离子交换法纯化重组类人胶原蛋白Ⅱ的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用成本相对低廉的离子交换方法纯化重组类人胶原蛋白Ⅱ(Human-like Collagen Bioprotein Ⅱ,HCB Ⅱ),将菌体经高压匀浆、沉淀、超滤浓缩,得到HCBⅡ的粗品,然后通过离子交换法进一步纯化,获得的HCB Ⅱ达到电泳纯。
     通过对6种树脂进行静态筛选,得出阳离子交换树脂CM52对HCB Ⅱ的分离效果最佳。该树脂对HCB Ⅱ有较高的吸附容量和选择性:当pH为4.0缓冲液不加NaCl时,其对HCB Ⅱ的吸附量为54.8mg/g湿树脂,分离因数2.64。
     CM52树脂对HCB Ⅱ的吸附平衡研究表明:HCB Ⅱ在CM52上的吸附基本符合Langmuir方程;pH、NaCl浓度对Langmuir方程参数影响较大;pH低于HCB Ⅱ等电点(pI=5.0)时,pH对吸附平衡的影响显著:即在4     以CM52对HCB Ⅱ的吸附平衡数据为基础,优化了CM52对HCB Ⅱ的纯化工艺。通过实验,分别确定了静态吸附和柱层析吸附的操作条件,即静态吸附:在pH4.0、NaCl0.15mol/L、进料浓度为7g/L,处理量为17.26mL/g的条件下吸附60min:柱层析:在pH4.0、NaCl 0.15mol/L、进料浓度5g/L、流速5mL/min的条件下进行吸附。然后上柱,在pH4.0、NaCl 0.30mol/L下进行脱附。实验表明:采用静态吸附的方式吸附HCB Ⅱ,经上柱洗脱后,HCB Ⅱ的吸附量可达到48.6mg/(g树脂),回收率83.8%,操作时间短,分辨率高,最终纯化的HCB Ⅱ达电泳纯,相对分子量为97kD。
     对CM52吸附HCB Ⅱ的动力学研究表明:搅拌速度和料液浓度决定了其动力学控制机理。以简单线性推动力模型拟合膜扩散控制(film diffusion control,FDC)时的动力学数据,其线性关系良好,模型准确度较高;对于颗粒扩散控制(particle diffusion control,PDC)的吸附,则以粒内表面扩散控制模型拟合,求出表面扩散系数,模型较好的描述了CM52对HCB Ⅱ的PDC吸附。同时,考察了搅拌速度、溶液浓度和温度对FDC模型参数的影响以及溶液浓度和温度对PDC模型参数的影响。
Ion exchange chromatography with low cost, was used to purify Human-like Collagen Bioprotein Ⅱ (HCB Ⅱ) , harvested recombinant E.coli cell was lysed by high pressure homogenizer, supernatant was collected by centrifuging. After salt precipitation, the crude product solution of HCB II was purified with ion exchange chromatography, the purity of HCB II could reach electrophoresis grade purity.Cation exchange resin CM52 was suitable for the purification of HCB II than the other five kind resins used in the experiment. The CM52 cation exchange resin was of better capacity of adsorption and selectivity for HCB Ⅱ. Under the conditon of pH 4.0, buffer free of NaCl, the adsorption capacity of CM52 for HCBⅡ was 54.8mg/g.wet resin and seperation factor was 2.64.The experiments of adsorption equilibrium showed that the adsorption of HCB II onto CM52 obeyed Langmuir model. Ionic strength and pH value were two important factors affecting the equilibrium characteristics. The model parameters hardly vary with pH value unless pH    of adsorption for HCB II and the elution was simple;the total purity process time would be shorten and resolution was high, The recovery of aim protein HCB II with a molecular weight around 97kD was above 83.8% and purity of HCB II could reach electrophoresis grade purity.The ion exchange kinetics for HCB II onto CM52 were developed. The results showed that seperation mechanism mainly depended on stirring speeds and feeding concentration. The kinetics obeys linear driving force model in case of FDC (film diffusion control) and intraparticle surface diffusion model in case of PDC (particle diffusion control). The film diffusion constant becomes higher with the temperature, concentration and stirring speeds increased. The higher temperature,the higher intraparticle surface diffusion coefficient ,but little influence on intraparticle surface diffusion coefficient when concentration increased.
