裂隙含沙渗流模型与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然裂隙中一般含有泥沙等沉积物,沉积物随水流运移和对裂隙的填堵作用可以显著改变裂隙岩体的渗透性,进而影响地下水位和地层孔隙压力分布。地下水位改变会影响地下水的供给和油、气等资源的生产。水位变化导致的地层孔隙压力上升会使砂土产生大面积液化,从而引起地表位移或沉降,并造成一系列地质灾害。本文综合运用试验测试、理论分析和数值模拟等方法,研究了颗粒在岩体裂隙中的动力学行为以及对裂隙渗透性的影响规律,并从泥沙颗粒作用的角度探讨了地震引起的远场地下水位响应模式和变化幅度,取得了如下研究成果:
     (1)自行设计了一种岩体裂隙渗流试验系统,有效测试了非接触型单裂隙含沙渗流特性;建立了基于颗粒碰撞和能量损失的裂隙渗透系数计算模型,得到了颗粒运移条件下裂隙渗透特性与颗粒体积分数、颗粒粒径和渗流速度的关系;
     (2)完成了接触型单裂隙含沙渗流试验,以试验现象和结果为依据,建立了考虑颗粒填堵作用的裂隙渗透率计算模型,得到了颗粒在裂隙中的填堵分布规律,研究了颗粒填堵作用对裂隙渗透率和裂隙空间水压分布的影响;
     (3)自行设计并组建了一种可加载的裂隙岩体渗流试验系统,测试了不同法向应力条件下接触型单裂隙的含沙渗流特性,得到了裂隙填堵颗粒分布和渗透率随法向应力的变化趋势;
     (4)试验研究了“人”字型裂隙偏流规律及流量分配特征,建立了考虑局部压力损失的交叉裂隙偏流计算模型;从试验和理论方面分析了交叉角度、渗流速度和隙宽组合对裂隙系统渗透特性和流量分配的影响;
     (5)采用数值模拟的方法分析了“人”字型裂隙交叉区域的水流运动特征,提出了交叉区域平均水速分布假设;建立了交叉裂隙含沙渗流泥沙分配动力学模型,探讨了裂隙系统水、沙偏流的不均等性;结合“人”字型裂隙含沙渗流测试,研究了水流分配比、颗粒体积分数、渗流速度和颗粒粒径对泥沙分配的作用规律;
     (6)试验分析了地震波造成的远场地下水流量波动对含沉积物裂隙渗透特性的影响,建立了考虑泥沙颗粒作用的地震远场井水位阶变和缓变响应模型,研究了震后远场井水位阶变响应形式及水位变化幅度与沉积物作用和观测井位置之间的关系,分析了震后井水位随时间的变化趋势,说明了模型的有效性。
     本文研究成果可为工程岩体渗流计算、地震水力响应机理以及地震地下监测、预报等方面的研究提供重要参考。
Large quantities of soils and sediments are distributed widely in natural faults. Inrock fractures sediments also often get mobilized and clogged, changing thepermeability of underground fractured rock significantly. The changed permeabilitycan lead to the variation of groundwater level, which can affect the production of oil,gas and other resources. The rise of the pore pressure caused by the changed ofgroundwater level often makes liquefaction massively, and then, surface subsidenceand a series of geological disasters will break out. In this paper, the dynamic behaviorof particles and its influence on permeability of fractured rock are studied by testing,theoretical analysis and numerical simulation comprehensively. Considering thesediment effect, response model and variation range of the underground water levelcaused by the earthquake in the far field is discussed. The main research achievementsare as follows:
     (1) A system for testing flow in rock fracture is designed which effectively teststhe characteristics of flow in a non-contact single fracture with sand. Calculationmodel of the fracture permeability coefficient is established based on particle collisionand energy loss, and the relationship of particle volume concentration, particle sizeand flow velocity with the flow characteristic in non-contact fractures under thecondition of particle migration is obtained;
     (2) The test for flow in contact single fractures with sand is accomplished. Basedon the phenomena and results of the experiment, calculation model of permeabilityconsidering the particles clogging effect is set up. The particle clog distribution infracture space is obtained, and the influence of particles clog on permeability and thewater pressure distribution in fractures are researched;
     (3) A system for testing flow in fractured rock under normal and shear stress isdesigned, by which we effectively test the flow characteristics in a contact singlefracture with sand under different normal stress. The influence of normal stress onparticles clog distribution in fracture space and induced changes of permeability forfractured rock is established;
     (4) The permeability characteristic and flow distribution in herringbone fractureis researched by experiments. The calculation model for deflection flow in theherringbone fracture considering the local pressure loss is built. The effects ofcrossing angle, flow velocity and fracture aperture combination on permeability characteristic and flow distribution are analyzed by both experiment and theory;
     (5) Through numerical simulation method, we analyze the flow motion feature inintersection region of the herringbone fracture. Assumption of the average flowvelocity distribution in intersection region is put forward and verified. We build thesediment distribution dynamic model for flow in the herringbone fracture with sandand discuss the inequality between water and sand distribution. Combined with theexperiments of flow in herringbone intersection fracture with sand, we also discussthe relationship of flow distribution ratio, particle volume concentration, flow velocityand particle size with particle distribution;
     (6) Experimental Analyzing the underground water flow fluctuation in the farfield caused by seismic wave,the response model of step-like change and slowlyvarying change of well water level in the far field considering particles effect is built.The relationships of the response form and magnitude for step-like changes of wellwater level after earthquake with sediment effect and observation wells location isresearched. We also verified the availability of the model by analyzing the law ofslowly varying change for the well water level after earthquake.
