‘鹿寨蜜橙’及一组柑橘嫁接嵌合体的遗传鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘存在很多自然变异,其中部分芽变材料和嵌合体资源可直接应用于新品种选育。本研究对田间自然产生的两个柑橘新材料进行了品质检测,并采用形态学和SSR、AFLP及SSAP等标记技术对两者的来源及与相近品种的差异进行了遗传鉴定,结果显示两者均为柑橘新种质,都可能直接作为新的优良品种资源应用于生产实践。其中,广西的‘鹿寨蜜橙'为甜橙芽变,遗传性状稳定;而江西赣南的脐橙/温州蜜柑嫁接疑似嵌合体发生在以温州蜜柑为中间砧以枳为基砧的高改脐橙园中,果实外观似脐橙,果肉色泽则与温州蜜柑类似。
     1.‘鹿寨蜜橙'成熟果实风味浓,可固含量高达15%,可滴定酸含量低于0.5%,其中,果糖(63.03mg/g)、蔗糖(43.49mg/g)、葡萄糖(72.19mg/g)含量均高于其相近品种冰糖橙,柠檬酸、奎宁酸、苹果酸含量也高于后者。形态学观察表明,其叶形指数、气孔密度、气孔纵径与冰糖橙的差异显著,叶形比冰糖橙更接近椭圆,气孔密度更高,花药和胚囊发育正常。SSAP标记显示,‘鹿寨蜜橙'与冰糖橙相比存在1个多态性位点。表明‘鹿寨蜜橙'是不同于冰糖橙的芽变新种质,可以直接作为品种资源加以利用。
     2.本研究收集到的柑橘嫁接嵌合体为华盛顿脐橙(Citrus sinensis Osbeck cv.Washington)与温州蜜柑(C.unshiu)的嵌合体。形态学,细胞学,生理生化和分子标记等分析表明,嵌合体中由L1层细胞决定的性状,如汁囊、气孔长度等都与温州蜜柑相似,而由L2层细胞决定的性状如花粉形态、育性和种子数量则与华盛顿脐橙相似。高效液相色谱(HPLC)分析果肉所含的类胡萝卜素组成成分,结果表明嵌合体和温州蜜柑的果肉具有相同的类胡萝卜素种类,主要类胡萝卜素均为β—隐黄质(β-cryptoxanthin)。SSR和cpSSR分析表明:该嵌合体的核基因组和叶绿体基因组分别同时具有华盛顿脐橙和温州蜜柑所有的带形。综合以上结果,推断它是由华盛顿脐橙和温州蜜柑构成的周缘嵌合体,其L1层来源于温州蜜柑,L2/L3层来源于华盛顿脐橙;该嫁接嵌合体分别具备了各自亲本的优良性状,有可能成为新的鲜食品种。
Spontaneous mutation often occurs in Citrus orchards,Some bud mutation and chimera can be directly used for breeding.Here we analyzed the quality of two field bud sports and identified their genetic background and differences to related cultivars by morphological observation and molecular marker,such as SSR(Simple sequence repeat),AFLP(Amplified fragment length polymorphism) and SSAP(Sequence-specific amplification polymorphism).The results indicated both were new germplasms and could be applied to the industry as elite cultivars.'Luzhai' sweet orange(Citrus sinensis),a bud mutant of sweet orange found in Guangxi,has stable genetic traits;a putative chimera of navel orange(Citrus sinensis)/Satsuma mandarin(Citrus unshiu),found in top-worked navel orange orchard(using Poncitrus trifoliate as the rootstock and Satsuma mandarin as inter rootstock),has fruits with appearance resembling 'Washington' navel orange and the pulp color similar to Satsuma mandarin.Main results are as followed:
     1.The flavor of 'Luzhai' sweet orange mature fruit is of rich flavor.The content of TSS is about 15%,however,that of TA is lower than 0.5%.Besides the higher content of fructose,sucrose,and glucose than those of 'Bingtang' sweet orange at 63.03 mg/g,43.49 mg/g and 72.17 mg/g respectively,the content of quinic acid,malic acid and citric acid are also much higher than those of 'Bingtang' sweet orange.There oxists significant difference in the phylliform index,the stoma density and stomatal longitudinal diameter between 'Luzhai' sweet orange and 'Bingtang' sweet orange,but was not in the transverse diameter.In morphology,the phylliform of 'Luzhai' sweet orange is almost elliptical, with higher stoma density and different stoma size,the anther and megaspore are normally developed as well.SSAP analysis indicated that polymorphism locus existed between 'Luzhai' and 'Bingtang' sweet orange.
