高分子微球的表面分子嫁接及生化亲和特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亲和高分子乳液微球是一类利用生物分子或基团亲和配位原理合成的功能高分子微球。将具有特定的亲和配位能力的生物分子或基团之一如药物、抗体和DNA固定在高分子乳液微球表面,则可以借助后者的高比表面积高效地识别配位、并吸附分离出目标分子或基团。亲和高分子乳液微球不仅具有高效、稳定、功能多样等特征,而且还具有机械性强、反应灵敏、优异的生物相容性、可循环使用、对环境污染小等特有的优点。因此,在诸如药物快速评价、免疫抗体识别和DNA诊断等领域有很高的应用价值。例如,将药物分子固定在纳米级高分子乳液微球表面,利用亲和微球的生物惰性和高比表面积等优点,高效的从生物组织液中识别、分离、纯化药物受体蛋白质。通过对药物受体蛋白质分析测定及受体蛋白质与药物分子之间相互作用机理研究,可拓宽新药开发思路、缩短药物开发周期。
     以疏水性单体苯乙烯St和甲基丙烯酸环氧丙酯GMA为单体,采用无皂乳液聚合的方法制备了表面带环氧基的高分子乳液微球PSG聚(苯乙烯-甲基丙烯酸环氧丙酯)。为降低微球表面的空间位阻效应和壁面效应,采用1,6-已二胺作为空间臂分子,对PSG微球进行表面修饰,获得了端氨基的微球粒子PSGN(PSG-1,6-已二胺)。并采用元素分析法和4-硝基苯甲醛法分析测定了微球表面的氨基浓度。然后采用培美曲塞二钠MTA与PSGN微球表面的氨基进行共价偶联反应,制得具有药物固定的亲和高分子微球。实验结果表明培美曲塞二钠药物分子固定在PSGN微球表面的接枝量主要受微球粒径大小和活泼氨基浓度的影响;通过改变投料比和功能单体多段加料的方式可控制乳液微球粒径大小和表面活泼基团的浓度,进而实现对药物接枝量的控制。另外,实验还考察了体系pH、催化剂比例及用量和温度对MTA偶联反应的影响,获得了药物分子偶联在PSGN微球表面的最佳反应条件。
     此外还研究了药物固定高分子微球对蛋白质的吸附特性。采用牛血蛋白质BSA作为模型蛋白质,着重考察了pH、离子强度和不同BSA初始浓度对于蛋白质吸附的影响。结果表明:MTA药物分子固定在微球表面的浓度较高、分布均匀时,微球药物对BSA的吸附动力学较符合一级动力学过程,并且静电引力对于蛋白质吸附具有重要影响。
Affinity polymer latex microsphere is a kind of functional polymer microsphere, which has affinity molecules or groups on its surface to efficiently recognize and separate the target molecules by the high specific surface areas of the microsphere. There are high degree of specific recognition and coordination between affinity molecules and target molecules. These objects mainly include drug-receptor, antibody-antigen, complementary DNA chains, etc. Affinity polymer latex microspheres have the common advantages of functional polymer microspheres, i.e., stable dispersion, large specific surface areas as well as versatile properties. In addition, these smart latex microspheres have several particular features, such as well mechanical performance, sensitivity, excellent biology compatibility, easy to recovery and repetitious to use, friendly to environment. Affinity polymer latex microspheres showed potential application for bioseparation, antibody identification, DNA diagnosis as well as efficient evaluation of medicine. For example, the affinity microspheres hold the bio-inert and high surface area can be used for identification, separation and purification of drug receptor from biological tissue by immobilizing the drug molecules on its surface. Expand the ideals of new drugs development and shorten the drug development cycle by studying the mechanism of drug and drug receptor.
     Poly (styrene-co-glycidyl methacrylate) (PSG) latex microspheres with epoxy groups on its surface are prepared by soap-free emulsion polymerization with hydrophobic monomer styrene and glycidyl methacrylate. The PSG microspheres are modified with 1,6-hexanediamine space arm to reduce the steric hindrance and side interaction of the surface and the amino-modified microsphere PSGN was obtained. The content of amino groups on PSGN particle is measured by elemental analysis and 4-nitrobenzaldehyd methods. Then the pemetrexed disodium (MTA) is covalent immobilized on the surface of the PSGN particles through the amidation between the carboxylic acid end group of MTA in acidic medium and the amino groups on the PSGN particle surface. The experimental results suggest MTA immobilization is mainly dependent upon both the particle size and active amino groups on the PSGN surface. The amino group density of the PSGN microsphere surface could be controlled through altering the ratio of feed and the mode of operation. Further, the immobilization of MTA is also controllable. Researches on the influence of pH, temperature and the different ratio and concentration of catalysts on MTA coupling reaction are performed and the optimum reaction conditions are earned.