     The research achievements in this paper can provide important references for theresearch of calculation for seepage in engineering rock mass, earthquake hydraulicresponse mechanism, earthquake underground monitoring and forecasting and so on.
引文
[1] Chia, Y. P., Y. S. Wang, H. P. Wu, J. J. Chiu, and C. W. Liu, Changes of groundwater leveldue to the1999Chi-Chi earthquake in the Choshui River fan in Taiwan[J], Bull. Seism. Soc.Am.,2001,91:1062-1068.
    [2] Wang, C.-Y., L.-H. Cheng, C.-V. Chin, and S.-B. Yu, Coseismic hydrologic response of analluvial fan to the1999Chi-Chi earthquake, Taiwan[J], Geology,2001,29:831-834.
    [3] Wang, C.Y., Dreger, D.S., Wang C.H., et al., Field relations among coseismic ground motion,water level change and liquefaction for the1999Chi-Chi (Mw=7.5) earthquake, Taiwan,Geophys. Res. Lett.,2003,30:1890-1893.
    [4] Wang C.Y. and M., Manga, Earthquake and water[M], Lecture Notes in Earth Sciences.Springer,2009.
    [5] Jonsson, S., Segall, P., Pedersen, R., and Bjornsson, G., Post-earthquake ground movementscorrelated to pore-pressure transients[J]. Nature,2003,424:179-183.
    [6] M. Manga and Wang C.Y., Earthquake hydrology[J], Treatise on Geophysics,2007:293-315.
    [7] Evans, D.M., Denver area earthquakes and the Rocky Mountain Arsenal disposal well[J], Mt.Geol.,1966,3:23-26.
    [8] Healy, J.H., W.W. Ruby, D.T. Griggs, and C.B. Raleigh, The Denver earthquakes[J], Science,1968,161:1301-1310.
    [9]杜运连,王洪涛,袁丽文.我国水库诱发地震研究[J],地震,2008,28(4):39-50.
    [10] Richard A Kerr, Richard Stone. A human trigger for the great quake of Sichuan[J], Science,2009,323(5912):322.
    [11]陈颙.汶川地震是由水库蓄水引起的吗[J],中国科学D辑,2009,39(3):257-259.
    [12] Curewitz, D., Harson J. A., Structural settings of hydrothermal outflow: Fracturepermeability maintained by fault propagation and interaction[J]. J. Vol. Geoth. Res.,1997,79:149-168.
    [13] Wang, C.Y., Wong, A., Dreger, D.S., et al., Liquefaction limit during earthquakes andunderground explosions-implications on ground-motion attenuation[J]. Bull. Seism. Soc.Am.,2006,96:555-363.
    [14] Rojstaczer, S., Wolf, S., Michel, R., Permeability enhancement in the shallow crust as acause of earthquake-induced hydrological changes[J]. Nature,1995,373:237-239.
    [15] Elkhoury, J.E., Brodsky, E.E., Agnew, D.C., Seismic waves increase permeability[J].Nature,2006,441:1135-1138.
    [16] Montgomery, D.R., Manga, M., Streamflow and water well responses to earthquakes[J].Science,2002,300:2047-2049.
