks C A, Cramer S M. Steric mass-action ion-exchange: displacement profiles and included salt gradients. AIChE J,1992, 38(12):1969-1978.
    [32]Li Y, Pinto N G. Combination of the steric mass action and non-ideal surface solution models for overload protein ion-exchange chromatography. J. Chro-matogr., 1997,760:89-103.
    [33]Bromley L A. Thermodynamic properties of strong electrolytes in aqueous so-lutions, AIChE J, 1973,19(2),313-320.
    [34]Talu O, Zwiebel I, Multicomponent adsorption equilibria of nonideal mixtures. AIChE J., 1986,32(8):1263-1276.
    [35]Raje P, Pinto N G. Combination of the steric mass action and non-ideal surface solution models for overloaded protein ion-exchange chromatography. J. Chro-matogr., 1997,760:89-103.
    [36]Skidmore G L, Horstmann B J, Case H A. Modelling single component ad-sorption to cation-exchangers, J. Chromatogr.,1990,498:113-128.
    [37]Skidmore G L, Chase H A, Two-component protein adsorption to the cation-exchanger S-Sepharose FF. J. Chromatogr.,1990,505(2):329-347.
    [38]Butler J A V, Ockrent C J. Studies in electrocapillarity part Ⅲ The surface tensions of solutions containing two surface-active solutes. J. Phys. Chem., 1930, 34:2841-2859.
    [39]Marham E C, Benton A F. The adsorption of gas mixtures by silica. J. Am. Chem. Soc.,1931,53:497-506.
    [40]Levan M D, Vermeulen T. Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys.Chem.,1981,85:3247-3250.
    [41] Li Y , Pinto N G. Model for ion-exchange equilibria of macromolecules in pre-parative chromatography. J.Chromatogr.,1995,702:113-123.
    [42]Antia F D, Horváth C. Gradient elution in non-linear preparative liquid chro-matography. J.Chromatogr.,1989,481:1-27.
    [43]Melander W R, Rassi Z E, Horváth C. Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography: Effect of salts on the retention of proteins. J. Chromatogr.1989,469:3-27.
    [44] Mazsaroff I, Vàrady L, Mouchawar G A, et al. Thermodynamic model for electrostatic-interaction chromatography of proteins. J.Chromatogr. 1990,499, 63-77.
    [45]Haggerty L,Lenhoff A M. Relation of protein electrostatics computations to ion-exchange and electrophoretic behavior, J. Phys.Chem.1991,95(3):1472.
    [46]St?hlberg J, J?nsson B, Horváth C. Theory for electrostatic interaction chro-matography of proteins. Anal. Chem.,1991,63,1867-1874.
    [47] St?hlberg J, J?nsson B, Horváth C. Combined coulombic and van der Waals inter-action in the chromatography of proteins.Anal. Chem.,1992, 64,3118-3124
    [48] Roth C M, Lenhoff A M. Electrostatic and van der Waals contributions to protein adsorption: computation of equilibrium constants. Langmuir, 1993,9:962 – 972.
    [49]卢佩章, 戴朝政, 色谱理论基础, 北京: 科学出版社, 1980.
    [50]Hortsmann B J, Chase H A. Modelling the affinity adsorption of immmuno-globulin G to protein A immobilized to agarose matrices. Chem. Eng. Res.,1989, 67:243-254.
    [51]Weaver L E, Carta G. Protein adsorption on cation exchangers:comparison of macroporous and gel-composite media. Biotechnol. Prog.,1996,12(3):342-355.
    [52]Tilton R D, Robertson C R, Gast A P. Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface. J. Colloid Interface Sci.,1990,137:192.
    [53]Yoshida H, Yoshikawa M, Kataoka T. Parallel transport to BSA by surface and pore diffusion in strongly basic chitosan. AIChE J.,1994,40(12):2034-2044.
    [54]Suzuki M. Adsorption engineering. Elsevier,Amsterdam, 1990.
    [55]Hill T L. An introduction to Statistical Thermodynamics. Addison-Wesley Pub Co, Reading, Mass, 1960. p382-388.
    [56]Hirtzel C S, Rajagopalan R, Colloidal Phenomena : Advanced Topics. Noyes Publications, Park Ridge, N. J., USA ,1985.
