南蛇藤提取物抑制肝癌淋巴管生成的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高转移、易复发是影响原发性肝细胞癌(hepatocellular carcinoma HCC,以下简称肝癌)疗效的首要问题。淋巴转移是肝癌转移的重要途径之一,也是影响患者预后的关键因素。
     淋巴管新生是肿瘤淋巴转移过程中的早期事件。血管内皮生长因子C(vascular endothelial growth factor C,VEGF-C)是最重要的促淋巴管内皮生长因子之一,VEGF-C与血管内皮生长因子受体-3(vascular endothelial growth factor receptor3, VEGFR-3)特异结合后,激活下游系列信号转导通路,促进淋巴管内皮细胞的增殖、分化和迁移,形成新生淋巴管,介导肿瘤细胞的淋巴转移。
     另有研究认为,肝癌细胞表达的趋化因子受体CXCR4(chemokine receptor4, CXCR4)与淋巴管内皮细胞分泌的基质细胞衍生因子1(stromal-derived factor-1, SDF-1)相互作用,诱导肝癌细胞向淋巴管趋化迁移;转移至淋巴管的肿瘤细胞通过分泌VEGF-C促进更多数目的淋巴管生成。同时,VEGF-C促进淋巴管内皮细胞分泌产生趋化因了SDF-1,并上调CXCR4在肿瘤细胞中的表达水平以募集更多的淋巴管内皮细胞,诱导其迁移并形成新生淋巴管。
     我国传统中草药南蛇藤(Celastrus orbiculatus thunb.,卫矛科,南蛇藤属)以往主要用于抗炎、抗风湿治疗。本课题组前期研究显示,南蛇藤茎乙酸乙酯提取物(C.orbiculatus ethyl acetate extracts, COE)有显著的抗肿瘤作用,但其机制还未完全阐明。
     本研究首次结合体内外实验对南蛇藤提取物抗肝癌淋巴管生成的作用及相关机制进行研究。体外研究显示,COE能抑制人肝癌细胞的增殖,通过线粒体凋亡通路诱导肝癌细胞凋亡,并降低其体外迁移的能力;COE能明显降低人肝癌细胞中VEGF-C的mRNA及蛋白表达,显著下调人肝癌细胞中CXCR4的蛋白表达水平,调控MAPK及PI3K/AKT信号转导通路。另外,COE明显抑制人淋巴管内皮细胞(human lymphatic endothelial cells, HLECs)的增殖,降低HLECs在Matrigel上形成管样结构的能力。
     体内研究证实,COE可抑制裸鼠人肝癌细胞皮下移植瘤的生长,降低荷瘤裸鼠血清VEGF-C的浓度,减少移植瘤组织中的淋巴管新生和微淋巴管密度,降低移植瘤内VEGF-C和CXCR4的表达,下调AKT及ERK1/2蛋白的磷酸化表达水平。
     综上分析,COE能抑制人肝癌细胞的生长、诱导其凋亡、降低其体外迁移能力,同时COE能有效抑制裸鼠人肝癌皮下移植瘤的生长和淋巴管的生成。一方面,COE通过下调肝癌细胞VEGF-C的表达直接抑制肝癌淋巴管的新生;另一方面,COE可抑制肝癌细胞CXCR4的表达(或通过抑制VEGF-C的分泌来下调CXCR4的表达),从而阻遏肝癌细胞向淋巴管趋化迁移,间接抑制淋巴管的新生。究其分子机制,我们认为COE可能通过调控ERK1/2及PI3K/AKT信号转导通路,下调移植瘤组织p-ERK1/2及p-AKT蛋白的表达水平,作用于VEGF-C/VEGFR-3和CXCR4/SDF-1生物轴,抑制肝癌淋巴管生成。本研究为进一步阐明南蛇藤提取物的抗肝癌机制及开发新型抗肝癌药物提供了新的策略和理论依据,也为肝癌的治疗提供了新的思路。
     研究共分为两部分内容。
     第一部分
     南蛇藤提取物通过降低VEGF-C的表达抑制肝癌淋巴管生成的体外研究
     目的:研究COE对人肝癌细胞增殖、凋亡、迁移及VEGF-C、CXCR4表达水平的影响,分析COE对MAPK和PI3K/AKT信号转导通路的调控作用,并观察COE能否抑制人淋巴管内皮细胞(human lymphatic endothelial cells, HLECs)在Matrigel上形成管样结构的能力,初步探讨COE抑制肝癌淋巴管生成的机制。
     方法:人肝癌HepG2, HCCLM6细胞分别经不同浓度(10,20,40,80及160μ/mL)的COE处理后,MTT法观察增殖能力的改变;TUNEL法及流式细胞术检测细胞的凋亡,Western Blot分析线粒体凋亡通路相关分子Cyt-c、Bax、Bcl-2、Caspase-3及PARP的表达水平;Transwell小室检测体外迁移能力的变化;酶联免疫吸附测定法(enzyme-linked immunosorbent assay,ELISA)测定细胞培养上清中VEGF-C的浓度,细胞免疫组化、Westernblot及实时荧光定量(realtime quantitative) PCR法分别检测VEGF-C蛋白及mRNA的表达量;同时以Western blot方法分析CXCR4蛋白的表达水平以及MAPK及PI3K/AKT信号转导通路中ERKI/2、JNK、p38MAPK和Akt蛋白的磷酸化表达水平。以不同浓度(10,20,40,80及160μg/mL)的COE作用HLECs, MTT法观察COE对其增殖能力的影响,成管试验观察HLECs在Matrigel基质胶上形成淋巴管样结构的影响。
     结果:不同浓度(10,20,40,80,160μg/mL) COE作用24和48h,对HepG2和HCCLM6细胞的增殖均有抑制作用,并呈明显的时间和剂量依赖性。药物作用24h时,HepG2细胞在20~160μg/mL、HCCLM6细胞在40~160μg/mL浓度组的生长存活率与本细胞对照组相比均有统计学差异(P<0.05或P<0.01);药物作用48h,各浓度COE均对两组细胞的增殖均呈现出显著抑制作用,与对照组相比差异显著(P<0.05或P<0.01),其中COE对HepG2细胞的增殖抑制率分别为11.7%、20.75%、27.9%、35.6%、57.2%,对HCCLM6细胞增殖抑制率分别为12.1%、27.5%、30.3%、37.9%、51.4%。COE对HepG2细胞和HCCLM6细胞的半数抑制浓度(50%concentration of inhibition, IC50)分别为131.948μg/mL和158.289μg/mL。
     不同浓度(10,20,40,80及160μg/mL) COE作用24h后,TUNEL法检测HepG2细胞显示,随着药物作用浓度的加大,凋亡细胞数目逐渐增多,凋亡形态也越趋明显。各组平均凋亡指数为12.82±0.41%,18.74±0.66%,24.27±1.24%,34.23±2.10%,44.83±2.76%,与阴性对照组4.444±0.33%相比,差异具有显著性(P<0.01)。流式细胞术检测显示,HCCLM6细胞早期凋亡率分别为12.0±2.3%,13.9±1.5%,15.3±2.8%,17.2±3.4%及21.7±5.6%,与阴性对照组5.2±1.7%相比,具有显著差异(P<0.05或P<0.01)。结果说明COE能诱导HepG2和HCCLM6细胞的凋亡,并呈剂量依赖性。以Western blot进一步检测COE对HCCLM6细胞中与线粒体凋亡通路相关的分子蛋白表达水平。结果可见随着COE作用浓度的增加,细胞质内细胞色素c (Cyt-c)蛋白表达逐渐增多,Bax蛋白表达水平也逐渐升高,而Bcl-2蛋白表达水平逐渐降低,Cleaved Caspase-3及PARP蛋白水平也呈上升趋势。
     Transwell实验结果显示,不同浓度(10,20,40,80及160μg/mL) COE作用24h后,HepG2及HCCLM6迁移细胞数均明显减少,呈剂量依赖性,与本细胞对照组相比差异显著(P<0.01),COE10~160μg/mL组HepG2细胞穿膜数量分别下降了28.17±2.86%,41.33±1.72%,51.72±1.50%,69.04±1.58%,72.49±2.18%,相应浓度的COE各组HCCLM6细胞穿膜数量分别下降了28.41±5.20%,37.29±6.82%,48.35±3.86%,63.57±2.46%,74.22±2.27%。