    [17] Hermance J. F.. A mathematical primer on groundwater flow[M]. Prentice Hall.1999.
    [18] Lomize G. M., Flow in fractured rocks[M]. Moscow: Gesenergoizdat,1951.
    [19] Louis C., A study of groundwater flow in jonited rock and its influence on the stability ofrock masses (Rock Mech. Res. Rep.10)[R]. London: Imp. Coll.,1969.
    [20] Romm E. S., Flow characteristics of fractured rocks[M]. Moscow: Nedra,1966.
    [21] Tsang, Y. W., The effect of tortuosity on fluid flow through a single fracture[J]. Wat. Resour.Res.,1984,20(9):1209-1215.
    [22] Tsang, Y. W. et al., Channel model of flow through fracture media[J]. Wat. Resour. Res.,1987,23(3):467-479.
    [23] Louis C. Rock hydraulics in rock mechanics[J]. Muller Newyork: Vorlay Wien,1974:96-145.
    [24] Neuzil C. E., Tracy J V. Flow through fractures[J]. Wat. Resour. Res.,1981,17(1):191-194.
    [25] Tsang Y. W., Witherspoon P. A., The dependence of fracture mechanical and fluid flowproperties on fracture roughness and sample size[J]. J. of Geophys. Research,1983,88(B3):2359-2366.
    [26] Witherspoon A et.al. New approaches to problems of fluid flow in fractured rock masses[J].In: Proc US Symp Rock Mech,22nd,1981.
    [27] Elsworth D., Goodman R. E., Characterization of rock fissure hydraulic conductivity usingidealized wall roughness profiles[J]. Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr.,1986,23(3):233-243.
    [28] Brown S R. Fluid flow through rock joints: the effect of surface roughness[J]. J GeophysRes,1987;92:1337-1347.
    [29] Barton N. et al., Strength, deformation and conductivity coupling of rock joints[J]. Int. J.Rock Mech. Mini. Sci. and Geomech. Abstr.,1985;22(3):121-140.
    [30] Barton N., Quadros E. F., Joint aperture and roughness in the prediction of flow andgroutability of rock masses[J]. Int. J. Rock Mech. Mini. Sci.,1997,34(3/4):252.e1-252.e14.
    [31] Wang J S Y et al., Aperture correlation of a fractal fracture[J]. J. Geophys. Res.,1988;93(B3).
    [32] Lee Y. H.. The fractal dimension as a measure of the roughness of rock discontinuityprofiles[J]. Int. J. Rock Mech. Min, Sci.,1990,27(6):395-404.
    [33] Huang. J., and D. L. Turcotte. Fractal mapping of digitized images: Application to thetopography of Arizona and comparisons with synthetic images. J. Geophys. Res.,1989,94(B6):7491-7495.
    [34] Scesi L., Gattinoni P., Roughness control on hydraulic conductivity in fractured rocks[J].Hydrogeology Journal,2007,15(2):201-211.
    [35] Iwai K.Fundamental studies of fluid flow through a single fracture[D]. Berkely: Universityof California,1976.
    [36]速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的试验研究[J].岩土工程学报,1995,17(5):19-24.
    [37]耿克勤,陈凤翔,刘光廷等.岩体裂隙渗流水力特性的实验研究[J].清华大学学报(自然科学版),1996,36(1):102-106.
    [38]谢和平.岩石节理粗糙度系数(JRC)的分形估计[J].中国科学(B辑),1994(5):524-530.
    [39]周创兵,熊文林.不连续面的形维数及其在渗流分析中的应用[J].水文地质与工程地质,1996(6):1-5.
    [40]周宏伟,谢和平.岩石节理张开度的分析描述.水文地质与工程地质,1999(1):1-6.
    [41]贺玉龙,陶玉敬,杨立中.不同节理粗糙度系数单裂隙渗流特性试验研究[J].岩石力学与工程学报,2010,29(增1):3235-3240.
    [42]熊祥斌,张楚汉,王恩志.岩石单裂隙稳态渗流研究进展[J].岩石力学与工程学报,2009,28(9):1839-1847.
    [43]王媛.单裂隙面渗流与应力的耦合特性[J].岩石力学与工程学报,2002,21(1):83-87.
    [44]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
    [45]张文杰,周创兵,李俊平等.裂隙岩体渗流特性物模试验研究进展[J].岩土力学,2005,26(9):1517-1524.
