冷原子干涉实验的激光频率以及过程的自动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冷却原子和冷原子干涉是现代应用物理学中一个热点研究领域,因其具有深远的物理意义和广阔的应用前景而引起学界的普遍关注。在冷原子干涉实验中,需要高精度的实验时序自动控制和数据采集系统作为实验的整体测控平台,同时,还需要对激光器的输出频率实施高速高精度的控制,包括稳频、移频、锁相等三大方面,它们都是冷原子干涉实验的关键技术,直接关系到实验的最终效果,研制高精度高性能高可靠性的激光频率和实验过程自动控制系统对于激光冷却原子和冷原子干涉实验技术的发展具有重要意义。本文正是在这样的背景下,选择了激光器的频率自动控制和实验过程自动控制作为研究课题。以下是各章的主要内容:
     第一章,简要介绍了冷原子干涉研究的历史背景、发展历程以及目前的应用简况,同时也介绍了半导体激光器的移频、稳频、锁相这三大控制技术和实验过程控制技术的研究背景和概况。说明了它们在冷原子干涉实验中的重要性。
     第二章,首先简要分析了干涉实验各子系统的时序控制要求;然后详细描述了实验过程自动控制和数据采集系统的原理、方案及其研制;最后给出了测试结果和应用。测试证明控制系统功能完备、时序控制精度能完全满足实验需要。
     第三章,首先分析了冷原子干涉实验中对激光器移频工作的需求;然后分析了当前的多种移频方法和器件。接着提出了基于直接数字频率合成(DDS)技术的原理,着重阐述了基于此原理的激光精确移频系统的设计和研制,包括DDS软硬件的设计、上位机与DDS的通讯及此模块在实验测控系统的无缝集成。最后给出了测试结果和在实验中的应用效果。实验表明采用DDS技术的原子冷却和捕获效果相比原有的压控振荡器技术有显著提升。
     第四章,介绍了激光器各种稳频技术的原理和方案,分析了冷原子干涉实验中对激光器稳频的具体要求;指出目前外腔半导体激光器的跳模问题是影响长期稳定性、并进而影响干涉实验效率的一大障碍。然后简要分析了跳模现象,并创新性地提出了一种基于模边界周期性检测的跳模抑制方法;详细说明了基于此方法的计算机控制的半导体激光器长期稳频控制系统的研制。最后给出了测试结果。数据表明该系统能使非镀膜激光管在外腔半导体激光器中的连续稳频工作时间延长至近400小时,该项指标处于国际先进水平。
     第五章,首先介绍了冷原子干涉实验中产生锁相的拉曼激光脉冲的技术方案;说明了激光锁相的拉曼激光产生技术是干涉实验的关键技术之一。然后分析了各方案的优劣;接着提出了一套基于现场可编程门阵列(FPGA)芯片的全数字化电子光学锁相的方案,并重点阐述了其具体的设计实现,包括其中创新性的数字环路滤波器的设计。全数字化的电子光学锁相、尤其是数字环路滤波器在电子光学锁相环中的实现在国际上尚属首次,暂无同类报道。最后对该锁相系统进行了全面的测试,给出了各项测试指标,测试表明该系统稳定可靠、锁相质量良好、达到预期效果。
     第六章,对全文的总结和对进一步改进的展望。
The laser cooling and trapping of atoms are the hotspots of modern physics and they had given rise to more interests in physicists due to its physical significance and the possibility of wide applications in the future. In the experiments of atom interferometry, the process of atoms interferometry experiments needs a precise automatic controlling and data acquisition system. Also, the frequency of laser needs to be controlled precisely, including frequency shifting, frequency stabilization and phase locking. All of these are the key techniques of atom interferometry, and they are and critical to the experiments final performance. Designing of the laser frequency and experiment process controlling system with high speed, high accuracy and high performance have the great significance to the development of laser cooling and atom interferometry. With this purpose, we chose designing of automatic controlling system of laser frequency and process for cold atom interferometry as the research subject. Fabrics of this dissertation are as follows.
     In chapter1, a brief introduction to the historical background, development and current applications of cold atom interferometry is given. Also, the background and surveys of three main techniques of laser frequency, including frequency shifting, frequency stabilization and phase locking, is given. The significance of high performance laser frequency and process automatic controlling system is explained.