     采用实时荧光定量(realtime quantitative) PCR法及Western blot检测不同浓度(10,20,40,80及160μg/mL) COE作用HepG2细胞24h后对VEGF-C mRNA及蛋白表达水平的影响,结果提示COE能明显抑制VEGF-C mRNA及蛋白的表达水平,且抑制作用呈剂量依赖性。分别采用细胞免疫组化及ELISA的方法,检测相应浓度COE作用24h后HCCLM6细胞中及其培养上清中VEGF-C蛋白的表达量。结果显示,随着药物作用浓度的增高,VEGF-C蛋白的表达量均逐渐下降,与对照组相比,除了浓度为10μg/mL组无差异外,其余各组细胞胞浆中和培养上清中VEGF-C蛋白的表达强度与对照组比较均有显著差异(P <0.01)。Western blot进一步分析COE对HepG2细胞CXCR4蛋白的影响,结果发现COE呈剂量依赖性抑制CXCR4蛋白的表达水平。
     不同浓度(10,20,40,80及160μg/mL) COE作用24h后,Western blot分析COE对HCCLM6细胞中ERKI/2, JNK和p38MAPK及Akt蛋白磷酸化表达水平的影响。结果提示,当COE浓度为增至40μg/mL时,可检测出磷酸化JNK和p38MAPK蛋白的表达,且表达水平且随着药物浓度的加大逐渐上调。相反,磷酸化AKT蛋白的表达水平则逐渐下降。各组均可检测出磷酸化ERK1/2蛋白的表达,但未呈现明显的量效关系。
     不同浓度(10,20,40,80及160μg/mL)的COE作用HLECs24h,40μg/mLCOE开始有效抑制HLECs的增殖,随着药物浓度加大,抑制作用逐渐增强,40,80,160μg/mL COE组细胞增殖抑制率分别为19.85±2.5%,38.08±6.11%,70.40±10.11%,与阴性对照组相比差异著(P<0.01)。将HLECs接种于Matrigel基质胶上,当COE作用18h时,10μg/mLCOE组HLECs形成的管样结构数目虽然与阴性对照组接近,但管腔变粗大,且有管壁断开现象;COE20μg/mL和40μg/mL组管样结构数目明显减少,至浓度为80μg/mL时,部分HLECs能够形成长条状或梭状,但不能形成完整的管样结构;COE浓度为160μg/mL时,HLECs难以连接形成连续的条索状结构,或仅见散在的簇状细胞团。
     结论:南蛇藤提取物可抑制人肝癌细胞增殖,通过线粒体凋亡通路诱导肝癌细胞凋亡,并降低其体外迁移的能力,下调VEGF-C和CXCR4的表达水平,调控MAPKP信号通路及PI3K/AKT信号通路,抑制人淋巴管内皮细胞形成管样结构。
     第二部分
     南蛇藤提取物抑制肝癌裸鼠移植瘤淋巴管生成的作用及机制研究
     目的:研究COE对裸鼠人肝癌移植瘤及淋巴管生成的影响,并分析COE对移植瘤组织VEGF-C、CXCR4蛋白表达水平及ERK1/2、AKT蛋白磷酸化表达水平的影响。
     方法:BALB/c裸鼠56只,随机选择8只进入正常组,其余48只均于右侧背部皮下接种人肝癌细胞株HepG2(2.0×105)0.2mL/只。待瘤块约3mm3大小时,将裸鼠随机分为阴性对照组(生理盐水)、溶媒对照组(1%DMSO)、COE高、中、低剂量(40,20,10mg/kg)组及阳性对照5-Fu组(10mg/kg),每组8只。分组当天开始给药,连续21d,末次药24h后,检测肿瘤体积及重量,末端脱氧核苷酸转移酶介导的脱氧尿苷三磷酸盐缺口标记法(terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, TUNEL)检测移植瘤组织内肿瘤细胞的凋亡,ELISA检测血清中VEGF-C的浓度,免疫组化检测移植瘤组织内微淋巴管密度及VEGF-C、CXCR4及p-ERK1/2和p-AKT蛋白的表达。
     结果:与阴性对照组相比,COE各治疗组肿瘤生长速度明显减缓,瘤体积显著减小(P<0.05或P<0.01),且存在剂量依赖性。COE各组瘤重均低于阴性对照组(1.57±0.58g),其中低、中剂量组平均瘤重分别为1.06±0.29g和0.93±0.28g,抑瘤率为32.38%、40.46%(P<0.05),高剂量组平均瘤重为0.71±0.38g,抑瘤率达54.46%,显著抑制肿瘤生长(P<0.01),抑制作用具有剂量依赖性。阳性对照5-Fu组平均瘤重为0.69±0.20g,抑制率为56.26%,与COE高剂量组抑制作用接近。
     肝癌移植瘤组织切片内,COE低、中、高剂量及5-Fu组平均凋亡细胞数目逐渐增多,分别为32.88±2.90、42.75±3.06、73.13±3.04、79.38±5.32,与阴性对照组7.63±0.52相比,差异显著(P<0.01)
     ELISA检测荷瘤裸鼠血清VEGF-C浓度,COE低、中、高剂量组及阳性对照5-Fu组分别为205.85±56.33pg/mL,144.31±16.78pg/mL,129.93±16.94pg/mL,136.01±21.62pg/mL,与阴性对照组316.18±15.01pg/mL相比,均有统计学差异(P<0.05或P<0.01),提示COE能够明显抑制肝癌荷瘤裸鼠血清中VEGF-C的含量,且抑制作用呈剂量依赖性。
     免疫组化分别检测肝癌移植瘤组织切片内VEGF-C、CXCR4、p-ERK1/2及p-AKT蛋白的表达,结果提示COE低、中、高剂量组及5-Fu组肿瘤细胞VEGF-C、CXCR4、p-ERK1/2及p-AKT阳性染色细胞数及染色强度均较阴性对照组显著下降(P<0.05或P<0.01)。表明COE能有效抑制移植瘤组织中VEGF-C、CXCR4的表达,并对p-ERKl/2及p-AKT的表达水平有抑制作用。
     抗VEGFR-3及抗LYVE-1特异性抗体分别对移植瘤组织微淋巴管密度分析,结果均提示COE各治疗组及5-Fu组的MLVD较阴性对照组均有显著下降,且差异显著(P<0.05或P<0.01)。其中以抗VEGFR-3抗体标记的COE低、中、高剂量组、5-Fu组及阴性对照组MLVD分别为15.08±1.49、13.01±1.31、7.33±1.64、12.01±1.62、19.96±2.61,以抗LYVE-1抗体标记的相应各组MLVD分别为10.13±1.04、6.62±1.13、4.88±0.91、6.29±0.95、15.83±1.65。Pearson相关分析结果显示,LYVE-1与VEGFR-3标记的MLVD呈正相关(r=0.901,P=0.000)。表明COE能有效抑制肝癌移植瘤组织内淋巴管的生成,降低微淋巴管密度。
     结论:COE能抑制裸鼠肝癌移植瘤的生长,并减少淋巴管的生成,其机制可能与促进肿瘤细胞凋亡、抑制肿瘤细胞VEGF-C和CXCR4的表达水平以及干扰ERK1/2及PI3K/AKT信号转导通路相关。
Metastasis and recurrence are the main obstacles to the improvement of treatment efficacy of hepatocellular carcinoma. Metastasis spread of the hepatocellular carcinoma via lymphatic system often represents the key step of dissemination and serves as a major prognostic indicator for the progression.