    [46]倪绍虎,何世海,汪小刚,吕慷.裂隙岩体水力学特性研究.岩石力学与工程学报,2012,31(3):488-498.
    [47] Meheust Y., Schmittbuhl J. Flow enhancement of a rough fracture[J]. Geophys. Res. Lett.,2000,27(18):2989-2992.
    [48] Chen Z., Lyons L., Qin G.. Derivation of the Forchheimer law via homogenization[J].Transport in Porous Media.2001,44(2):325-335.
    [49] Zimmerman R. W., YaarubiA. A., Pain C. C., et al. Nonlinear regimes of fluid flow in rockfractures[J]. Int. J. Rock Mech. Min, Sci.,2004,41(3):384.
    [50]王媛,顾智刚,倪小东,李冬田,宗国庆.光滑裂隙高流速非达西渗流运动规律的试验研究[J],岩石力学与工程学报,2010,29(7):1404-1408.
    [51] Nicholl. M J, Wheat craft S W. Gravity-driven infiltration instability in initially drynon-horizontal fractures[J]. Wat. Resour. Res.,1994,30(9):2533-2546.
    [52]许光祥,张永兴,哈秋舲.粗糙裂隙渗流的超立方和次立方定律及其试验研究[J].水利学报,2003(3):74-79.
    [53]刘杰,李建林,王瑞红等.含密实原岩充填物的宜昌砂岩裂隙渗流试验研究[J].岩石力学与工程学报,2010,29(2):367-374.
    [54] Vaclav H., Jan S.. Ground water hydraulics[M]. Oxford: Amsterdam,1979.
    [55] п. M.明兹, C. A.舒别尔特.粒状材料水力学[M],水利出版社,1957.
    [56]田开铭,陈明佑,王海林.裂隙水偏流[M].北京:学苑出版社,1989.
    [57]速宝玉,詹美礼,张祝添.充填裂隙渗流特性实验研究[J].岩土力学,1994,15(4):46-51.
    [58]张有天.岩石水力学与工程[M].北京:中国水力水电出版社,2005.
    [59]刘才华,陈从新,付少兰.充填砂裂隙在剪切位移作用下渗流规律的实验研究[J].岩石力学与工程学报,2002,21(10):1457-1461.
    [60]于龙,陶同康.岩体裂隙水流的运动规律[J].水利水运科学研究.1997,3:207-218.
    [61]陶同康.充填裂隙水流特性研究[J].水利水运科学研究.1995(1):23-32.
    [62]陈金刚,张莉红,张俊萌,高峰.充填裂隙水力特性研究述评[J].人民黄河.2011,33(3):134-136.
    [63]陈金刚,张景飞.充填物的力学响应对裂隙渗流的影响[J].岩土力学,2006,27(4):577-580.
    [64]于冰.裂隙渗流与应力耦合关系的实验研究[D].北京,清华大学,1993.
    [65]张世雄,徐长佑,胡修文等.裂隙充填蒙脱石对巷道稳定性的影响[J].岩土力学,1996,17(4):56-61.
    [66]张世雄,徐长佑,陈钧番等.裂隙岩体开挖地压分布规律与控制的研究[R].武汉,武汉理工大学,2000.
    [67]张景飞,陈金刚,张世雄.裂隙充填物对围岩形变效应的数值分析[J].采矿与安全工程学报,2008,25(3):318-321.
    [68]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989,3-21.
    [69]田开铭.对裂隙岩石渗透性的初步研究[J].地质研究.1980,2:137-143.
    [70]田开铭.裂隙水交叉流的水力特性[J].地质学报.1986,2:202-213.
    [71] Tian Kaiming, The hydraulic properties of crossing-flow in an intersected fracture[C]. In:Proceedings of2nd Asian Congress of Fluid Mechanics. Beijing,1983.
    [72]速宝玉,詹美礼,郭笑娥.交叉裂隙水流的模型实验研究[J].水利学报.1997,5:1-6.
    [73]沈振中,陈士军,赵坚.岩溶管道与裂隙交叉渗流特性试验研究[J].水利学报.2008,39(2):137-145.
    [74]陈雰.岩溶与裂隙交叉渗流特性试验及数值模拟研究[D].南京,河海大学,2006.
    [75]詹美礼,速宝玉.交叉裂隙水流N-S方程有限元分析[J].水科学进展,1997,8(1):1-8.