引文
[1] 刘国诠,耿信笃,苏天升。生物工程下游技术。北京:化学工业出版社,2003,1
    [2] 孙彦.生物分离工程.化学工业出版社,1998:1
    [3] 大岳望.化学生物.1984,26:842
    [4] 严希康.生化分离工程。北京:化学下业出版社,2001,2
    [5] 孙彦.生物分离工程.化学工业出版社,1998:2
    [6] 师治贤,王俊德,生物大分子的液相色谱分离和制备,北京:科学出版社,1996,2~8.
    [7] D.R.马歇克,JT.门永,M.W.克努特,等.蛋白质纯化与鉴定实验指南.北京:科学出版社.1999.6
    [8] 孙彦.生物分离工程.化学工业出版社,1998:132
    [9] 钱庭宝.离子交换剂应用技术。天津:天津科学技术出版社,1984,10
    [10] 俞俊棠,唐孝宣.生物工艺学.第二版.上海:华东化工学院出版社.1991.364~365
    [11] Keay, L.(1971) Purification and Recovery of Neutral and Alkaline Protease Using Cationic Sulfonated Phenol-Formaldehyde Resin. U.S.Pat.3592738
    [12] Marshall, J. J.(1982) Method of Production Low Calorie Alcoholic Beverage with Starch-degrading Enzymes Derived from Cladosporium resinae. U.S. Pat.4318927
    [13] 王方等.当代离子交换技术.北京:化学工业出版社 1993.539~542
    [14] 黎肇炎。短尾蝮蛇毒抗血小板聚集蛋白的纯化及对血小板的作用。广西预防医学,1995,1(6),325—329
    [15] 程远国,吴厚永,李德昌。长角血蚌唾液腺中腺昔三磷酸双磷酸酶的纯化及其酶切机制。昆虫学报,2002,45(3),307—312
    [16] H.X. Wang, T.B. Ng. Alocasin, an anti-fungal protein from rhizomes of the giant taro Alocasia macrorrhiza. Protein Expression and Purification, 2003, 28, 9-14.
    [17] H.X. Wang, T.B. Ng. Purification of castamollin, a novel antifungal protein from Chinese chestnuts. Protein Expression and Purification, 2003, 32, 44-51.
    [18] T.B. Ng, A. Purkash. Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expression and Purification, 2002, 26, 211-217.
    [19] Shirley S. L., Hexiang Wang, Tzi Bun Ng. Purification and Characterization of Novel Ribosome Inactivating Proteins, Alpha-and Beta-Pisavins, from Seeds of the Garden Pea Pisum Sativum. Biochemical and Biophysical Research Communication, 1998, 253, 135-142.