     Lymphangiogenesis, the generation of new lymphatic vessels, often occurs at an early stage of lymphatic metastasis in human malignant tumors. Among several prolymphangiogenic factors secreted by tumor cells, the most potent one is vascular endothelial growth factor (VEGF)-C, which bind to a tyrosine kinase receptor, VEGF receptor (R)-3, expressed on the lymphatic endothelium. The VEGF-C/VEGFR-3axis plays a key role in activating resultant signaling pathway, then promoting endothelial cell proliferation, migration, and survival, significantly increasing tumor-associated lymphangiogenesis and the incidence of lymphatic metastasis.
     Recent evidence indicates that the chemokine receptors and their corresponding chemokine ligands directly contribute to lymphatic metastasis of tumor cells. CXC chemokine receptor-4(CXCR4) is widely expressed in various types of tumor cells including hepatocarcinoma cells. Stromal-derived factor-1(SDF-1) is a unique ligand of the CXCR4, which can be expressed on lymphatic endothelial cells (LECs). Activation of the SDF-1/CXCR4axis can contribute to chemoattraction between tumor cells and LECs including inducing the activation and tubule formation of LECs, promoting tumor lymphangiogenesis and chemotaxis of tumor cells to lymphatic vessels. Further studies show that, in addition to mediating tumor lymphangiogenesis, VEGF-C may also induce the secretion of SDF-1by LECs and up-regulate the expressing of chemokine receptors in tumor cells and thereby active tumor invasion of lymphatics, which indirectly promote tumor lymphangiogenesis.
     The Celastraceae plant Celastrus orbiculatus has traditionally been used as an effective remedy for arthritis and other inflammatory diseases in China. Our previous studies revealed that ethyl acetate extract from C. orbiculatus stem exerts potent antitumor activity. However, the mechanisms underlying this activity remain unclear, and further investigations are needed to explore the potential of COE for clinical use.
     In the present study, we have examined, for the first time, the inhibitory effects of COE on hepatocellular carcinoma lymphangiogenesis and investigated the underlying associated molecular mechanisms. Results of in vitro study indicated that COE can significantly inhibit proliferation, migration and induced Mitochondria-mediated apoptosis of hepatoma cells in a dose-dependent manner. More importantly, COE treatment can effectively down-regulate the protein and gene expression of VEGF-C, suppressing the protein expression of CXCR4. Furthermore, activation of extracellular signal-regulated kinase (ERK), p38kinase, and c-Jun N-terminal kinase (JNK) phosphorylation, and down-regulation of Akt phosphorylation was observed. Simultaneously, it has been observed that COE can inhibit proliferation and the tube-like structure formation of HLECs.
     In in vivo studies, COE can attenuate growth and decrease lymphangiogenesis of the subcutaneous tumor in hepatocellular carcinoma xenograft model, and thereby reduce lymphatic vessel density. Meanwhile, COE strongly suppresses VEGF-C and CXCR4protein expression in tumor sections, and moreover efficiently down-regulates of the phosphorylation of extracellular signal-regulated kinase1/2and AKT.
     Taken together, the C. orbiculatus extract acts on hepatocellular carcinoma and tumor lymphangiogenesis by inhibiting cellular proliferation, inducing apoptosis, down-regulating of the VEGF-C and CXCR4, and moreover by modulating the extracellular signal-regulated kinase1/2and the phosphatidylinositol3-kinase/AKT signaling pathway. Our study may help elucidate the mechanism of antitumor activity of COE and provide further evidence for the development of a new type of antitumor drug.
     The findings will be described in two parts as follows.
     Part I:Extracts from Celastrus Orbiculatus Inhibit Hepatocellular Carcinoma Lymphangiogenesis by down-regulating the expression of VEGF-C in vitro
     Objective:To determin the antitumor function of Celastrus orbiculatus Exacts (COE) and explore the mechanisms preliminarily by investigating its effects on proliferation, apoptosis, migration and vascular endothelial growth factor-C (VEGF-C), CXC chemokine receptor-4(CXCR4) expression, the MAPK and PI3K/AKT signaling transduction pathwaws in human hepatoma cells and the anti-lymphangiogenesis of HLECS.
     Methods:Human hepatocellular carcinoma cells were treated with COE at different concentrations (10,20,40,80,160mg/L). The effect of COE on cell viability was examined using3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Cellular apoptosis following COE treatment was assessed by TUNEL and flow cytometry assay. The migration ability of cells was assayed by Transwell chamber experiment. VEGF-C production in the conditioned medium was analyzed with the human VEGF-C ELISA kit. The mRNA expressions of VEGF-C were detected by realtime quantitative PCR. The protein expressions of VEGF-C, Cyt-c、Bax、Bcl-2、Caspase-3, PARP, CXCR4, ERKI/2、JNK、p38MAKP and Akt were detected by Western blot analysis. The anti-lymphangiogenesis effects of COE were analyzed using an in vitro tube-formation assay.