    [57]Scopes R K. Strategies for enzyme isolation using dye-ligand and related adsorbents. J.Chromatogr.,1986,376:131-140.
    [58]Reyes L, Bert J, Fornazero J. Influence of conformational changes on diffusion properties of bovine serum albumin: a holographic interferometry study. Colloids and Surfaces B: Biointerfaces,2002, 25:99-108.
    [59]Janzen R, Unger K K. Adsorption of proteins on porous and non-porous poly(ethylenemine) and tantacle-type anion exchangers. Chromsymp. 1990, 2009:77–93.
    [60]Huang J X, Schudel J, Guiochon G. Adsorption behavior of albumin and conalbumin on TSK-DEAE 5PW anion exchanger. J.Chromatogr. 1990,504: 335–349.
    [61]Hashim M A, Chu K H, Tsan P S. Effects of ionic strength and pH on the adsorption equilibria of lysozyme on ion exchangers. J. Chem. Tech. Biotechnol., 1995,62: 253–260.
    [62]Leaver G., Conder J R, Howell J A. Adsorption isotherm of albumin on a cross-linked cellulose chromatographic ion exchanger. I. Chem. E. Symp. Ser., 1990, 118:1–15.
    [63]Harsa S, Zaror C A, Pyle D L. Adsorption of Kluyveromyces marxianus pectinase on CM-Sephadex gels, Enzyme Microb. Technol., 1993,15: 906–915.
    [64] Luo Q, Andrade J D, Caldwell K D. Thin-layer ion-exchange chromatography of proteins. Journal of Chromatography A, 1998,816: 97–105.
    [65]Bosma, J. C., More Efficient Process Chromatography (PhD Thesis). University of Groningen, Dept. of Chem. & Chem. Eng. (2001).
    [66]Scatchard G, Scheinberg I H, Armstrong S H Jr. Physical chemistry pf protein solutions. Ⅳ. The combination of human serum albumin with chloride ion. J. Amer. Chem. Soc.,1950,72:535-540.
    [67]Scatchard G, Wu Y V, Shen A L. Physical chemistry of protein solutions, Ⅹ. The binding of small anions by serum albumin. J. Amer. Chem. Soc., 1959, 81: 6104-6109.
    [68]Tanford C, Swanson S A, Shore W S. Hydrogen ion equilibria of bovine serum albumin. J. Amer. Chem. Soc., 1955a, 77: 6414-6421.
    [69]Scatchard G., Scheinberg I H, Armstrong S H Jr. Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J. Amer. Chem. Soc., 1950,77: 535-540.
    [70]Teske C A, Blanch H W, Prausnitz J M. Chromatographic measurement of interactions between unlike proteins. Fluid Phase Equilibria, 2004, 219:139–148
    [71]Vilker V L, Colton C K, Smith K A. The osmotic pressure of concentrated protein solutions: Effect of concentration and ph in saline solutions of bovine serum albumin. J. Colloid Interface Sci., 1981,79 (2) 548-566.
    [72]Douglas N G.. Electrophoretic mobilities of proteins and protein mixtures in solution. Ph. D.Thesis,University of Melbourne. 1992.
    [73]Ratnayake C K, Regnier F E. Lateral interaction between electrostatically adsorbed and covalently immobilized proteins on the surface of cation-exchange sorbents. J. Chromatogra. A, 1996, 743: 25-32.
    [74]Ortega-Vinuesa J L, Tengvall P, Lundstrom I. Molecular packing of HSA, IgG, and fibrinogen adsorbed on silicon by AFM imaging. Thin Solid Films, 1998, 324: 257–273.
    [75]Bowen W R, Hughes D T. Ion Exchange of Proteins: A Microcalorimetric Study of the Adsorption of Bovine Serum Albumin on Anion-Exchange Materials. J. Colloid Interface Sci. 1993,158(2): 395-402.
    [76] Lin F Y, Chen W Y, Ruan R C, et al. Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: effects of ligand chain length, density and the amount of bound protein. J.Chromatogr. A , 2000,872 (1): 37-47.
    [77]Raje P, Pinto N G..Importance of heat of adsorption in modeling protein equilibria for overloaded chromatography. J. Chromatogr. A, 1998,96:141-156.