     2.A graft chimera was discovered which originated from the top work of 'Washington' navel orange(Citrus sinensis) scion onto Satsuma mandarin(Citrus unshiu). The graft chimeras and their donors were investigated in morphology,cytology, biochemistry as well as by molecular markers.Some characters of the chimera,such as juice sacs,stoma length,which were determined by L1 cell layer,were similar to those of Satsuma mandarin,while other characteristics determined by L2 cell layer resembled 'Washington',including pollen morphology and fertility and seeds number.The extract from the fruit pulp of chimera and their donors was studied using HPLC.The results indicated that the mature fruit of the chimera had the same carotenoids profile as Satsuma mandarin,in whichβ-cryptoxanthin accumulated predominantly in the juice sacs.SSR and cpSSR analysis suggested that both nuclear and chloroplast genomes of the chimera were composed of its donor plants respectively.Based on the results above,we concluded that the chimera was a periclinal chimera consisting of L1 derived from Satsuma mandarin and L2/L3 from 'Washington' navel orange.It combined the valuable traits of its donor plants and could be used as a commercial cultivar for the fresh market of citrus industry.
引文
1.鲍露,徐昌杰,江文彬,陈履荣,陈昆松.葡萄AFLP技术体系建立及其在超藤与藤稔葡萄品种鉴别中的应用.果树学报,2005,22(4):422-425
    2.曹庆芹,伊华林,邓秀新.果树雄性不育研究进展.果树学报,2005,22(6):678-681
    3.陈静,高彦祥,吴伟丽,李绍振.高效液相色谱法测定柑橘汁中柠檬苦素和柚皮柑.色谱,2006,24(2):157-160
    4.陈力耕.柑橘实生苗童期的研究.中国柑橘,1986,(1):19-21
    5.邓秀新,Gmitter J F G,Grosser J W.柑橘同源及异源四倍体花粉育性研究.园艺学报,1995,22(1):16-20
    6.邓秀新,伊华林,李锋,郭文武,叶文明.以异源四倍体体细胞杂种为父本杂交培育三倍体柑橘植株.植物学报,1996,38(8):631-636
    7.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32(6):1140-1146
    8.郭文武,邓秀新.柑橘细胞电融合再生两个种间体细胞杂种.生物工程学报,2000,16(2):179-182
    9.郭文武,邓秀新.柑橘与黄皮属间体细胞杂种植株的异常倍性变异.植物学报,1999,41(4):439-441
    10.金勇丰,张耀洲,张大明,张上隆.早熟桃芽变品种‘大观1号'的RAPD分析及其特异片段克隆.果树科学,1998,15(2):103-106
    11.李道高.柑橘学.第一版.北京:农业出版社,1996:56-56
    12.李天菲,蔡得田.植物嵌合体机理及研究进展.湖北大学学报(自然科学版),2002,24(1):81-86
    13.刘继红,胡春根,邓秀新.电场诱导原生质体融合获得柑橘属间四倍体体细胞杂种.园艺学报,2002,29(4):372-374
    14.刘勇,吴波,刘德春,孙中海.江西柑橘地方品种资源及野生近缘种SSR分子标记.江西农业大学学报,2005,27(4):486-490
    15.罗安才,李纯凡,黄仁湖,向可术,李道高.奉节脐橙芽变株系的AFLP分析.农业生物技术科学,2003,19(6):20-24
    16.宁允叶,熊庆娥,曾伟光,曾光荣.红阳猕猴桃全红芽变系的RAPD分析.园艺学报,2003,30(5):511-513
    17.庞晓明.用分子标记研究柑橘属及其近缘属植物的亲缘关系和枳的遗传多样性.[博士学位论文],武汉:华中农业大学图书馆,2002
    18.沈德绪,王元裕,陈力耕.柑橘遗传育种学.北京 科学出版社,1998.161-166
    19.沈德绪.果树育种学(第二版).北京:中国农业出版社,1997.118-127
    20.史永忠,郭文武,邓秀新.柑橘RAPD技术体系建立与体细胞杂种鉴定.园艺学报,1998,25(2):105-110
    21.王三红,陈力耕,章镇,房经贵.RAPD在柑橘品系鉴别上的应用.果树科学,2000,17(1):70-72
    22.王西平,王跃进,张剑侠,徐炎,杨克强.葡萄早熟芽变品种‘早生高墨'的RAPD分析.西北植物学报,2003,23(3):473-476
    23.韦杰.柑橘反转录转座子基因的特性分析及其相关分子标记的开发.[博士学位论文],武汉:华中农业大学图书馆,2007
    24.吴姗,黎吴雁,梁月荣.一组嫁接嵌合体及其嫁接亲本的形态学、遗传学研究.果树学报,2007,24(1):1-5
    25.肖顺元,章文才.RFLP在柑橘遗传多样性研究上的应用.果树科学,1995,12(1):1-4
    26.肖璇,孙敏,王心燕,乔爱民,江波.‘石硖'龙眼大果型桂花味芽变系的RAPD分析鉴定.园艺学报,2005,32(4):684-687