     Results:COE significantly inhibited the proliferation and induced the apoptosis of HepG2and HCCLM6cells in a dose-dependent manner. The inhibition rates of HepG2cells were11.7%、20.75%、27.9%、35.6%and57.2%for10to160μg/mL of COE, respectively. While the corresponding inhibition rates of HCCLM6cells were12.1%,27.5%,30.3%,37.9%,51.4%. After exposure to COE at doses of10to160μg/mL for24h, apoptosis index of HepG2cells were12.82±0.41%,18.74±0.66%,24.27±1.24%,34.23±2.10%,44.83±2.76%, respectively. And the percentage of the early apoptotic HCCLM6cells (Annexin V+PI-) were12.0±2.3%,13.9±1.5%,15.3±2.8%,17.2±3.4%and21.7±5.6%, respectively. Meanwhile, COE increased Bax expression, decreased Bcl-2expression, promoted the release of cytochrome c, activated cleavage of caspase-3and poly (ADP-ribose) polymerase (PARP). COE significantly inhibited VEGF-C expression at both mRNA and protein levels, suppressed the protein expression of CXCR4in a dose-dependent manner. COE activated the extracellular signal-regulated kinase (ERK), p38kinase, and c-Jun N-terminal kinase (JNK) phosphorylation, and down-regulated the Akt phosphorylation. COE significantly inhibited proliferation and the tube-like structure formation of HLECs on Matrigel in a dose-dependent manner.
     Conclusion:COE acts on hepatocellular carcinoma and lymphangiogenesis by inhibiting cellular proliferation, inducing apoptosis, down-regulating of the VEGF-C and CXCR4, and modulating the extracellular signal-regulated kinase1/2and the phosphatidylinositol3-kinase/AKT signaling pathway.
     Part Ⅱ:Inhibition of Lymphangiogenesis by Extracts from Celastrus orbiculatus in a xenograft model of Hepatocellular Carcinoma and Associated mechanisms
     Objective:To investigate the effect of Celastrus orbiculatus ethyl acetate extracts (COE) on tumor lymphangiogenesis in hepatocellular carcinoma xenograft model, and further explore its potential mechanisms.
     Methods:HepG2cells (2.0×105) suspended in0.2mL of serum-free DMEM were inoculated s.c. in the right flank of each nude mouse. When the average tumor volume reached3mm3, mice were randomly divided into six groups (eight mice per group) as follows:untreated control, solvent vehicle control (DMSO), different dosages COE-treated groups and5-Fu treated group. The animals received200μL of a vehicle [1%DMSO and99%saline] or COE at different dosages (10,20or40mg/kg/d) by gavage. In the5-Fu treated group, mice were injected intraperitoneally with10mg/kg/d of5-Fu. Mice received21doses and24h after the last dose, they were sacrificed and the tumors were removed and weighed. Apoptosis in tumor tissue were detected by the histologic TUNEL staining. ELISA was used to detect the expression of vascular endothetial growth factor-C (VEGF-C) in blood serum. And MLVD, VEGF-C, CXCR4, p-ERK1/2, p-AKT expression were detected by immunohistochemisty.
     Results:COE has been shown to significantly inhibit the growth of subcutaneous tumor in hepatocellular carcinoma xenograft model in a dose-dependent manner. The mean endpoint tumor masses of10,20, and40mg/kg/d COE groups were1.06±0.29g,0.93±0.28g (P<0.05) and0.71±0.38g (P<0.01), compared with1.57±0.58g of the untreated control. Apoptosis in tumor tissue induced by COE showed dose-dependent increase in10,20and40mg/kg/d COE groups, the mean apoptotic cells32.88±2.90(P<0.01)、42.75±3.06(P<0.01)、73.13±3.04(P<0.01) and79.38±5.32(P<0.01), compared with the untreated control (7.63±0.52). VEGF-C protein expression in the serum of10,20, and40mg/kg/d COE were respectively down-regulated to205.85±56.33pg/mL (P<0.05),144.31±16.78pg/mL (P<0.01),129.93±16.94pg/mL(P<0.01), compared with the untreated control(316.18±15.01pg/mL). Immunohistochemisty revealed that the percentages and the intensity of VEGF-C, CXCR4, p-ERK1/2and p-AKT positive-staining cells were respectively decreased when compared to the untreated group (P<0.05or P<0.01).VEGFR-3positive staining MLVD were respectively15.08±1.49,13.01±1.31and7.33±1.64in10,20and40mg/kg/d COE groups, which were significantly lower compared to untreated group (19.96±2.61)(P<0.01). Similar results were found when comparing LYVE-1positive staining MLVD in each COE treated group to untreated group (P<0.05or P<0.01).
     Conclusion:COE exerts the effective anti-tumor action via induction tumor cell apoptosis and inhibition of lymphangiogenesis in hepatocellular carcinoma xenograft model. The effect is possibly due to the down-regulation of VEGF-C and CXCR4expression by COE in hepatoma cells, which may be through modulation of extracellular signal-regulated kinase1/2and the phosphatidylinositol3-kinase/AKT signaling pathway. All these results provide evidence that COE may play an important role in down-regulating the tumor lymphangiogenesis and it may be a valuable therapeutic strategy for hepatocellular carcinoma in the future.
引文
1. Jemal A, Bray F, Center MM, et al. Global cancer statistics.CA Cancer J Clin 2011, 61(2):69-90.
    2. Venook AP, Papandreou C, Furuse J, et al. The incidence and epidemiology of hepatocellular carcinoma:A global and regional perspective. Oncologist 2010,15 suppl 4:5-13.
    3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med,2011,365(12):1118-1127.
    4. Li Y, Martin Ⅱ RC. Herbal medicine and hepatocellular carcinoma:applications and challenges. Evid Based Complement Alternat Med,2011,2011:541209.
    5. VeroV, Raeco S, Biolato M, PonlPiliM, et al. The treatment of the hepatocellular carcinoma: an update. MinervaMed,2009,100:173-93.
    6. Feng YX, Wang T, Deng YZ. Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model. Hepatology,2011,53(2):483-92.
    7.汤钊猷.开展肝癌转移复发研究的意义与途径.中华普外科杂志,2006,21(11):761-763.
    8. Zhou Y, Zhang X, Wu L, et al. Meta-analysis:preoperative transcatheter arterial chemoembolization does not improve prognosis of patients with resectable hepatocellular carcinoma. BMC Gastroenterol,2013,13:51.
    9. Shimada K, Sakamoto Y, Esaki M, et al. Analysis of prognostic factors affecting survival after initial recurrence and treatment efficacy for recurrence in patients undergoing potentially curative hepatectomy for hepatocellular carcinoma. Ann Surg Oncol,2007,14 (8): 2337-2347.
    10. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res 2006,12(23):6865-6878.
    11. Watanabe J, Nakashima O, Kojiro M. Clinicopathologic study on lymph node metastasis of hepatocellular carcinoma:a retrospective study of 660 consecutive autopsy cases. Jpn J Clin Oncol,1994,24(1):37-41.
    12. Ohtani O, Ohtani Y. Lymph Circulation in the Liver.The anatomical record,2008,291: 643-652.
    13. Sun HC, Zhuang PY, Qin LX, et al. Incidence and prognostic values of lymph node metastasis in operable hepatocellular carcinoma and evaluation of routine complete lymphadenectomy. Surg J Oncol,2007,96(1):37-45.
    14.杨林,官泳松,周翔平.原发性肝癌转移途径的解剖学基础.中国微创外科杂志,2006,6(1):75-77.
    15.吉胜朴.肝癌淋巴结转移机制研究进展.中国肿瘤临床,2009,36(18):1076-1079.