     In chapter2, after a brief introduction of each part of the experiment device, the principals and the design of the process controlling and data acquisition system are described in details. Finally, its performance and applications are given. The applications proved that the system has the complete functions and the accuracy meets the experiments demands.
     In chapter3, the demands of laser frequency shifting and the various current methods are analyzed firstly, and the principals of direct digital synthesize (DDS) are presented. Then the design of the frequency shifting system based on DDS is described. Specially the design of hardware, software and the communication module between DDS and the superior computer are described in details. Finally, its performance and applications are given. It is shown that the performance of atom cooling and trapping based on DDS has been improved markedly in comparison with the technique based on voltage controlled oscillator.
     In chapter4, the demand of laser frequency stabilization and various techniques of frequency stabilization are analyzed firstly. It is pointed that the mode hopping is the main obstacle of long term stability of laser and the efficiency of the cold atom experiments. Then, after a brief introduction of mode hopping, a new suppressing method for mode hopping based on the periodical detection of mode boundary is presented. The design of a long-term frequency stabilization system based on this method is described in details. Finally, its performance and applications are given. The performance shows that the consecutive duration of stabilization of non-antireflection-coated diode laser can be extend to almost400hours by this system. This is a significant improvement of extended cavity diode lasers frequency stabilization system.
     In chapter5, various schemes and their pros and cons for Raman pulse generation in atom interferometry are given firstly, with the explanation that phase locking is the key technique of atom interferometry. Then a technique of all digital optical phase locking based on field programmable gate array (FPGA) is presented. The detail design and implementation is described in emphasis, including the innovative design of digital loop filter. All digital optical phase locking loop is implemented for the first time in the world. Finally, its performance and applications are given.
     In chapter6, a summary of the work achieved in this thesis and an outlook is given.
引文
[1]Hansch T W, Cooling of Gasses by laser radiation. Opt. Commun.13,68 (1975).
    [2]S. Chu, L. Hollberg, A. Cable, and A. Ashkin,3-Dimensional Viscous Confinement And Cooling Of Atoms By Resonance Radiation Pressure. Phys. Rev. Lett.55,48(1985).
    [3]P. Lett, R. N. Watts, C. Westbrook. W. Phillips, et al, Observation of atoms laser cooled below the doppler limit. Phys. Rev. Lett.61,169 (1988).
    [4]Kasevich M, Chu S, Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett.69,1741 (1992).
    [5]Anderson M H, et al, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269,198 (1995).
    [6]Borde C. J., et al. Optical Ramsey Fringes With Traveling Waves. Phys. Rev. A 30, 1836(1984).
    [7]J. B. Fixler, et al, Atom Interferometer Measurement of the Newtonian constant of Gravity. Science 315,74 (2007).
    [8]A. Bertoldi, G. Lamporesi, L. Cacciapuotia, et al. Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G.Physics 40,271 (2006).
    [9]Sebastian Fray. Atomic Interferometer with Amplitude Gratings of Light and its Applications to Atom Based Tests of the Equivalence Principle. Phys. Rev. Lett. 93,240404 (2004).
    [10]王义遒,原子的激光冷却与陷俘,北京,北京大学出版社,2007,389-390.
    [11]CHU S. Laser manipulation of atoms and particles. Science 253,861 (1991).
    [12]Biedermann G, Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers. Ph.D. dissertation. Stanford University, Stanford, (2007).
    [13]Wynands R, Weyers S. Atomic fountain clocks. Metrologia 42,64 (2005).
    [14]Akatsuka T, Takamoto M, Katori H. Optical lattice clocks with non-interacting bosons and fermions. Nature Physics 4,954 (2008).
    [15]Gauguet A, Mehlstaubler T E, Leveque T, etal. Off-resonant Raman transition impact in an atom interferometer. Physical Review A 78,043615 (2008).
    [16]Muller T, Wendrich T, Gilowski M, etal. Versatile compact atomic source for high-resolution dual atom interferometry. Physical Review A 76,063611 (2007).