    [20] 曾祥群,张志民。氨酸提取工艺研究。发酵科技通讯,2001,30(1),22-24a
    [21] 龙万凯。我国赖氨酸工业技术新进展。化学工程,2003,31(5),76-78
    [22] 刘菊湘,刘国栋,阎虎生。用低交换容量聚苯乙烯强酸性阳离子交换树脂色谱分离中性氨基酸。高等学校化学学报,2001,12,2100—2103
    [23] 宋广远,刘可春。生抗一号抗生素提取分离及其理化性质地研究。山东科学,1997,10(3),45-48
    [24] 任海或,查丽杭,秦川。大孔树脂分离提取麻黄碱的研究。离子交换与吸附,2002,18(2),97—111。
    [25] 徐坚,梁崇真。离子交换树脂对钩吻总生物碱提取分离的研究。药学学报,1998,23(6),341。
    [26] 谭远友,王建华,李勤凡。冰川棘豆生物碱的提取分离。畜牧兽医学报,2002,33(4),352—355
    [27] 吴汉民,张芝芳,娄永江.鲐鱼鱼精中5'-脱氧核苷酸的分离工艺.水产学报,2000,24(3):275-279
    [28] 陈勇5'-核苷酸生成新工艺的研究.硕士学位论文,2001。
    [29] 谢宪章,甘蔗糖蜜生产核苷酸的分离方法研究,食品与发酵工业,1993,6:22-26
    [30] 龚树椿,瞿建国。离子交换法从兔肉中提取ATP无汞害新工艺.上海环境科学,1994,13(12): 35-37
    [31] 白姝,李玉龙,孙彦。乳酸的离子交换动力学模型,天津大学学报,1999,32(5),565-568
    [32] 林建平,岑沛霖。离子交换法分离乳酸的连续流动板模型。离子交换与吸附,1998,14(3),215—222
    [33] 应富祥。离子交换法提取柠檬酸概述。安徽化工,1998,5,24-25
    [34] 江邦和,徐建刚,张纪红。弱碱性离子交换树脂在柠檬酸提炼中的应用。离子交换与吸附,1996,12(3),254—258
    [35] 何炳林,黄文强。离子交换与吸附树脂。上海:上海科技教育出版社,1995,2
    [36] 郭立安.高效液相色谱法纯化蛋白质理论与技术.西安:陕西科学技术出版社,1993.79~82
    [37] 王方.国际通用离子交换技术手册.北京:科学技术文献出版社,2000.253
    [38] Cysewki P., Jaulmes A., Lemque R., Sebille B., Vidal-Madjar C., Jilge G., J. Chromatogr.[J],1991,548:61
    [39] Bellot J. C., Condoret J. S., Process Biochem.[J], 1993, 28:365
    [40] Nataraajan V., Bequette W. B., L Chromatogr. A[J], 2000, 876:51
    [41] Stahlberg J., Jonsson B., Horvath C., Anal. Chem.[J], 63:1867-1874(1991)
    [42] Roth C. M., Lenhoff A. M., Langmuir[J], 1993, 9:962
    [43] Skidmore G. L. Horstman B. J., Chase H. A., J. Chromatogr.[J], 1990, 498:113
    [44] Bautista L. F., Martinez M., Aracil L, AIChE Journal[J], 1999, 45:761
    [45] Li Y. Pinto N. G., L Chromatogr.[J], 1995, 702:113
    [46] Ruthven D. M., Principles of Adsorption and Adsorption Processes[M], New York: Wiley, 1984
    [47] Finette G M S., Mao Q M and Hearn M T W, Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion affinity and ion exchange matrices with different ionic strength and temperature conditions, J. Chromatogr., A, 1997, 763: 71~90.
    [48] Janzen R and Unger K K, Adsorption of proteins on porous and non-porous poly(ethylenemine) and tantacle-type anion exchangers, Chromsymp., 1990, 2009: 77~93.
    [49] Huang J X, Schudel J and Guiochon G, Adsorption behavior of albumin and conalbumin on TSK-DEAE 5PW anion exchanger, J. Chromatogr.,1990, 504: 335~349.
    [50] Hashim M A, Chu K H and Tsan P S, Effects of ionic strength and pH on the adsorption equilibria of lysozyme on ion exchangers, J. Chem. Tech. Biotechnol., 1995, 62: 253~260.
    [51] Leaver G, Conder J R and Howell J A, Adsorption isotherm of albuin on a cross-linked cellulose chromatographic ion exchanger, Chem. E. Symp. Ser., 1990, 118: 1~15.
    [52] Harsa S, Zaror C A and Pyle D L, Adsorption of Kluyveromyces marxianus pectinase on CM-Sephadex gels, Enzyme Microb. Technol., 1993, 15: 906~915.
    [53] Yoshida H, Nishihara H, and Kataoka T, Adsorption of BSA on strongly basic chitosan: equilibria, Biotechnology and Bioengineering, 1994, 43: 1087~1093.