    16. Christiansen A, Detmar M. Lymphangiogenesis and Cancer. Genes Cancer,2011, 2(12):1146-1158.
    17. Mumprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med,2009, 13(8A):1405-1413.
    18. Su JL, Yang PC, Shih JY. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells Cancer Cell,2006,9(3):209-223.
    19. Heckman CA, Holopainen T, Wirzenius M, et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res,2008,68(12):4754.
    20. Yu H, Zhang S, Zhang R, et al. The role of VEGF-C/D and Flt-4 in the lymphatic metastasis of early-stage inva sive cervical carcinoma. J Exp Clin Cancer Res,2009,28:98.
    21. Martinez-Corral I, Makinen T. Regulation of lymphatic vascular morphogenesis:Implications for pathological (tumor) lymphangiogenesis. Exp Cell Res,2013, S0014-4827(13): 00034-00037.
    22. Liang P, Hong JW, Ubukata H, et al. Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch.2006,448(5):570-575.
    23. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis:New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev.2006,25(4):677-694.
    24. Hirakawa S, Brown L, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood,2007,109(3):1010-1017.
    25. Achen MG, Stacker SA. Molecular control of lymphatic metastasis. Ann N Y Acad Sci,2008, 1131:225-234.
    26. Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol,2009,21 (2):154-165.
    27. Wang J, Zhang B, Guo Y. Artemisinin inhibits tumor lymphangiogenesis by suppression of vascular endothelial growth factor C. Pharmacology,2008,82(2):148-155.
    28. Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer,2007,96:541-545.
    29. Yamaguchi R, Yano H, Nakashima O. Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol,2006,21(1 Pt 1):152-160.
    30. Lian Z, Liu J, Wu M, Wang HY, et al. Hepatitis B x antigen up-regulates vascular endothelial growth factor receptor 3 in hepatocarcinogenesis. Hepatology,2007,45(6):1390-1399.
    31. Xiang ZL, Zeng ZC, Tang ZY. Nuclear accumulation of CXCR4 and overexpressions of VEGF-C and CK19 are associated with a higher risk of lymph node metastasis in hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi,2010,32(5):344-349.
    32. Padera TP, Kadambi A, di Tomaso E. Lymphatic metastasis in the absence of functional intratumor lymphatics.Science,2002,296(5574):1883-1886.
    33. Karpanen T, Egeblad N, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Research,2001, 61(5):1786-1790.
    34. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C mediated lymphangiogenesis promotes tumour metastasis. EMBO J,2001,20(4):672-682.
    35. Straume O, Jackson DG, Akslen LA. Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clinical Cancer Research,2003,9 (1):250-256.
    36. Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro expression of vascular endothelial growth factor VEGF-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res,2003,63(3):713-722.
    37. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol,2004,14(3):181-185.
    38. Liu H, Pan Z, Li A. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell Mol Immunol,2008, 5(5):373-378
    39. Domanska UM, Kruizinga RC, Nagengast WB. A review on CXCR4/CXCL12 axis in oncology:no place to hide. Eur J Cancer,2013,49(1):219-230.
    40. Xiang Z, Zeng Z, Tang Z. Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J,2009,15(6):519-525.
    41. Huang F, Geng XP. Chemokines and hepatocellular carcinoma. World J Gastroenterol,2010, 16(15):1832-1836.
    42. Peng SB, Peek V, Zhai Y. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-lalpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res,2005,3(4):227-236.
    43. Majka M, Drukala J, Lesko E. SDF-1 alone and in co-operation with HGF regulates biology of human cervical carcinoma cells. Folia Histochem Cytobiol,2006,44(3):155-164.
    44. Zhuo W, Jia L, Song N, et al. The CXCL12-CXCR4 chemokine pathway:a novel axis regulates lymphangiogenesis. Clin Cancer Res,2012,18(19):5387-5398.
    45. Feng Y, Hu J, Ma J, Feng K. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer,2011,47(15):2353-2363.
    46. Chen JC, Chang YW, Hong CC. The Role of the VEGF-C/VEGFRs Axis in Tumor Progression and Therapy. Int J Mol Sci,2013,14(1):88-107.
    47. Zhang D, Li B, Shi J, et al. Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor VEGF-A and VEGF-C with a receptor-immunoglobulin fusion protein. Cancer Res,2010,70(6):2495-503.
    48.周昆,崔黎,闰焱,等.榄香烯对人肺腺癌SPC-A-1细胞VEGF-C及VEGFR-3表达的影响.中国老年学杂志,2008,28(6):551-553.
    49. Yu ZJ, He LY, Chen Y. Effects of quercetin on the expression of VEGF-C and VEGFR-3 in human cancer MGC-803 cells,2009,25(8):678-680.
    50.张舰,许运明,王维民,刘延庆.南蛇藤提取物体内抗肿瘤作用的实验研究.中国中药杂志,2006,31(18):1514~1516.
    51.张舰,许运明,刘延庆.南蛇藤提取物体外抑瘤作用研究.中药药理与临床,2006,22(3、4):99~101.
    52. QianYY, LiuYQ. Inhibition of celastrus orbiculatus extractson VEGF expression in hepatoma ceils of mice.Chinese Herbal Medicines,2010,2(1):72-76.
    53. QianYY, ZhangH. YuanL, etal. Enhancement of extracts from celastrus orbiculatus on maturation and function of dendritic cells in vitro and in vivo. Chinese Herbal Medicines, 2010,2(3):195-203.
    54. Qian Y Y, Zhang H, Hou Y, et al. Celastrus orbiculatus extract inhibits tumor angiogenesis by targeting vascular endothelial growth factor signaling pathways and shows potent antitumor activity in hepatocarcinomas in vitro and in vivo. Chin J Integr Med,2012,18 (10):752-760.
    1. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene,2012,31(42):4499-508.
    2. Christiansen A, Detmar M. Lymphangiogenesis and Cancer. Genes Cancer,2011,2 (12):1146-1158.
    3. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res, 2006,12(23):6865-6878.
    4. Mumprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol,2009, 13(8A):1405-1413.
    5. Martinez-Corral I, Makinen T. Regulation of lymphatic vascular morphogenesis:Implications for pathological (tumor) lymphangiogenesis. Exp Cell Res.2013, S0014-4827 (13):00034-00037.
    6. Heckman CA, Holopainen T, Wirzenius M, et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res,2008,68(12):4754-4762.
    7. Yu H, Zhang S, Zhang R, et al. The role of VEGF-C/D and Flt-4 in the lymphatic metastasis of early-stage invasive cervical carcinoma J Exp Clin Cancer Res,2009,28:98.
    8. Chen J C, Chang Y W, Hong C C. The Role of the VEGF-C/VEGFRs Axis in Tumor Progression and Therapy. Int J Mol Sci,2013,14(1):88-107.
    9. Su JL, Yang PC, Shih JY, The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells Cancer Cell,2006,9(3):209-223.
    10. Hirakawa S, Brown L, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood,2007,109(3):1010-1017.
    11. Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol,2009,21 (2):154-165.
    12. Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer,2007,96:541-545.