    27.徐娟.几个柑橘产区果实色泽评价及红肉脐橙(Citrus sinensis L.cv.Cara cara)果肉呈色机理初探.[博士学位论文].武汉:华中农业大学图书馆,2002
    28.叶自行,曾泰,许建楷,罗志达,胡桂兵,张昭其,季作梁,陈玉成,陈国良,陈立雄,林顺权.无子沙糖橘(十月橘)的选育.果树学报,2006,23(1):149-150
    29.伊华林,邓秀新.柑橘体细胞杂种有性后代的创造和杂种鉴定.实验生物学报,2005,38(3):219-226
    30.伊华林,覃伟,李长藻,邓秀新.椪柑新品种‘华柑2号'.园艺学报,2005,32(5):962
    31.曾柏全,甘霖,熊兴耀.冰糖橙优良芽变的AFLP分析.江西农业大学学报,2006,28:222-225
    32.曾凡坤,邹连生,焦必林.柑橘中类柠檬苦素及分布研究.中国食品学报,2003,3(4):79-81
    33.张俊娥,刘继红,邓秀新.采用倍性分析仪鉴定柑橘愈伤组织的遗传变异.遗传学报,2003,30(2):169-174
    34.张俊娥.柑橘愈伤组织DNA含量变异、体细胞胚胎发生及同源四倍体的诱导研究.[博士学位论文],武汉:华中农业大学图书馆,2005
    35.张开春,尹淑萍,杨英军,林珂,侯义龙,过国南.分子标记在果树上的应用.果树科学;1999,16(3):210-218
    36.张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展.果树学报,2006,23(6):871-876
    37.张敏.柑橘果实扇形嵌合体的分离及两组嫁接嵌合体的遗传研究.[博士学位论文],武汉:华中农业大学图书馆,2007
    38.张治安,张美善,蔚荣海.植物生理学实验指导.北京,中国农业科学技术出报社,2004:89
    39.AmitVikram,G.K.Jayaprakasha,BhimanagoudaS.Patil.Simultaneous determination of citrus limonoid aglycones and glucosides by high performance liquid chromatography.Analytica Chimica Acta,2007,590(2007):180-186
    40.Asins M J,Monforte A J,Mestre P F.Citrus and Prunus copia-like retrotransposons.Theor Appl Genet,1999,99:503-510
    41.Bernet G P,Asins M J.Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus.Theor Appl Genet,2003,108:121-130
    42.Binding H,Witt D,Monzer J,Mordhorst G,Kollmann R.Plant cell graft chimeras obtained by co-culture of isolated protoplasts.Protoplasma,1987,141:64-73
    43.Bowman K,Gmitter F,Moore G,Rouseff R.Citrus Fruit Sector Chimeras as a Genetic Resource for Cultivar Improvement.J.AMER.SOC.HORT.SCI,1991,116(5):888-893
    44.Breto M P,Ruiz C,Pina J A,Asins M J.The Diversification of Citrus clementina Hort,ex Tan.a vegetatively propagated crop species.Mol Phylogenet Evol,2001,21(2):285-293
    45.Carlson P S,Chaleff R S.Heterogeneous association of cells formed in vitro.In Ledoux L(ed) Genetic Manipulations wih Plant Materials(pp 245-261) Plenum Press,New York.1974
    46.Carpenter R,Coen E S.Transposon induced chimeras show that floricaula,a meristem identity gene,acts non-autonomously between cell layers.Development,1995,121:19-26
    47.Castillo I P,Lidon M G,Banos M S.'Fino 95':An extra-early selection of lemon.Proceedings of the Global Citrus Germplasm Network Meeting,2002,131
    48.Chen L,Ge M,Zhu X.Artificial synthesis of interspecific chimeras between tuber mustard(Brassica juncea) and cabbage(Brassica oleracea) and cytological analysis.Plant Cell Rep,2006,25:907-913
    49.Cheng Y J,Guo W W,Deng X X.cpSSR—a new tool to analysis chloroplast genome of citrus somatic hybrids.Acta Bot Sinica,2003,45(8):906-909
    50.Cheng Y J,Guo W W,Deng X X.Molecular characterization of cytoplasmic and nuclear genomes in phenotypically abnormal Valencia orange(Citrus sinensis)+ Meiwa kumquat (Fortunella crassifolia) intergeneric somatic hybrids. Plant Cell Rep, 2003,21(5): 445-451
    