    [76]李晓春,陈剑平,石丙飞,范建华.交叉裂隙渗流无网格法初探[J].岩土力学.2008,28(增刊):371-374.
    [77] Liu J. S., Amir P., Derek E. et al. Dissolution-induced preferential flow in limestonefracture[J]. J. contam. Hydrol.,2005,78(1):53-70.
    [78] Nathalie V. M., David J., Martin H. et al. Characterizing flow zones in a fractured andkarstified limestone aquifer through integrated interpretation of geophysical and hydraulicdata[J]. Hydrology Journal,2007,15(2):225-240.
    [79]倪绍虎,何世海,汪小刚,吕慷.裂隙岩体渗流的优势水力路径[J].四川大学学报(工程科学版),2012,44(6):108-115.
    [80] Kosakowski G., Berkowitz B., Seher H. Analysis of field observations of tracer transport ina fractured till[J]. J. contam. Hydrol.,2001,47(l):29-51.
    [81] Park Y. J., Berkowitz B., Effects of junction transfer characteristics on transport in fracturenetworks[J]. Wat. Resour. Res.,2001,37(4):909-923.
    [82]陈士军.交叉裂隙水流及溶质运移机理实验研究[D].合肥,合肥工业大学,2006.
    [83] Young J. P., Lee K. K. Transport behavior in three-dimensional fracture[J]. Wat. Resour.Res.,2003,39(8):1215-1223.
    [84] Snow D. T., Anisotropic permeability of fractured media[J]. Wat. Resour. Res.,1969,5(6):1273-1289.
    [85] Long J. C. S., Remer J. S., Wilson C. R., Witherspoon P A. Porous media equivalents fornet-works of discontinuous fractures[J]. Wat. Resour. Res.,1982,18(3):645-658.
    [86] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis injointed rock masses[J]. Wat. Resour. Res.,1986,22(13):1845-1856.
    [87]张有天,张武功.裂隙岩石渗透特性渗流数学模型及系数量测[J].岩石力学,1982,(8):41-52.
    [88]冯学敏,陈胜宏.含复杂裂隙网络岩体渗流特性研究的复合单元法[J].岩石力学与工程学报,2006,25(5):918-924.
    [89]宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004,25(2):226-232.
    [90]祝云华,刘新荣,梁宁慧等.裂隙岩体渗流模型研究现状与展望[J].工程地质学报,2008,16(2):178-183.
    [91]王恩志.岩体裂隙的网络分析及渗流模型[J].岩石力学与工程学报.1993,3(3):24-31.
    [92]王洪涛,聂永丰,李雨松.耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J].清华大学学报(自然科学版),1998,12(7):24-27.
    [93]杜广林,周维垣,赵吉东.裂隙介质中的多重裂隙网络渗流模型[J].岩石力学与工程学报.2000, S1(42):190-194.
    [94]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报.2000,1(1):3-7.
    [95]邬爱清,周火明,任放.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报,1998,15(1):15-22.
    [96]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(3):397-402.
    [97]贾洪彪,唐辉明,刘佑荣.岩体结构面网络模拟技术研究进展[J].地质科技情报,2001,20(1):105-108.
    [98]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型I:裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12):2015-2020.
    [99]裴鹿成,王仲奇.蒙特卡罗方法及其应用[M].北京:海洋出版社,1998.
    [100]张发明,汪小刚,贾志欣等.三维结构面连通率的随机模拟计算[J].岩石力学与工程学报,2004,23(9):1486-1490.
    [101]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004:27-46.
    [102] Wilson C. R., Witherspoon P. A., Steady state flow in rigid networks of fractures[J]. Wat.Resour. Res.,1974,10(2):328-335.
    [103] Tsang Y. W., Channel model of flow through fractured media[J]. Wat. Resour. Res.,1997,23(3):486-493.
    [104] Long J. C. S., Witherspoon P. A., The relationship of the degree of interconnect ion topermeability in fractured networks[J]. J. Geophy. Res.,1985,90(B4):3087-3098.
    [105] Bai, R., Tien, C., Particle detachment in deep bed filtration[J]. J. Colloid Interface Sci.,1997,186:307-317.
    [106] Gao, B., Saiers, J.E., Ryan, J.N., Deposition and mobilization of clay colloids inunsaturated porous media[J]. Wat. Resour. Res.,2004,40, W08602.