    13. Yamaguchi R, Yano H, Nakashima O.Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol,2006,21(1 Pt1):152-60.
    14. Lian Z, Liu J, Wu M, Wang HY, et al. Hepatitis B x antigen up-regulates vascular endothelial growth factor receptor 3 in hepatocarcinogenesis. Hepatology,2007, 45(6):1390-1399.
    15. Xiang ZL, Zeng ZC, Tang ZY, Nuclear accumulation of CXCR4 and overexpressions of VEGF-C and CK19 are associated with a higher risk of lymph node metastasis in hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi,2010,32(5):344-349.
    16. Liu H, Pan Z, Li A. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell Mol Immunol,2008, 5(5):373-378.
    17.刘辉,周伟平,傅思源,吴孟超.趋化因子受体CXCR4在肝细胞癌中的表达.第二军医大学学报,2008,29(11):1300-1302.
    18. Xiang Z, Zeng Z, Tang Z. Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J,2009,15(6):519-525.
    19. Huang F, Geng XP. Chemokines and hepatocellular carcinoma. World J Gastroenterol.2010, 16(15):1832-1836.
    20. Zhuo W, Jia L, Song N, et al. The CXCL12-CXCR4 chemokine pathway:a novel axis regulates lymphangiogenesis. Clin Cancer Res,2012,18(19):5387-5398.
    21. Feng Y, Hu J, Ma J, et al. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer, 2011,47(15):2353-2363.
    22. Li JJ, Yang J, Lu F, et al. Chemical constituents from the stems of Celastrus. Orbiculatus. Chinese Journal of Natural Medicines,2012,10(4):0279-0283.
    23. Qian YY, Liu YQ. Inhibition of celastrus orbiculatus extractson VEGF expression in hepatoma ceils of mice. Chinese Herbal Medicines,2010,2(1):72-76.
    24. Qian YY, Zhang H, Yuan L, etal. Enhancement of extracts from celastrus orbiculatus on maturation and function of dendritic cells in vitro and in vivo. Chinese Herbal Medicines, 2010,2(3):195-203.
    25. Qian Y Y, Zhang H, Hou Y, et al. Celastrus orbiculatus extract inhibits tumor angiogenesis by targeting vascular endothelial growth factor signaling pathways and shows potent antitumor activity in hepatocarcinomas in vitro and in vivo. Chin J Integr Med,2012,18 (10):752-760.
    26. Fromowitz F B, Viola M V, Chao S, et al. Ras p21 expression in the progression of breast cancer. Hum Pathol,1987,18 (12):1268.
    27. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res,2002,12(1):9-18.
    28. Kim BJ, Ryu SW, Song BJ. JNK- and p38 kinase-mediated phos-phorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem,2006,281(30):21256-21265.
    29. Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology,2013,26,306 C:114-123.
    30. Wu R, Duan L, Ye L, et al. S100A9 promotes the proliferation and invasion of HepG2 hepatocellular carcinoma cells via the activation of the MAPK signaling pathway. Int J Oncol, 2013,42(3):1001-1010.
    31. Hyun JH, Kim SC, Kang JI, et al. Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol Pharm Bull,2009,32(10):1760-1764.
    32. Bartholomeusz C, Gonzalez-Angulo AM. Targeting the PI3K signaling pathway in cancer therapy. Expert Opin Ther Targets,2012,16(1):121-130.
    33. Asnaghi L, Calastretti A, Bevilacqua A, et al. Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by AKT. Oncogene,2004,23(34): 5781-5791.
    34. Carnero A. The PKB/AKT pathway in cancer. Curr Pharm Des,2010,16 (1):34-44.
    35. Zhang XH, Chen SY, Tang L, et al. Myricetin Induces Apoptosis in HepG2 Cells through Akt/P70s6k/Bad Signaling and Mitochondrial Apoptotic Pathway. Anticancer Agents Med Chem.2013 Feb 7. [Epub ahead of print]
    36. Wang J, Yuan L, Xiao H, et al. Momordin induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways. Apoptosis.2013 Feb 17. [Epub ahead of print]
    37. Shimada K, Sakamoto Y, Esaki M, et al. Analysis of prognostic factors affecting survival after initial recurrence and treatment efficacy for recurrence in patients undergoing potentially curative hepatectomy for hepatocellular carcinoma. Ann Surg Oncol,2007,14(8):2337
    38. Sun HC, Zhuang PY, Qin LX, et al. Incidence and prognostic values of lymph node metastasis in operable hepatocellular carcinoma and evaluation of routine complete lymphadenectomy. Surg J Oncol,2007,96(1):37-45.
    39. Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology:No place to hide. Eur J Cancer,2013,49(1):219-230.
    40. Kruizinga RC, Bestebroer J, Berghuis P, et al. Role of chemokines and their receptors in cancer. CurrPharm,2009,15:3396-3416.
    41. Kluck RM, Bossy Wetzel E, Green DR, et al. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science,1997,275 (21): 1132-1136.
    42. Herr I, Debatin KM.Cellular stress response and apoptosis in cancer therapy. Blood,2001, 98(9):2603-2614.
    43. Slee EA, Adrain C, Martin SJ. Executioner caspase-3,-6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem,2001,276 (10): 7320-7326.
    44. Green DR, Amarante-Mendes GP. The point-of-no-return:mitochondria, caspases and the commitment to cell death. Results Probl Cell Differ,1998,24:45-61.
    45. Soldani C and Scovassi AI. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis:an update. Apoptosis,2002,7(4):321-328.
    46. Wang Y, Deng L, Zhong H, et al.Natural plant extract Tubeimoside I promotes apoptosis-mediated cell death in cultured human hepatoma (HepG2) cells. Biol Pharm Bull 2011; 34(6):831-838.
    47. Wang J, Zhang B, Guo Y, Artemisinin inhibits tumor lymphangiogenesis by suppression of vascular endothelial growth factor C. Pharmacology,2008,82(2):14
    48. Achen MG, Stacker SA. Molecular control of lymphatic metastasis,2008,1131:225-234.
    49. Liang P, Hong JW, Ubukata H, et al. Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch,2006,448(5):570-575.
    50. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis:New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev,2006,25(4):677-694.
    51. Karpanen T, Egeblad N, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Research,2001, 61(5):1786-1790.
    52. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.2001,20(4):672-682.
    53. Hirakawa S. New insights into the molecular mechanisms of lymphangiogenesis and pathophysiology. Yakugaku Zasshi,2012,132(2):211-214.
    54. Albrecht I, Christofori G. Molecular mechanisms of lymphangiogenesis in development and cancer Int. J. Dev. Biol,2011,55:483-494.
    55. Peng SB, Peek V, Zhai Y. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-lalpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res,2005,3(4):227-236.
    56. Majka M, Drukala J, Lesko E. SDF-1 alone and in co-operation with HGF regulates biology of human cervical carcinoma cells. Folia Histochem Cytobiol,2006,44(3):155-164.
    1. Chen JC, Chang YW, Hong CC, The Role of the VEGF-C/VEGFRs Axis in Tumor Progression and Therapy. Int J Mol Sci,2013,14(1):88-107.