    [78] Thrash M E Jr, Pinto N G. Flow microcalorimetric measurements for bovine serum albumin on reversed-phase and anion-exchange supports under overloaded conditions. J. Chromatogr. A, 2001,908:293-299.
    [79]Marvin E S Jr., Pinto N G. Characterization of enthalpic events in overloaded ion-exchange chromatography. J. Chromatogra. A, 2002, 944: 61–68.
    [80]Macritchie F. The adsorption of proteins at the solid/liquid interface. J. Colloid Interface Sci., 1972,38(2): 484-488.
    [81]Morrissey B W, Stromberg R R. The conformation of adsorbed blood proteins by infrared bound fraction measurements. J. Colloid Interface Sci., 1974, 46(1): 152-164.
    [82]Bagchi P, Birnbaum S M. Effect of pH on the adsorption of immunoglobulin G on anionic poly(vinyltoluene) model latex particles. J. Colloid Interface Sci., 1981,83(2):460-478.
    [83] Koutsokos P G., Numme-Young C A, Norde W, et al. Effect of the nature of the substrate on the adsorption of human plasma albumin.Colloids Surf., 1982, 5(2):93-104.
    [84]FraaijeJ G E M, Norde W, Lyklema J. Interfacial thermodynamics of protein adsorption and ion co-adsorption. III. Electrochemistry of bovine serum albumin adsorption on silver iodide. Biophys. Chem., 1991, 41(3):263-276.
    [85]Elgersma A V, Zsom R L J, Norde W, et al.Adsorption of different types of monoclonal immunoglobulin on positively and negatively charged polystyrene lattices. Colloids Surf., 1991,54: 89-101.
    [86]Johnson C A , Wu P, Lenhoff A M. Electrostatic and van der Waals Contributions to Protein Adsorption: 2. Modeling of Ordered Arrays. Langmuir 1994,10 (10): 3705-3713.
    [87]Marvin E S Jr, Pinto N G. Characterization of enthalpic events in overloaded ion-exchange chromatography. J. Chromatogra. A, 2002,944:61–68.
    [88]Oberholzer M R, Stankovich J M, Carnie S L, et al. 2-D and 3-D interactions in Random Sequential Adsorption of charged particles. J. Colloid Interface Sci., 1997,194:138-153.
    [89]Burns N L, Holmberg K, Brink C. Influence of surface charge on protein adsorption at an amphoteric surface: Effects of varying acid to base ratio, J. Colloid Interface Sci., 1996.,178: 116–122.
    [90] Kenjirou K. Study on the correlation of protein with porous polymeric surface. Master's dissertation, Tokyo University, 1991.
    [91] Dillman W J Jr, Miller I F. On the adsorption of serum proteins on polymer membrane surfaces. J. Colloid Interface Sci., 1973,44 (2): 221-241.
    [92] Su T J, Lu J R, Thomas R K, et al. Effect of pH on the adsorption of bovine serum albumin at the silica/water interface studied by neutron reflection. J. Phys. Chem. B 1999, 103(18):3727 – 3736.
    [93] Urano H, Fukuzaki S. Conformation of adsorbed bovine serum albumin governing its desorption behavior at alumina-water interfaces. J. Biosci. Bioeng. 2000, 90(1):105-111.
    [94] Sevastianov V I , Kulik E A, Kalinin I D. The model of continuous heterogeneity of protein—surface interactions for human serum albumin and human immunoglobulin G adsorption onto quartz. J. Colloid Interface Sci., 1991, 145(1): 191-206.
    [95] Staunton S, Quiquampoix H. Adsorption and Conformation of Bovine Serum Albumin on Montmorillonite: Modification of the Balance between Hydrophobic and Electrostatic Interactions by Protein Methylation and pH Variation. J. Colloid Interface Sci., 1994,166 (1) :89.
    [96] Wills P R, Comper W D, Winzor D J. Thermodynamic nonideality in macromolecular solutions: interpretation of virial coefficients. Archives of bio-chemistry and biophysics, 1993,300(1):206-212.
    [97] Wills P R, Jacobsen M P, Winzor D J. Analysis of sedmentation equilibrium distributions reflecting nonideal macromolecular associations. Biophysical J., 2000,79(4):2178-2187.
    [98] G.M.Wilson.Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J.Am.Chem.Soc., 1964,86:127-130.