     The adsorption property of BSA protein onto the surface of polymer microsphere drug is emphatically studied. Bovine serum albumin (BSA) is selected as the model protein. The effect of pH, ion concentration and different first BSA concentration on adsorption is emphatically examined. The results showed the higher covalent immobilization concentration and uniform distribution of MTA on the polymer microspheres have the regular adsorption process of BSA protein. The process of BSA protein adsorption onto polymer latex microsphere drug accords with the first order kinetics under ideal condition. Electrostatic attraction plays an important role in the BSA adsorption.
引文
[1]Kawaguchi H. Functional polymer microspheres, Progress in Polymer Science,2000,25(8): 1171-1210.
    [2]Fitch R M. Characterization of polymer colloids, Polymer Colloids,1997,73-144.
    [3]Dunn A S. Emulsion polymerization:theory and practice:D. C. blackley applied science, Polymer,1976,17(10):928.
    [4]Steward P A, Hearn J, Wilkinson M C. An overview of polymer latex film formation and properties, Advances in Colloid and Interface Science,2000,86 (3):195-267.
    [5]Mario G, Abdul M. Cross-linked latex particles grafted with polyisoprene as model rubber-compatible fillers, Polymer,2009,50:6032-6042.
    [6]Chun-Shan Zhao, Xiao-Li Liu, Meng Yang, et al. The preparation of copolymerized fluorescent microspheres of styrene using detergent-free emulsion polymerization, Dyes and Pigments,2009,82:134-141.
    [7]Edina R, Alexandra M, Cosmin C, et al. Obtaining of monodisperse particles through soap free polymerization in the presence of C60, Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,355:23-28.
    [8]Tarik D, Sema T, Yasemin K, et al. Covalent immobilization of invertase on microporous pHEMA-GMA membrane, Food Chemistry,2004,85:461-466.
    [9]Mahdi A, Maryam S. Effect of carboxylic acid monomer and butadiene on particle growth in the emulsifier-free emulsion copolymerization of styrene-ebutadienee carboxylic acid monomer, Polymer,2007,48:2035-2045.
    [10]Supharat I, Nuttaporn P, Panya S. Synthesis of poly (methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property, Colloids and Surfaces B:Biointerfaces,2010,77:219-226.
    [11]Magnus J, Daniel N, Ove N, Malmstrom E. Surface modification of thermally expandable microspheres by grafting poly (glycidyl methacrylate) using ARGET ATRP, European Polymer Journal,2009,45:2374-2382. [12] Makino K, Yamamoto S, Fujimoto K, et al. Surface structure of latex particles covered with temperature-sensitive hydrogel layers, Colloid Interface Science,1994,166:251-258. [13] Kagawa Y, Minami H, Okubo M, et al. Preparation of block copolymer particles by two-step atom transfer radical polymerization in aqueous media and its unique morphology, Polymer,2005,46 (4):1045-1049. [14] Yamaguchi Y, Takenaga M, Kitagawa A, et al. Insulin-loaded biodegradable PLGA microcapsules:initial burst release controlled by hydrophilic additives, Journal of Controlled Release,2002,81 (3):235-249.[15]马武伟,窦红静,周慧睿,孙康.功种子聚合制备表面磺酸基功能化聚苯乙烯微球, 功能高分子学报,2009,22(2):26-35.
    [16]Fa-Ai Zhang, Cai-Li Yu. Acrylic emulsifier-free emulsion polymerization containing hydrophilic hydroxyl monomer in the presence or absence of nano-SiO2, European Polymer Journal,2007,43:1105-1111.
    [17]Hong Chu, Hongyan Wang, Zhongbin Ni, et al. Synthesis of submicron-sized composite particles with unique morphology by emulsifier-free seeded emulsion copolymerization, Particuology,2008,6:369-375.