    [107] Brodsky E. E, Roeloffs E., Woodcock D., Gall I., Manga M.. A mechanism for sustainedgroundwater pressure changes induced by distant earthquakes[J]. J. Geophy. Res.,2003,108,2390.
    [108] Elkhoury, J.E., Niemeijer A., Brodsky E.E., Marone C., Laboratory observations ofpermeability enhancement by fluid pressure oscillation of in situ fractured rock[J]. J.Geophys. Res.,2011,116, B02311.
    [109] Qian J. Z., Chen Z., Zhan H. B., Luo S. H., Solute transport in a filled single fracture undernon-Darcian flow[J]. Int. J. Rock Mec. Min. Sci.,2011,48(1):132-140.
    [110]吴挺峰等.河流型水库垂向二维水沙数学模型[J].水科学进展,2009,20(2):215-221.
    [111]史英标,潘存鸿,程文龙,李志永.平面二维溃坝水沙输移动床数学模型研究[J].水利学报.2012,43(7):835-851.
    [112]刘宏源,毛善君,王振荣,卢本陶,王恒.基于GIS的矿井溃水溃沙预警方法[J],2010,38(4):86-89.
    [113]孙其诚,王光谦.颗粒流动力学及其离散模型评述[J].力学进展.2008,38:87-100.
    [114]王明洋,国胜兵等.饱和沙土动力液化研究进展[J].解放军理工大学学报(自然科学版).2002,3:13-18.
    [115]吴清松,胡毛斌.颗粒流的动力学模型和实验研究进展[J].力学进展.2002,32:250-258.
    [116] Zohdi T. I., An introduction to Modeling and simulation of particulate Flows[M].Philadelphia: Society for Industrial and Applied Mathematics.2007.
    [117]周志德.20世纪的泥沙运动力学[J].水利学报.2002,33:74-77.
    [118] Lu X., Cui P., The liquefaction and displacement of highly saturated sand under waterpressure oscillation[J]. Ocean Engineering,2004,31:795-811.
    [119]郑晓静.风沙运动的力学机理研究[J].科技导报.2007,25:22-27.
    [120] Haji-sotoudeh M.. Experimental study and modeling of hydro-mechanical coupling in rockjoints[D]. Lille, France: University of Lille,1995.
    [121] Olsson R. Barton N.. An improved model for hydro-mechanical coupling during shearingof rock joints[J]. Int. J. Rock Mec. Min. Sci.,2001,38(3):317-329.
    [122] Jones F O., A laboratory study of the effects of confining pressure on fracture flow andstorage capacity in carbonate rocks[J]. J. Petrol Tech.,1975,9(2):21-27.
    [123] Nelson. Fracture permeability in porous reservoirs: experimental and field approach[D].Texas: Department of Geology, Texas A and M University,1975.
    [124] Erichsen, C., Gekoppclte Spannungs-Sickerstr mungsberechnungcn von Bauwer-ken inklüftigem fels unter Berucksichtigung dcs nichtilinearcn Spannung Sverschicbungsverhaltens von Trennflachcn, Ver ffentlichungen dcs Institutes für Grundbau,Bodcnmechanik, Felsmechanik und Verkchswasscrbau der RWTH Aachen,1987.
    [125] Koyama T., Li B., Jiang Y., et al. Numerical modelling of fluid flow tests in a rock fracturewith a special algorithm for contact areas[J]. Computers and Geotechnics.2009,36(1-2):291-303.
    [126] Kranz R L, Frankel A D, Engelder T, et al. The permeability of whole and jointed Barregranite[J]. Int. J. Rock Mec. Min. Sci. Geomech. Abstr.,1979,16(2):225-234.
    [127] Noorishad J., A finite element method for coupled stress and flow analysis infractured rockmass[J], Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1982.
    [128] Noorishad J., Coupled thermal-hydraulic-mechanical phenomena in saturated fracturedporous rocks:Numerical approach[J], J. Geoph. Res.,1989,10365-10373.
    [129] Oda,M., An equivalent continuum model for coupled stress and fluid flow analysis injointed rock masses[J], Wat. Resour. Res.,1986(13).
    [130] Nolte D.D., et al., The fractal geometry of flow paths in natural fractures in rock and theapproach to percolation[J], Pure and Apply Geophys.,1989.