    [99] Raje P, Pinto N G. Importance of heat of adsorption in modeling protein equilibria for overloaded chromatography. J. Chromatogr. A, 1998,796:141-156.
    [100]Bosma J C, Wesselingh J A. Available area isotherm, AIChE J., 2004, 50(4): 848-853.
    [101]Skidmore, G L, Horstmann B J, Chase H A. Modelling single-component protein adsorption to the cation exchanger S Sepharose FF. J. Chromatogr., 1990,498:113.
    [102]Skidmore G L, Chase H A. Two-component protein adsorption to the cation exchanger S Sepharose FF. J. Chromatogr., 1990,505:329.
    [103] Marshak D R, Kadonaga J T, Burgess R R, et al. Strategies for protein purification and characterization. Cold Spring Harbor Laboratory Press, 1996, p54.
    [104] Stahlberg J, Appelgren U, J?nsson B. Electrostatic interactions between a charged sphere and a charged planar surface in an electrolyte solution. J. Colloid Interface Sci., 1995,176:397-407.
    [105] Borukhov I, Andelman D. Steric effects in electrolytes: A modified Poisson Boltzmann Equation. Physical Review Letters,1997,79(3):435-438.
    [106] Bowen W R, Sharif A O. Adaptive Finite-Element Solution of the nonlinear Poisson-Boltzmann Equation:A charged spherical particle at various Distances from a charged cylindrical pore in a charged planar surface, J. Colliod Interface. Sci.,1997,187:363-374.
    [107] Fang F, Szleifer I. Competitive adsorption in model charged protein mixtures: Equilibrium isotherms and kinetics behavior. J Chemical Physics, 2003,119(2): 1053-1065.
    [108] Xu T W, Fu R Q, Yan L F. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. J. Colloid Interface Sci. 2003, 262(2): 342-350.
    [109]Norde W, Lyklema J. Thermodynamics of protein adsorption. Theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polystyrene surfaces. J. Colloid Interface Sci. 1979,71:350-366.
    [110] Ortega-Vinuesa J L, Tengvall P, Lundstrom I. Molecular packing of HSA, IgG, and fibrinogen adsorbed on silicon by AFM imaging.Thin Solid Films, 1998, 324:257–273.
    [111] Bosma J C, Wesselingh J A. pH dependence of ion-exchange equilibrium of proteins. AIChE J., 1998,44(11):2399-2408.
    [112] Janzen R, Unger K K. Adsorption of proteins on porous and non-porous poly-(ethylenemine) and tantacle-type anion exchangers. Chromsymp., 1990, 2009: 77–93.
    [113] Huang J X, Schudel J, Guiochon G. Adsorption behavior of albumin and con-albumin on TSK-DEAE 5PW anion exchanger, J. Chromatogr., 1990,504: 335–349.
    [114] Hashim M A, Chu K H, Tsan P S. Effects of ionic strength and pH on the ad-sorption equilibria of lysozyme on ion exchangers. J. Chem. Tech. Biotechnol., 1995,62: 253–260.
    [115] Leaver G., Conder J R , Howell J A. Adsorption isotherm of albumin on a cross-linked cellulose chromatographic ion exchanger. I. Chem.E. Symp. Ser., 1990, 118 :1–15.
    [116] Harsa S, Zaror C A, Pyle D L. Adsorption of Kluyveromyces marxianus pectinase on CM-Sephadex gels. Enzyme Microb.Technol., 1993,15:906–915.
    [117] Lan Q, Bassi A S, Zhu J X. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein ad-sorption onto ion exchange/affinity adsorbents. Chem. Eng. J., 2001,81: 179– 186.
    [118] Ortega-Vinuesa J L , Tengvall P, Lundstrom I. Molecular packing of HSA, IgG, and fibrinogen adsorbed on silicon by AFM imaging. Thin Solid Films, 1998, 324:257–273.
    [119]Gueffroy D E. Buffers: A guide for the preparation and use of buffers in biological systems. Behring Diagnostics, San Diego. 1975,p16.
    [120]Tipton K F, Dixon H B F. Effects of Ph on enzymes. Meth. Enzymol.,1979,63: 183-243.
    [121] Gong P , Szleifer I. Competitive adsorption of model charged proteins: the effect of total charge and charge distribution. J. Colloid Interface Sci., 2004, 278:81–90.