    [18]Okubo U, Y Lu. Preparation of a heterogeneous polymer film from the blend emulsion by the stepwise heterocoagulation method, Colloids and Surfaces A:Physiochemical and Engineering Aspects,1999,153:609-615.
    [19]Takeshi S, Kouta T, Mitsuru A. Hetero-coagulation of polymeric core-corona microspheres, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,169,95-105.
    [20]Chunxu Wang, Lixin Wang, Wuli Yang. Preparation and characterization of functional inorganic/organic composite microspheres via electrostatic interaction, Journal of Colloid and Interface Science,2009,333:749-756.
    [21]Guoliang Li, Xinlin Yang, Feng Bai, et al. Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process, Journal of Colloid and Interface Science,2006,297:705-710.
    [22]Xingping Qiu, Chi Wu. Study of the core-shell nanoparticle formed through the "coil-to-globule" transition of poly(N-isopropylacrylamide) grafted with poly(ethylene oxide), Macromolecules,1997,30:7921-7926
    [23]Akashi M, Niikawa T, Serizawa T, et al. Capture of HIV-1 gp120 and virions by lectin-immobilized polystyrene nanospheres, Bioconjugate Chem.,1998,9(1):50-53.
    [24]Kumar A, Kamihira M, et al. Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers, Biotechnology and Bioengineering,2001,75 (5):18-25.
    [25]Civalleri D, Pector J C, Hakansson L, et al. Treatment of patients with irresectable liver metastases from colorectal cancer by chemo-oeclusion with degradable starch microspheres, British Journal of Surgery,1994,81 (9):1338-1341. [26] Ying Zhang, Omolola E, Graves D J, et al. Specific adhesion of micron-sized colloids to surfaces mediated by hybridizing DNA chains, Langmuir,2003,19,6905-6911. [27] Hatakeyama M, Iwato S, Fujimoto K, et al. DNA-carrying latex particles for DNA diagnosis.1. Separation of normal and point mutant DNAs according to the difference in hybridization efficiency, Colloids and Surfaces B:Biointerfaces,1998,10:161-169. [28] Hirose F, Kedar P, Takahashi T, et al. Monoclonal antibody specific for chicken DNA polymerase α associated with DNA primase, Biochemical and Biophysical Research,1985, 132:210-216. [29] Ridvan Say, Bora Garipcan, Sibel Emir, et al. Preparation of poly(hydroxyethyl methacrylate-co-methacrylamidohistidine) beads and its design as a affinity adsorbent for Cu(Ⅱ) removal from aqueous solutions. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,196:199-207.
    [30]Erol D P. Adsorption of heavy-metal ions on poly (ethylene imine)-immobilized poly (methyl methacrylate) microspheres, J. Applied Polymer Science,2001,81(1):197.
    [31]陈瑜,刘晓亚,倪忠斌等。PNVA-g-PSt微球的功能化与离子吸附研究,离子交换与吸附,2005,21(4):304-310.
    [32]Xiaomei Y, Schielkea E G, Graceb K M, et al. Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry, Journal of Immunological Methods,2004,284: 27-38.
    [33]Mingqiang Zou, Haixia Gao, Jinfeng Li. Rapid determination of haz-ardous compounds in food based on a competitive fluorescence microsphere immunoassay. Analytical Biochemistry,2008,374:318-324.
    [34]闫翠娥,徐章煌,程时远,封麟先.生物活性高分子微球,高分子材料科学与工程,1999,1:1.
    [35]Elaissari A, Cros P, Pichot C. Adsorption of oligonucleotides onto negatively and positively charged latex particles, Colloids Surf. A:Physicochem. Eng. Asp.,1994,83:25.
    [36]Inomata Y, Kawaguchi H, Hiramoto M, et al. Direct purification of multiple ATF/E4TF3 polypeptides from HeLa cell crude nuclear extracts using DNA affinity latex particles, Anal. Biochem.,1993,206:109.
    [37]Yakup A M, Gulay B, Niyazi B. Characterization of tyrosinase immobilized onto spacer-arm attached glycidyl methacrylate-based reactive microbeads, Process Biochem.,2004,39: 2007-2017.
    [38]Zhao X, Harris J M. Novel degradable poly (ethylene glycol) hydrogels for controlled release of protein, Pharmaceutical sciences,1998,87 (11):1450.
    [39]Ingham K C, Milasincic D J, Busby T F, et al. Dynamic equilibria between subcomponents of Cl, the first component of human complement, Molecular Immunology,1992,29 (1): 45-51.