    [54] Bosma J C and Wesselingh J A, pH Dependence of Ion-Exchange Equilirium of Proteins, AIChE Journal, 1998, 44: 2399~2409.
    [55] 姜志新,堪竞清,刘桂华。一种新型离子交换动力学模型。铀矿冶,1992,11(1),28-33
    [56] 姜志新,堪竞清,宋正孝。离子交换分离工程。天津.天津大学出版社,1992,77~144
    [57] 宋胤杰,赵爱民。用三种模型处理二元离子交换动力学的对比研究。核化学与放射化学,1994,16(3),151—159
    [58] 沈同,王镜岩.生物化学.第二版.北京:高等教育出版社.1990.
    [59] Engel J, Prockop DJ. The zipple-like folding of collagen triple helices and the effects of mutations that disrupt the zipple. J Am Rev Biophy Biochem. 1991.20:137-152.
    [60] Oxlund H, Mosekilde Li, Ottoft G, Reduced concentration of collagen reducible cross links in human trabccullar bone with respect to age and osteoporosis. J Bone. 1996. 19: 479-484.
    [61] 蒋挺大,张春萍.胶原蛋白.北京:化学工业出版社.2001.
    [62] Masahiro Ogawa, Ralph J Portier, Michael W Moody, Jon Bell, Mark A Schexnayder, Jack N Losso. Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum(Pogonia cromis) and sheepshead seabream(Archosargus probatocephalus). Food Chemistry. 2004. 88, 495-501.
    [63] 余海,廖小宜,周志瑜.鼠尾肌腱胶原蛋白的提取及凝胶的制备.海南医学.2000.11(3),64-65.
    [64] 赵胜年.酶解鲜猪皮提取水解胶原蛋白的研究.食品工业科技.1998.5,16-17.
    [65] 孟佳帆,王霞红,戎志毅等.人源型可溶性胶原的研制.中国生物制品学杂志.2000.13(3),161-162.
    [66] Olsen D, Yang C L, Bodo M, et al. Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews, 2003, 55:1547-1567
    [67] 范代娣,段明瑞,米钰等.重组E.coil工程菌高密度培养生产人源型胶原蛋白[J].化工学报,2002,7(53):752~754
    [68] 米钰,惠俊峰,范代娣,等.类人胶原蛋白生物相容性实验研究.西北大学学报(自然科学版).2004.34(1),66-69.
    [69] Myllyharju J, Nokelainen M, Vuorela A, Kivirikko KI. Expression of recombinant human type Ⅰ-Ⅲ collagens in the yeast pichia pastoris. Biochem Soc Trans. 2000. 28(4), 353-7.
    [70] Nokelainen M, Tu H, Vuorela A, Notbohm H, Kivirikko KI, Myllyharju J. High-level production of human type Ⅰ collagen in the yeast Pichia pastoris. Yeast. 2001 Jun 30. 18(9), 797-806.
    [71] Nokelainen M, Helaakoski T, Myllyharju J, Notbohm H, Pihlajaniemi T, Fietzek PP, Kivirikko KI. Expression and characterization of recombinant human type Ⅱ collagens with low and high contents of hydroxylysine and its glycosylated forms. Matrix Biol. 1998 Jan. 16(6), 329-38.
    [72] Uitto J, Booth BA, Polak KL. Collagen biosynthesis by human skin fibroblasts Ⅱ Isolation and further characterization of type Ⅰ and type Ⅲ procollagens synthesized in culture. Biochim Biophys Acta. 1980Aug 21. 624(2), 545-61.
    [73] Vaughn PR, Galanis M, Richards KM, Tebb TA, Ramshaw JA, Werkmeister JA. Production of recombinant hydroxylated human type Ⅲ collagen fragment in Saccharomyces cerevisiae. DNA Cell Biol. 1998Jun. 17(6),511-8.
    [74] Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmiehael D, Perala M, Hamalainen ER, Jarvinen M, Polarek J. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev. 2003,Nov 28. 55(12),1547-67.