    [122] Haynes C A, Norde W. Globular proteins at solid/liquid interfaces. Colloids and Surfaces B, 1994,2(6): 517-566.
    [123] Norde W. Adsorption of proteins from solution at the solid-liquid interface. Adv. Colloid Interface Sci., 1986,25: 267-340.
    [124] Sadana A. Protein adsorption and inactivation on surfaces. Influence of hetero-geneities. Chem. Rev.,1992, 92(8):1799.
    [125] Kleijn M , Norde W. The adsorption of proteins from. aqueous solution on solid surfaces. Heterog. Chem. Rev., 1995,2:157–172.
    [126] Lin F Y, Chen C S, Chen W Y, et al. Microcalorimetric studies of the interaction mechanisms between proteins and Q-Sepharose at pH near the iso-electric point (pI ), Effects of NaCl concentration, pH value, and temperature. J.Chromatogr. A, 2001,912:281–289.
    [127] Yuan Y, Oberholzer M R, Lenhoff A M. Size does matter: electrostatically determined surface coverage trends in protein and colloid adsorption. Colloids and Surfaces A, 2000,165:125–141.
    [128] Huhmer A F, Aced G I , Perkins M D , et al. Separation and Analysis of Peptides and Proteins. Anal. Chem., 1997, 69:29R-57R.
    [129]B L Karger, W S Hancock. Hydrophobic Interaction Chromatography, Methods Enzymol., 1996,270:622.
    [130] Alstine J M V, Veide A, Tjerneld F. Phase partition and biotechnology. Trends Biotechnol., 1996,14:1-2.
    [131] Stryer L. Biochemistry, 3rd ed.. W.H. Freeman, New York,1988, p15.
    [132] Choudhary G., Horváth C. Ion-exchange chromatography. Methods Enzymol., 1996,270: 47-82.
    [133] Bos M A, Van Vliet T. Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci., 2001,91(3): 437-471.
    [134] Lucassen-Reynders E H. Competitive adsorption of emulsifiers 1. Theory for adsorption of small and large molecules. Colloids and Surfaces A, 1994,91:79-88.
    [135] Dickinson E. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids and Surfaces B,1999,15:161-176.
    [136] Pugnaloni L A, Dickinson E, Ettelaie R, et al. Competitive adsorption of proteins and low-molecular-weight surfactants: computer simu-lation and microscopic imaging. Adv. Colloid Interface Sci., 2004,107: 27–49.
    [137] Ying P, Yu Y, Jin G, et al. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry. Colloids and Surfaces B: Bio-interfaces, 2003, 32:1-10.
    [138] Lassen B, Malmsten M. Competitive Protein Adsorption at Plasma Polymer Surfaces. J. Colloid Interface Sci., 1997,186: 9–16.
    [139] Lewus R K, Carta G. Binary protein adsorption on gel-composite ion-exchange media. AIChE J,1999,45(3):512-522.
    [140] Wesselingh J A , Bosma J C. Protein ion exchange adsoion kinetics. AIChE J., 2001,47(7):1571-1580.
    [141] Chen W-D, Dong X-Y, Bai S, et al. Dependence of pore diffusivity of protein on adsorption density in anion-exchange adsorbent. Biochem Eng J, 2003,14: 45–50.
    [142] Conder J R, Hayek B O. Adsorption kinetics and equilibria of bovine serum albumin on rigid ion-exchange and hydrophobic interaction chromatography matrices in a stirred cell. Biochem. Eng. J., 2000, 6(3): 215-223.
    [143]周笑鹏,蛋白质离子交换平衡及动力学理论研究, [硕士论文], 天津: 天津大学, 2003.
    [144] Mattisson C, Roger P, J?nsson B. Diffusion of lysozyme in gels and liquids, A general approach for the determination of diffusion coefficients using holographic laser interferometry. J. Chromatogr. B, 2000, 743:151-167.
    [145] Bowen W R, Liang Y, Williams P M. Gradient diffusion coefficients-theory and experiment. Chem. Eng. Sci.,2000,55:2359-2377.
    [146] Linden T, Ljunglof A , Hagel L. Visualizing patterns of protein uptake to porous media using confocal scanning laser microscopy. Separation science and technology, 2002,37(1):1-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700