    [17]WU Xi-nan, Gravity Gradient Survey with Mobile Atom Interferometer. Ph.D. dissertation. Stanford University, Stanford, (2009).
    [18]DENG Shi-guang, JIANG Yue-song, LI Zhi-dong, etal. Laser diode frequency stabilization with a fiber ring resonator. Optoelectronics Letters 6,380 (2010).
    [19]DONG Lei, MA Wei-guang, YIN Wang-bao, etal. Frequency Stabilization of an External Cavity Diode Laser Based on LabVIEW. Journal of Optoelectronics-Laser 16,255 (2005).
    [20]Donley E A, Heavner T P, Levi F, etal. Double-pass acousto-optic modulator system. Review of Scientific Instruments 76,063112 (2005).
    [21]Mack A H, Trias M K, Mochrie S G J. Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors. Review of Scientific Instruments 80,016101 (2009).
    [22]MAO Min, WANG Shu-xian, LIU Jin-gao. Design of a Novel Frequency Sweeper Using Direct Digital Synthesizer. Chinese Journal of Scientific Instrument 25,534 (2004).
    [23]WANG Cheng-hua, YE Jia. Design of multifunctional signal source based on AD9854. Journal of PLA University of Science and Technology (Natural Science Edition) 7,126 (2006).
    [34]YU Shuping, ZHANG Xinger. Design and implementation of multi-function signal generator based on FPGA/MCU. Electric Power Automation Equipment 29, 106 (2009).
    [25]WANG Kui-long, LU Xuan-hui, CHEN He. Application of virtual instrument in the experiments of laser cooling atoms. Journal of Optoelectronics·Laser 21,183 (2010).
    [26]http://www.rp-photonics.com/external_cavity_diode_lasers.html
    [27]M. Fleming and A. Mooradian, Spectral characteristics of external-cavity controlled semiconductor lasers. IEEE J. Quantum Electron.17,44 (1981)
    [28]A. S. Arnold. J. S. Wilson, and M. G.Boshier, A simple extended-cavity diode laser. Rev. Sci. Instrum.69,1236-1239 (1998).
    [29]L. Ricci. M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, A compact grating-stabilized diode laser system for atomic physics. Opt. Commun.117,541-549 (1995).
    [30]W. R. Trutna and P. Zorabedian, Research on External-Cavity Lasers. Hewlett-Packard J.44,35-38 (1993).
    [21]J. Hult, I. S. Burns, and C. F. Kaminski, Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. Appl. Opt.44,3675-3685 (2005).
    [32]C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating. Rev. Sci. Instrum.72,3811-3815 (2001).
    [33]Sheng-wey Chiow, Quan Long, Christoph Vo, Holger Miiller, and Steven Chu. Extended-cavity diode lasers with tracked resonances. Appl. Opt.46,7997-8001 (2007).
    [34]Tong Zhou, Xianghui Qi, Qing Wang, Wei Xiong, Jun Duan, Xiaoji Zhou, and Xuzong Chen, Frequency-stabilized diode laser at 780 nm with a continuously locked time over 100 h. Chin. Opt. Lett.8,496-498 (2010).
    [35]F. Allard, I. Maksimovic, M. Abgrall, and P. Laurent, Automatic system to control the operation of an extended cavity diode laser. Rev. Sci. Instrum.75, 54-58 (2004).
    [36]T. Petelski, Atom Interferometers for Precision Gravity Measurements. Ph.D. dissertation, University Pierre and Marie Curie, Paris, (2005).
    [37]M. Kasevich, and S. Chu, Atomic interferometry using stimulated raman transitions. Phys. Rev. Lett.67,181 (1991).
    [38]M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G.R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett.82,5229(1999).
    [39]I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sorensen, M. D. Lukin, and R. L. Walsworth, Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98,243602 (2007).
    [40]C. Silberhorn, N. Korolkova, and G.Leuchs, Quantum key distribution with bright entangled beams. Phys. Rev. Lett.88,167902 (2002).
    [41]A. M. Marino and C. R. Stroud, Jr., Deterministic secure communications using two-mode squeezed states. Phys. Rev. A 74,022315 (2006).