    [40]Busby T F, Ingham K C. Separation of macromolecules by ultrafiltration:removal of poly (ethylene glycol) from human albumin, J. Biochem. Biophys. Methods,1980,2:191.
    [41]Tsibouklis J. Preventing bacterial adhesion onto surfaces:the low-surface-energy approach, Biomaterials,1999,20:1229.
    [42]Vijay A. Sethuraman, You Han Bae. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors, Journal of Controlled Release,2007, 118:216-224.
    [43]Duncansona W J, Michael A F, Kevin H, et al. Targeted binding of PLA microparticles with lipid-PEG-tethered ligands, Biomaterials,2007,28 (33):4991-4999.
    [44]任广智,李振华,何炳林.磁性壳聚糖微球用于脲激酶的固定化研究 Ⅰ.磁性壳聚糖 微球的制备和表征,离子交换与吸附,2000,16(1):83.
    [45]刘建伟.心瓣用PET材料表面改性及其抗细菌粘附研究,四川大学硕士学位论文,成都,2002.
    [46]Zhang Y, Liu KZ, et al. A new solid-state pH sensor and its application in the determination of amino on surface modified nanomaterials, Anal. Lett.,2005,38 (8):1249.
    [47]Akkoyun A, Bilitewski U. Optimisation of glass surfaces for optical immunosensors, Biosensors and Bioelectronics,2002,17 (8):655-664.
    [48]Kakabakos S E, Tyllianakis P E, Evangelatos G P, et al. Colorimetric determination of reactive solid-supported primary and secondary amino groups, Biomaterials,1994,15 (4): 289-297.
    [49]Baumann F E, Haeger O, Novikova G. Method for the determination of primary, secondary, and tertiary amino groups in star-shaped polyamide 12 with a poly (ethylene imine) core, 2005,95:556-563.
    [50]Moses O, Oyewumi, Russell. Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy, Bioconjugate Chem., 2002,13,1328-1335.
    [51]陈文兴,沈之荃,刘冠峰等.铜(Ⅱ)络合纤维的配位结构与抗菌性,高分子学报,1998,10(4): 431-437.
    [52]王雪峰,刘建平.金属络合物药物研究概述,首都医药,2000,7(10):20-21.
    [53]李伟,孙建中,周其云.适用于酶包埋的高分子载体材料研究进展,功能高分子学报,2001,14(3):365.
    [54]赵庆贺.层状结构生物相容微胶囊的制备及药物传输性能,浙江大学博士论文,杭州,2006.
    [55]Loretta L, del Mercato, Pilar Rivera-Gil, et al. LbL multilayer capsules:recent progress and future outlook for their use in life sciences, Nanoscale,2010,2,458-467.
    [56]Gheorghe F, Marieta C, Fabrizio B, et al. Cellulose acetate butyrate-pH/thermosensitive polymer microcapsules containing aminated poly (vinyl alcohol) microspheres for oral administration of DNA, European Journal of Pharmaceutics and Biopharmaceutics,2007,66: 11-20.[57]李亚玲,赵继全,郑严,葛凤燕.溶胶-凝胶包埋吡啶羧酸钴及其对甲醇氧化羰化反应的催化性能,催化学报,2002,23(5):396-398.[58] Goddard J M, Hotchkiss J H. Polymer surface modification for the attachment of bioactive compounds, Prog. Polym. Sci.,2007,32:698-725.[59]陈磊,田华雨,陈学思等.交联型聚乙烯亚胺智能基因载体的制备及PEG化影响,高分子学报,2009,(6):500-503.[60]米鹏程,王伯初,冯薇等.二乙烯基砜交联透明质酸钠凝胶的制备及其生物相容性, 中国组织工程研究与临床康复,2008,12(14):2675-2678.
    [61]Norde W, Lyklema J. Thermodynamics of protein adsorption, theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polystyrene surfaces, J.Colloid. Int. Sci.,1979, (71):350.
    [62]Okubo M, Yamamoto Y, Uno M, et al. Covalent immobilization of trypsin onto poly (2-hydroxyethyl methacrylate)/polystyrene composite microspheres by cyanogen bromide method and its enzymatic activity, Colloid. Polym. Sci,1987,265:1061.