    51. Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Bio Rep, 2003,21: 177-178
    
    52. Cheng Y J, Vicente M C D, Meng H J, Guo W W, Tao N G, Deng X X. A set of primers to analyze the chloroplast DNA diversity in Citrus and its relatives. Tree Physiol, 2005,25:661-672
    
    53. Clayberg C D. Insect resistance in a graft-induced periclinal chimera of tomato. HortScience, 1975, 10: 13-15
    
    54. Coletta Filho H D, Machado M A, Targon M L P N, Moreira M C, Pompeu Jr J. Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica, 1998,102: 133-139
    
    55. Corazza-Nunes M J, Machado M A, Nunes W M , et al. Assessment of genetic variability in grapefruits {Citrus paradisi Macf.) and pummelos (C. maxima (Burm.)Merr.) using RAPD and SSR markers. Euphytica, 2002, 126: 169-176
    
    56. Franks T, Botta R, Thomas M. Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet, 2002, 104:192-199
    
    57. Goffreda J C, Szymkowiak E J, Sussex I M, Mutschler M A. Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters. Plant Cell, 1990, 2: 643-649
    
    58. Hirata Y, Yagishita N, Sugimoto M, Yamamoto K. Intervarietal chimera formation in cabbage (Brassica oleracea L.). Jpn. J. Breed., 1990,40:419-428
    
    59. Hirata Y, Yagishita N, Yamamoto K, Sugimoto M. Interspecific graft chimera between Brassica oleracea and B. campestris. Jpn. J. Breed, 1992, 42:202-212
    
    60. Iwamasa M. Studies on the sterility in genus Citrus with special reference to the seedlessness. Bulletin: Bullentin of the Horticultural Research Station, 1966: 1-82
    
    61. Jorgensen C A. A periclinal tomato-potato chimera. Hereditas, 1927, 10: 293-301
    
    62. Kaddoura R L, Mantell S H. Synthesis and characterization of nicotiana-Solanum graft chimeras. Ann. Bot., 1991, 68: 547-556
    
    63. Kobayashi S, Yamamoto N, Hirochika H. Retrotransposon-Induced Mutations in Grape skin Color. Science, 2004,304:982
    
    64. Li Y Z, Cheng Y J, Yi H L, Deng X X. Genetic diversity in Mandarin landraces and wild mandarins from China based on nuclear and chloroplast simple sequence repeat markers. J Hortic Sci Biotech, 2006, 81 (3): 371-378
    65. Lin S Q, Zhang Q Y. 'Honyou'- A red color mutant of Pummelo. Proceedings of the Global Citrus Germplasm Network Meeting, 2002,158
    