    [131] Esaki T, Du S, Mitani Y, et al. Development of a shear-flow test apparatus anddetermination of coupled properties for a single rock joint[J]. Int. J. Rock Mech. Min. Sci.Geomech. Abstr.,1999,36:641-650.
    [132] Chen Z, Narayan S P, Yang Z. An experimental investigation of hydraulic behavior offractures and joints in granitic rock[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,2000,37:1061-1071.
    [133] Killsall P. C., et al., Evaluation of excavation induced changes in rock permeability[J], Int. J.Rock Mec. Min. Sci.,1984(3).
    [134]刘继山.岩体水力学分析初探[J],勘探科学技术,1987(5):26-31.
    [135] Liu J. Linking stress-dependent effective porosity and hydraulic conductivity fields toRMR[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,1999,36(2):581-589.
    [136]刘继山.结构面力学参数与水力参数耦合关系及其应用,水文地质工程地质,1988(2):7-12.
    [137]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997,18(4):59-62.
    [138]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [139]刘亚晨,蔡永庆,刘泉声等.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报,2001,23(2):196-200.
    [140]刘光廷,叶源新,胡昱等.单裂隙砂砾岩体变形规律研究[J].水力发电学报,2007,26(5):25-30.
    [141]赵阳升,杨栋,郑少河等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):133-136.
    [142]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报,2003,22(10):1651-1655.
    [143]刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律的实验研究[J].岩石力学与工程学报,2002,21(8):1194-1198.
    [144]薛娈鸾,陈胜宏.剪切过程中岩石裂隙的渗流与应力-应变耦合分析.岩石力学与工程学报,2007,26(增2):3796-3803.
    [145] Bart M., Shao J. F., Lydzba D., et al. Coupled hydromechanical modeling of rock fracturesunder normal stress[J]. Canadian Geotechnical Journal,2004,41(4):686-697.
    [146] Zhou C. B., Sharma R. S., Chen Y. F., et al. Flow-stress coupled permeability tensor forfractured rock masses[J]. Int. J. Num. Analy. Met. Geomech.,2008,32(11):1289-1309.
    [147] Shao J. F., Zhou H., Chau K. T.. Coupling between anisotropic damage and permeabilityvariation in brittle rocks[J]. Int. J. Num. Analy. Met. Geomech.,2005,29(12):1231-1247.
    [148]谢妮,徐礼华,邵建富,冯夏庭.法向应力和水压力作用下岩石单裂隙水力耦合模型[J].岩石力学与工程学报,2011,30(增2):3796-3803.
    [149] Liu, W.Q., Manga, M., Changes in permeability caused by dynamic stresses in fracturedsandstone[J]. Geophys. Res. Lett.,2009,36, L20307.
    [150]速宝玉,詹美礼,赵坚.光滑裂隙水流模型试验及其机制初探[J].水利学报,1994(5):19-24.
    [151]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展.2000,12(2):208-217.
    [152]费祥俊.高浓度浑水的粘滞系数[J].水利学报.1982,3:57-63.
    [153]宋良,刘卫群,靳翠军.考虑端面摩擦效应的煤样统计损伤尺度本构模型[J].工程力学.2012,29(11):344-349.
    [154] Barton N. Rock Joints [M]. Rotterdam: A. A. Balkema Publishers,1990.
    [155] Christian K., Richard A. S., Rishi P., Donald M. R., Cubic law with aperture-lengthcorrelation: implications for network scale fluid flow[J], Hydrogeology Journal,2012,18(4):851-862.
    [156]岳湘安,液固两相流基础[M],北京,石油工业出版社,1996.
    [157] J. M Ferreira and R. P Chhabra. Accelerating motion of a vertically falling sphere inincompressible Newtonian media: an analytical solution[J]. Powder Technology,1998,97,6-15.
    [158] Nur A., Booker J. R., After shocks caused by pore fuid flow?[J], Science,1972.175:885-887.
    [159] Wang, C.-Y., and Y. Chia, Mechanism of water level changes during earthquakes: Nearfield versus intermediate field[J], Geophys. Res. Lett.,2008,35, L12402.
    [160] Roeloffs, E. A., Persistent water level changes in a well near Parkfield, California, due tolocal and distant earthquakes, J. Geophys. Res.,1998,103,869-889.
    [161]杨竹转,地震引起的地下水位变化及其机理初步研究[D],北京,中国地震局地质研究所,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700