    [63]Tuncel A, Denizli A, et al. Cibacron blue F3G-A-attached monosize poly (vinyl-alcohol)-coated polystyrene microspheres for specific albumin adsorption. Journal of Chromatography A,1993,(2):161-168.
    [64]Haynes C. A., Norde W. Globular proteins at solid/liquid interfaces. Colloids and Surfaces B:Biointerfaces,1994, (6):517-603.
    [65]Bosma J C, Wesselingh J A. Partitioning and diffusion of large molecules in fibrous structures, Journal of Chromatography B:Biomedical Sciences and Applications,743 (1-2): 169-180.
    [66]Butler J A,Ockrent C J. Studies in electrocapillarity part Ⅲ the surface tensions of solutions containing two surface-active solutes. J. Phys. Chem.,1930,34:2841-2859.
    [67]Marham E C, Benton A F. The adsorption of gas mixtures by silica. J. Am. Chem. Soc., 1931,53:497-506.
    [68]Stahberg J, Jonsson B, Horvath C. Theory for electrostatic interaction chromatography ofproteins. Anal. Chem.1991,63,1867-1874,
    [69]Stahberg J, Jonsson B, Horvfith C. Combined coulombic and van der waals interaction in the chromatography of proteins. Anal. Chem.,1992,64,3118-3124
    [70]Roth C M, Lenhoff A M. Electrostatic and van der waals contributions to protein adsorption: comparison of theory and experiment, Langmuir,1996,11:3500-3509.
    [71]Roth C M, Lenhoff A M. Electrostatic and van der waals contributions to protein adsorption: computation of equilibrium constants, Langrnuir,1993,9:962-972.
    [72]Roth C M, Sader J E, Lenhoff A M. Electrostatic contribution to the energy and entropy of protein adsorption, Journal of Colloid and Interface Science,1998,203,218-221.[73]苏雪丽.蛋白质静电吸附平衡与动力学的研究,天津大学博士论文,天津,2005.[74] Kopaciewicz W, Rounds M A, FausnaughJ, et al. Retention model for high performance ion-exchange chromatography. J. Chromatogr,1983,266:3-21. [75] Velayudhan A. Studies in non-linear chromatography, doctoral dissertation, Yale University, new haven, CT,1990. [76] Li Y, Pinto N G. Combination of the steric mass action and non-ideal surface solution models for ovefload protein ion-exchange chromatography, J. Chromatogr.,1997,760: 89-103.
    [77]Zhang S P, Sun Y. Further studies on the contribution of electrostatic and hydrophobic interactions to protein adsorption on dye-ligand adsorbents, Biotechnot. Bioeng.,2001, 75(6):710-717.
    [78]Wuke Li, Songjun Li. A study on the adsorption of bovine serum albumin onto electrostatic microsphere:role of surface groups, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,295, (1-3):159-164.
    [79]Suzawa T., Shirahama H. Adsorption of plasma proteins onto polymer latices. Advances in Colloid and Interface Science,1991,35,139-172.
    [80]周笑鹏,白姝,孙彦.离子强度和溶质浓度对蛋白质在Q sepharose FF中吸附动力学的影响,化工学报,2005,56(1):131-133.
    [81]Qingdao L, Amarjeet S B, Jing X. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents, Chemical Engineering,2001,81:179-186.
    [82]钟博,张辉.固体表面蛋白质吸附理论研究进展,2006,24(2).
    [83]Ara'nzazu D C, Tapas S, Jean-Paul L, et al. Multifunctional magnetite and silica-magnetite nanoparticles:synthesis, surface activation and applications in life sciences, Journal of Magnetism and Magnetic Materials,2005,293 (1):33-40.
    [84]Joong H M, Jin H K, Ki-jeong K, et al. Absolute surface density of the amine group of the aminosilylated thin layers:ultraviolet-visible spectroscopy, second harmonic generation, and synchrotron-radiation photoelectron spectroscopy study, Langmuir,1997,13 (16): 4305-4310.
    [85]Lv Jing-ning, Fang Shi-jiang, Chen Lei. Preparation and characterization of affinity polymer basic microspheres by soap-free emulsion polymerization, Chinese Journal of Polymer Science,2009,27 (1):101-108.
    [86]Chu Liangyin, Park S H, Yamaguchi T, et al. Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules [J]. Langmuir,2002,18 (5):1856-1864.
    [87]Marina S., Kapil A., et al. Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews,2007,59:187-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700