    66. Lindsay G C, Hopping M E, Binding H, Burge G K. Graft chimeras and somatic hybrids for new cultivars. NZ J. Bot., 1995, 33: 79-92
    
    67. Liu J H, Xu X Y, Deng X X. Characteriztion of nuclear and cytoplasmic of somatic hybrid plants between sweet orange and sour orange. Acta Bot Sinica, 2004, 46(10): 1206-1211
    
    68. Liu Y Z, Tang P, Tao N G, et al. Fruit coloration difference between Fengwan, a late-maturing mutant and its original cultivar Fengjie 72-1 of navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology and Molecular Biology, 2006,32 (1):31-36
    
    69. Marcotrigiano M, Gouin F R. Experimentally synthesized plant chimeras 2. A comparison of in vitro and in vivo techniques for the production of interspecific Nicotiana chimeras. Ann. Bot., 1984, 54: 513-521
    
    70. Marcotrigiano M, Gouin F R. Experimentally synthesized plant chimeras 1. In vitro recovery of Nicotiana tabacum L. chimeras from mixed callus cultures. Ann. Bot., 1984,54:503-511
    
    71. Zhang M, Deng X X.Characterization of a New Natural Periclinal Navel-Satsuma Chimera of Citrus: 'Zaohong' Navel Orange, J. Amer. Soc. Hort. Sci.,2007,132(3):374-380
    
    72. Neilson-Jones W. Plant Chimeras, 2nd edition. Methuen, London, 1969.
    
    73. Noguchi T, Hirata Y, Yagishita N. Intervarietal and interspecific chimera formation by in vitro-graft culture in Brassica. Theor. Appl. Genet., 1992, 83:727-732
    
    74. Price Z, Schulman A H, Mayes S. Development of new marker methods- an example from oil palm. Plant Genetic Resources, 2003, 1(2-3): 103-113
    
    75. Rodrigo M, Marcos J, Alferez F, et al. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. Journal of Experimental Botany, 2003, 54:727-738
    
    76. Schmidt, A. 1924. Histologische studien an phanerogamen vegetation spunkten. Bot. Arch. 8:345-404
    
    77. Scott K D, Ablett E M, Lee L S, Henry R J. AFLP markers distinguishing an early mutant of 'Flame' Seedless grape. Euphytica, 2000, 113: 245-249
    
    78. Sofia P H, Augusta B, Margarida D, Leonor M C, Wanda V. Genomic analysis of grapevine retrotransposon (Gret1) in Vitis vinifera. Theor Appl Genet, 2005, 111(5): 871-878
    79. Stewart R N, Semeniuk P, Dermen H. Competition an accommodation between apical layers and their derivatives in the ontogeny of chimeral shoots of Pelargonium×hortorum. Am. J. Bot., 1974,61:54-67
    
    80. Sugawara K, Wakizuka T, Oowada A, Moriguchi T, Omura M. Histogenic identification by RAPD analysis of leaves and fruit of newly synthesized chimeric Citrus. J. Amer. Soc. Hort. Sci., 2002,127(1):104-107
    
    81. Tao N G. Cloning and characterization of carotenoid biosynthetic genes from sweet orange ( Citrus sinensis Osbeck ) red-fleshed mutants. Wuhan : Huazhong Agricultural University,2006. 64-67
    
    82. Tao N G, Wei J, Liu Y Z, et al. Copia-like retrotransposons in a precocious mutant of trifoliate orange [Poncirus trifoliate (L.) Raf]. Journal of Horticultrual Science & Biotechnology, 2006,81 (6) :1038-1042
    
    83. Venturi S, Dondini L, Donini P, Sansavini S. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet, 2005, 112(3): 440-444
    
    84. Winkler H. Uber propfbastarde und pflanzliche chimaeren. Ber. Dtsch. Bot. Ges, 1907,25:568-576
    
    85. Yao J L, Dong Y H, Bret A. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA, 2001,98:1306-1311
    
    86. Zhou J, Hirata Y, Nou I S, Shiotani H, Ito T. Interactions between different genotypic tissues in citrus graft chimeras. Euphytica, 2002,126: 355-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700