    [75] Zhai Y, Cui FZ, Wang Y. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils. Current Applied physics. 2005, 4.
    [76] Lan Q D, Bassi A S and Margaritis A et al, A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents, Chemical Engineering Journal, 2001, 81: 179~186.
    [77] Conder J.R. and Hayek B O, Adsorption kinetics and equilibria of bovine serum albumin on rigid ion-exchange and hydrophobic interaction chromatography matrices in a stirred cell, Biochemical Engineering Journal, 2000, 6: 225~232.
    [78] Korz DJ, Rinas U, Hellmuth K, Sander EA, Deckwer WD. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol., 1995, 39:59-65
    [79] Cheng LC, Wu JY, Chen TL. A pseudo-exponential feeding method for control of specific growth rate in fed-batch culture. Biochem. Eng. J., 2002, 10:227-232
    [80] 李建武,余瑞元,袁明秀,陈来同等.生物化学实验原理和方法.北京:北京大学出版社,1994,165~173.
    [81] 殷明文,南宇梅,王新民.分光光度法测定羟脯氨酸的改进.河南医科大学学报,1994,29(3):74-77
    [82] 姜志新,堪竟清,宋正孝等,离子交换分离工程[M1]天津:天津大学出版社.1992.6,37-40
    [83] 姜志新,堪竟清,宋正孝等,离子交换分离工程[M1]天津:天津大学出版社.1992.6,53-67
    [84] 欧阳平凯,胡永红,生物分离原理及技术[M]北京:化学工业出版社,1999,202-210
    [85] 陈福明,陆振民,张晓峰,离子交换树脂吸附法分离乙醇溶液中甘油的研究.精细化工,1998,15:56-57
    [86] 汪家政,范明.蛋白质技术手册.北京:科学出版社,2000,189~211
    [87] Finette G M S., Mao Q M and Hearn M T W, Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion affinity and ion exchange matrices with different ionic strength and temperature conditions, J. Chromatogr., A, 1997, 763: 71~90.
    [88] Janzen R and Unger K K, Adsorption of proteins on porous and non-porous poly(ethylenemine)and tantacle-type anion exchangers, Chromsymp., 1990, 2009: 77~93.
    [89] Huang J X, Schudel J and Guiochon G, Adsorption behavior of albumin and conalbumin on TSK-DEAE 5PW anion exchanger, J. Chromatogr, 1990, 504: 335~349.
    [90] Hashim M A, Chu K H and Tsan P S, Effects of ionic strength and pH on the adsorption equilibria of lysozyme on ion exchangers, J. Chem. Tech. Biotechnol., 1995, 62: 253~260.
    [91] 周笑鹏.蛋白质离子交换平衡及动力学理论研究.硕士学位论文,2003。
    [92] Fair B D and Jamieson A M, Effect of electrodynamic interactions on the translational diffusion of bovine serum albumin at finite concentration, J. Colloid Interface Sci., 1980, 73: 130~135.
    [93] 王方.国际通用离子交换技术手册.北京:科学技术文献出版社,2000.22~24
    [94] 王中来,郭文斌.搅拌槽液相吸附过程的数学模拟研究.粒内表面扩散控制.中国环境科学.1997,2,vol(17),No1,45~48
    [95] Miyabe K and Guiochon G, Kinetic study of the mass transfer of bovine serum albumin in anion-exchange chromatography, J.Chromatogr. A, 2000, 866: 147~171.
    [96] Phillies G D T and Rollings J et al, Probe diffusion in solution of lowmolecular weight polyelectrolytes, Macromol Rev., 1989, 22(10): 4069~4075.
    [97] Phillies G D T and Yu L P et al, Probe diffusion in solution oflong-chain polyelectrolytes, Macromol., 1987, 20(9): 2280~2289.
    [98] Johnson E M and Deen W M et al, Diffusion and partitioning of proteins in charged agarose gels, Biophy J., 1995, 68: 1561~1568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700