    2. Zhuo W, Jia L, Song N, et al. The CXCL12-CXCR4 chemokine pathway:a novel axis regulates lymphangiogenesis. Clin Cancer Res,2012,18(19):5387-5398.
    3. Feng Y, Hu J, Ma J, et al. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer, 2011,47(15):2353-2363.
    4. Li Y, Martin Ⅱ RC. Herbal medicine and hepatocellular carcinoma:applications and challenges. Evid Based Complement Alternat Med,2011,2011:541209.
    5. QianYY, LiuYQ. Inhibition of celastrus orbiculatus extractson VEGF expression in hepatoma ceils of mice. Chinese Herbal Medicines,2010,2(1):72-76.
    6. QianYY, ZhangH. YuanL, etal. Enhancement of extracts from celastrus orbiculatus on maturation and function of dendritic cells in vitro and in vivo. Chinese Herbal Medicines, 2010,2(3):195-203.
    7. Qian Y Y, Zhang H, Hou Y, et al. Celastrus orbiculatus extract inhibits tumor angiogenesis by targeting vascular endothelial growth factor signaling pathways and shows potent antitumor activity in hepatocarcinomas in vitro and in vivo. Chin J Integr Med,2012,18 (10):752-760.
    8. Yu ZJ, He LY, Chen Y. Effects of quercetin on the expression of VEGF-C and VEGFR-3 in human cancer MGC-803 cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2009,25(8):678-680.
    9. Christiansen A, Detmar M. Lymphangiogenesis and Cancer. Genes Cancer,2011, 2(12):1146-1158.
    10. Liang P, Hong JW, Ubukata H, et al. Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch,2006,448(5):570-575.
    11. Martinez-Corral I, Makinen T. Regulation of lymphatic vascular morphogenesis: Implications for pathological (tumor) lymphangiogenesis. Exp Cell Res,2013, S0014-4827(13):00034-00037.
    12. Kesler CT, Liao S, Munn LL, et al. Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med,2013,5(1):111-124.
    13. Sleeman JP, Thiele W. Tumor metastasis and the lymphatic vasculature. Int J Cancer,2009, 125(12):2747-2756.
    14. KaiserlingE. Immunohistochemicla identiifcation oflymph vessels, with D2-40indiagnosticpathology. Pathology,2004,25(5):362-367.
    15. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res, 2006,12(23):6865-6878.
    16. Yamaguchi R, Yano H, Nakashima O.Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol,2006,21(1 Pt 1):152-160.
    17. Lian Z, Liu J, Wu M, Wang HY, et al. Hepatitis B x antigen up-regulates vascular endothelial growth factor receptor 3 in hepatocarcinogenesis. Hepatology,2007,45(6):1390-1399.
    18. Xiang ZL, Zeng ZC, Tang ZY, Nuclear accumulation of CXCR4 and overexpressions of VEGF-C and CK19 are associated with a higher risk of lymph node metastasis in hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi,2010,32(5):344-349.
    19. Huang F, Geng XP. Chemokines and hepatocellular carcinoma. World J Gastroenterol,2010, 16(15):1832-1836.
    20. Peng SB, Peek V, Zhai Y. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-lalpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res,2005,3(4):227-236.
    21. Majka M, Drukala J, Lesko E. SDF-1 alone and in co-operation with HGF regulates biology of human cervical carcinoma cells. Folia Histochem Cytobiol,2006,44(3):155-164.
    22. Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology:No place to hide. Eur J Cancer,2013,49(1):219-230.
    1. Christiansen A, Detmar M. Lymphangiogenesis and Cancer. Genes Cancer, 2011,2(12):1146-1158.
    2. Mumprecht V, Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med,2009, 13(8A):1405-1413.
    3. Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol,2011,193(4):607-18.
    4. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis:New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev,2006,25(4):677-94.
    5. Liang P, Hong JW, Ubukata H, et al. Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch,2006,448(5):570-575.
    6. Martinez-Corral I, Makinen T. Regulation of lymphatic vascular morphogenesis: Implications for pathological (tumor) lymphangiogenesis. Exp Cell Res,2013, S0014-4827(13):00034-00037.
    7. Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol,2009,21(2):154-165.
    8. Su JL, Yang PC, Shih JY, The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells Cancer Cell,2006,9(3):209-223
    9. Yu H,Zhang S,Zhang R,et al. The role of VEGF-C/D and Flt-4 in the lymphatic metastasis of early-stage invasive cervical carcinoma. J Exp Clin Cancer Res,2009,28:98
    10. Heckman CA, Holopainen T, Wirzenius M, et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res,2008,68(12):4754.
    11. Wang P, Cheng Y. Gene expression profile of lymphatic endothelial cells. Cell Biology International,2011,35:1177-1187.
    12. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res, 2006,12(23):6865-6878.
    13. Favier B, Alam A, Barron P, et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood,2006,108:1243-50.
    14. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development,2002,129:4797-4806.
    15. Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis.Cancer Cell.2008; 13:331-42.
    16. Hirakawa S, Detmar M, Kerjaschki D, et al. Nodal lymphangiogenesis and metastasis:role of tumor-induced lymphatic vessel activation in extramammary Paget's disease. Am J Pathol. 2009;175:2235-2248.
    17. Langheinrich MC, Schellerer V, Perrakis A, et al. Molecular mechanisms of lymphatic metastasis in solid tumors of the gastrointestinal tract. Int J Clin Exp Pathol, 2012,5(7):614-623.
    18. Wang J, Guo Y, Wang B, et al. Lymphatic microvessel density and vascular endothelial growth factor-C and -D as prognostic factors in breast cancer:a systematic review and meta-analysis of the literature. Mol Biol Rep,2012,39(12):11153-11165.
    19. Shimizu K, Kubo H, Yamaguchi K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci,2004,95:328-333.
    20. Roberts N, Kloos B, Cassella M, et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res,2006:66:2650-2657.
    21. Khromova, N.; Kopnin, P.; Rybko, V. et al. Downregulation of vegf-c expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene,2012,31,1389-1397.
    22. Su JL, Shih JY, Yen ML, et al. Cyclooxygenase-2 induces EP1-and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation:a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res,2004,64(2):554-564
    23.Tsai PW, Shiah SG, Lin MT, et al.Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. J Biol Chem,2003,278(8):5750-5759.
    24. Tang RF, W ang SX. Zhang FR, et al. Interleukin-1 alpha,6 regulate the secretion of vascular endothelial growth factor A, C in pancreatic cancer. Hepatobiliary Pancreat Dis Int, 2005,4(3):460-463.
    25. Hong YK, Lange-Asschenfeldt B, Velasco P, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alphalbetal and alpha2betal integrins. FASEB J,2004,18:1111-1113.
    26. Hirakawa S, Kodama S, Kunstfeld R, et al. Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med, 2005,201:1089-1099.
    27. Kajiya K, Hirakawa S, Ma B, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J,2005,24:2885-2895.
    28. Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA,2012,109 (39):15894-15899.
    29. Cao R, Bjorndahl MA, Religa P, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell,2004,6:333-345.
    30. Bjorndahl MA, Cao R, Burton JB, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res,2005,65:9261-9268.
    31. Morisada T, Oike Y, Yamada Y, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood,2005,105:4649-4656.
    32. Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting andhyperplasia. Blood,2005,105:4642-4648.