    [42]A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and TW. Hansch, Hydrogen-deuterium 1S-2S isotope shift and the structure of the deuteron. Phys. Rev. Lett.80,468 (1998).
    [43]L. Cacciapuoti, M. de Angelis, M. Fattori, G.Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G M. Tino, Analog plus digital phase and frequency detector for phase locking of diode lasers. Rev. Sci. Instrum.76,053111 (2005).
    [44]P. Bouyer, T. L. Gustavson, K. G.Haritos, and M. A. Kasevich, Microwave signal generation with optical injection locking. Opt. Lett.21,1502 (1996).
    [45]P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le GouEt, J. Kim, K.T. Therkildsen, A. Clairon, and A. Landragin, Compact laser system for atom interferometry. Appl. Phys. B 84,643 (2006).
    [46]H. Muller, S. Chiow, Q. Long, and S. Chu, Phase-locked, low-noise, frequency agile titanium:sapphire lasers for simultaneous atom interferometers. Opt. Lett. 31,202(2006).
    [47]L. M. Li, W. Z. Tang, Z. Y. Hu, and H. Guo, Realization of optical phase locked loop at 9.2 GHz between two independent diode lasers. Chin. Phys. Lett.25, 3253 (2008).
    [48]A. M. Marino and C. R. Stroud Jr., Phase-locked laser system for use in atomic coherence experiments. Rev. Sci. Instrum.79,013104 (2008).
    [49]D. Hockel, M. Scholz, O. Benson, A robust phase-locked diode laser system for EIT experiments in cesium. Appl. Phys. B 94,429 (2009).
    [50]J. Appel, A. MacRae, and A. I. Lvovsky, A versatile digital GHz phase lock for external cavity diode lasers. Meas. Sci. Technol.20,055302 (2009).
    [51]J. Le Gouet, J. Kim. C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator. Opt. Commun.282,977 (2009).
    [52]F. Friederich. G. Schuricht, A. Deninger, F. Lison, G. Spickermann, P. H. Bolivar, H. G Roskos, Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range. Opt. Express 18,8621 (2010).
    [53]A. Castrillo, E. Fasci, G. Galzerano, G. Casa, P. Laporta, and L. Gianfrani, Offset-frequency locking of extended-cavity diode lasers for precision spectroscopy of water at 1.38 mu m. Opt. Express 18,21851 (2010).
    [54]X. L. Wang, T. J. Tao, B. Cheng, B. Wu, Y. F. Xu, Z. Y. Wang, and Q. Lin, A Digital Phase Lock Loop for an External Cavity Diode Laser. Chin. Phys. Lett.28, 084214(2011).
    [55]E. N. Ivanov, F. X. Esnault, and E. A. Donley, Offset phase locking of noisy diode lasers aided by frequency division. Rev. Sci. Instrum.82,083110 (2011).
    [56]D. Abramovitch, PhaseLocked Loops:A Control Centric Tutorial. Proceedings of the American Control Conference, Anchorage, Ak,2002, (IEEE, New York, NY, 2002), p.1.
    [57]Y. Ma, X. Wang, P. Zhou, B. He, H. Xiao, Y. Xue, C. Liu, Z. Li, X. Xu, J. Zhou, L. Si, Z. Liu, and Y. Zhao, Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique. Opt. Lasers Eng.49,1089 (2011).
    [58]A. Schwettmann, J. Sedlacek, and J. P. Shaffer, Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization. Rev. Sci. Instrum.82,103103 (2011).
    [59]R. E. Best, Phase-locked Loops:Design, Simulation, and Applications (McGraw-Hill, New York,2003), p.211.
    [60]T. L. Johnson, A comparison of MC68000 family processors. Byte 11,205 (1986).
    [61]M. Zhu and J. L. Hall, J. Stabilization of optical-phase frequency of a laser system-application to a commercial dye-laser with an external stabilizer. Opt. Soc.Am.B 10,802(1993).
    [62]M. Prevedelli, T. Freegarde, and T. W. Hansch, Phase-locking of grating-tuned diode-lasers. Appl. Phys. B:Lasers Opt. B 60, S241 (1995).
    [63]N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, A. Ruffini, An analog plus digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb. Quantum Electron.34,559 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700