    33. Fritz-Six KL, Dunworth WP, Li M, et al. Adrenomedullin signaling is necessary formurine lymphatic vascular development. J ClinInvest,2008:118:40-50.
    34. Spinella F, Garrafa E, Di Castro V, et al. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. Cancer Res,2009,69:2669-2276.
    35. Karpanen T, Egeblad N, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Research,2001, 61(5):1786-1790.
    36. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.2001,20(4):672-682
    37. Straume O, Jackson DG, Akslen LA. Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clinical Cancer Research,2003,9 (1):250-256.
    38. Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res,2003,63(3):713-722.
    39. HeY, Rajantie I, Ilmonen M, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res,2004, 64(11):3737-3740.
    40. Salven P, Mustjoki S, Alitalo R, et al. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood,2003,101(1):168-172.
    41. Religa P, Cao R, Bjorndahl M,et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels.Blood,2005:106(13):4184-4190.
    42. Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor.EMBO J,2002,21(17):4593-4599.
    43.Wigle JT, Harvey N, Detmar M, et al. An essential role for Proxl in the induction of the lymphatic endothelial cell phenotype. EMBO J,2002,21(7):1505-1513.
    44. Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest,2005, 115(9):2316-2319.
    45. Schoppmann SF, Fenzl A, Nagy K, et al. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer:impact on lymphangiogenesis and survival. Surgery,2006,139:839-846.
    46. Jackson DG, Prevo R, Clasper S, Banerji S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol,2001,22:317-321.
    47. Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol,2005,166:913-921.
    48. Martin-Villar E, Scholl FG, Gamallo C, et al. Characterization of human PA2.26 antigen (Tlalpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer,2005,113:899-910.
    49. Srinivasan RS, Dillard ME, Lagutin OV, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev,2007,21:2422-2432.
    50. Kaiserling E. Immunohistochemical identification of lymph vessels with D2-40 in diagnostic pathology. Pathologe,2004,25(5):362-374.
    51. Chen JC, Chang YW, Hong CC, The Role of the VEGF-C/VEGFRs Axis in Tumor Progression and Therapy. Int J Mol Sci.2013,14(1):88-107.
    52. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression.Oncogene,2012,31(42):4499-508.
    53. Takahashi S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy.Biol Pharm Bull,2011,34(12):1785-1788.
    54..Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer.Mol Oncol,2013,7(2):259-282.
    55. Zhang D, Li B, Shi J, et al. Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor (VEGF)-A and VEGF-C with a receptor-immunoglobulin fusion protein. Cancer Res.2010,70(6):2495-503.
    56. Iwata C, Kano MR, Komuro A,et al. Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis,2007,67(21):10181-10189.
    57. Sakurai A, Doci CL, Gutkind JS. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res,2012,22(1):23-32.
    1. Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology:No place to hide. Eur J Cancer,2013,49(1):219-230.
    2. Allen SJ, Crown SE, Handel TM. Chemokine:receptor structure, interactions, and antagonism. Annu Rev Immune,2007:25:787-820.
    3. Caruz A, Samsom M, Alonso JM, et al. Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett,1998,426:271-278.
    4. Burger JA, Kipps TJ. CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment. Blood,2006,107:1761-1767.
    5. Wojcechowskyj JA, Lee JY, Seeholzer SH, et al. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling. PLoS ONE,2011, PLoS One.2011,6(9):e24918
    6. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature,1996,382:635-638.
    7. Loetscher P, Moser B, Baggiolini M. Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol,2000:74:127-180.
    8..Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor:functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science,1996,272:872-877.
    9. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001,410:50-56.
    10. Kruizinga RC, Bestebroer J, Berghuis P, et al. Role of chemokines and their receptors in cancer. Curr Pharm,2009,15:3396-3416.
    11. Zagzag D, Krishnamachary B, Yee H, et al. Stromal cell-derived factor-1 alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma:von hippel-lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res,2005, 65:6178-6188.
    12. Kaifi JT, Yekebas EF, Schurr P, et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Nat Cancer Inst,2005,97:1840-1847.
    13. Kim SY, Lee CH, Midura BV, et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis, 2008:25:201-211.
    14. Kollmar O, Rupertus K, Scheuer C,et al. Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia,2007,9(10):862-870.
    15. Hassan S, Buchanan M, Jahan K, et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer,2010,129:225-232.
    16. Dewan MZ, Ahmed S, Iwasaki Y,et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother, 2006,60(6):273-276.
    17. Vianello F, Villanova F, Tisato V,et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica,2010,95(7):1081-1089.
    18. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol,2004,14(3):171-179.
    19. Wang Z, Ma Q, Liu Q, et al. Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical wnt pathway. Br J Cancer,2008, 99:1695-1703.
    20. De Falco V, Guarino V, Avilla E, et al. Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res,2007, 67:11821-911829.
    21. Zeelenberg IS, Ruuls-Van Stalle LE, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res,2003,63:3833-3839.
    22. Bartolome RA, Ferreiro S, Miquilena-Colina ME, et al. The chemokine receptor CXCR4 and the metalloproteinase MT1-MMP are mutually required during melanoma metastasis to lungs. Am J Pathol,2009,174:602-612.
    23. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res,2002,62:1832-1837.
    24. Christiansen A, Detmar M. Lymphangiogenesis and Cancer. Genes Cancer, 2011,2(12):1146-1158.
    25. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell,2005,121:335-348.
    26. Hassan S, Buchanan M, Jahan K, et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer,2010,129:225-232.
    27. Brand S, Dambacher J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res,2005,310(1):117-30.
    28. Du R, Lu KV, Petritsch C, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell,2008,13: 206-220.
    29. Zhuo W, Jia L, Song N, et al. The CXCL12-CXCR4 chemokine pathway:a novel axis regulates lymphangiogenesis. Clin Cancer Res,2012,18(19):5387-5398
    30. Liu J, Liao S, Huang Y, et al. PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res,2011,17:3638-3648.
    31. Xu L, Duda DG, di Tomaso E, et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1 alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res,2009,69:7905-1910.
    32. Saigusa S, Toiyama Y, Tanaka K, et al. Stromal CXCR4 and CXCL12 expression is associated with distant recurrence and poor prognosis in rectal cancer after chemoradiotherapy. Ann Surg Oncol,2010,17:2051-2058.
    33. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest,2010,120:694-705.
    34. Kim M, Koh YJ, Kim KE, et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 2010;70:10411-10421.
    35. Uy GL, Rettig MP, McFarland KM, et al. Mobilization and chemosensitization of AML with the CXCR4 antagonist plerixafor (AMD3100):a phase Ⅰ/Ⅱ study of AMD3100+MEC in patients with relapsed or refractory disease. Blood,2008,112:678.
    36. Hotte SJ, Hirte HW, Moretto P, et al. Final results of a phase Ⅰ/Ⅱ study of CTCE-9908, a novel anticancer agent that inhibits CXCR4, in patients with advanced solid cancers. Eur J Cancer,2008,6:127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700