家蚕气味结合蛋白基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕是和人们的生产、生活联系最密切的昆虫,是目前唯一完成全基因组测序的鳞翅目昆虫,是国际鳞翅目学会公认的鳞翅目模式生物;数十年来,蚕蛾还一直是研究蛾类嗅觉接受和传导的模式昆虫,其中气味结合蛋白(以性信息素结合蛋白为主)是研究的热点之一。气味结合蛋白(Odorant binding proteins,OBPs)在昆虫和外界环境化学信息交流过程中起着重要作用,对昆虫觅食、求偶、繁殖具有重要意义。因此,开展家蚕气味结合蛋白的研究对进一步认识其功能,阐明家蚕的嗅觉机制,以及利用昆虫嗅觉进行害虫治理和益虫饲养具有重要理论和实践意义。为此,本文利用生物信息学、基因定位、基因表达谱分析、基因克隆、RNAi、分子进化分析和分子标记等方法研究了家蚕气味结合蛋白基因家族的基因结构、定位、表达谱、功能,以及家蚕对人工饲料摄食性相关的分子标记。主要结果如下:
     1对NCBI公布的家蚕OBPs家族生物信息学分析发现,该家族基因分布于7条染色体上,形成4个基因簇;基因的结构多态性明显,核苷酸序列相似性、遗传距离差距较大;家蚕OBP基因的电子表达谱广,多个基因在多种组织中具有表达。对OBP家族蛋白质分析发现,该家族的生化特性和昆虫OBP蛋白基本类似,其中可能有2个蛋白为跨膜蛋白,5个膜相关蛋白,蛋白质的疏水性区域类似;序列一致性较低,遗传距离差异大,但半胱氨酸和色氨酸非常保守;家蚕的OBP家族同样存在Minus-C类群,但未发现Plus-C类群基因。结果表明,OBP家族可能具有多种功能。
     2性信息素结合蛋白/普通气味结合蛋白(Pheromone binding protein/general binding protein)是鳞翅目昆虫OBP家族的一个重要单系群。染色体上定位发现这些基因以基因簇的形式存在于第19染色体的nscaf3052上,基因结构相似,转录方向一致,表明这些基因可能由同源基因复制产生,并具有类似功能;对其潜成虫和成虫阶段多个发育时期的雌、雄虫多种组织中进行表达分析,发现这些基因在不同发育时期的不同组织间差异明显,相对表达量均以触角中为最高,其它非嗅觉组织中也多有表达,性别间差异不大,说明了该基因簇基因除了具有嗅觉相关的功能外,很可能具有其它尚未被发现的功能;而蚕蛾趋性反应结果说明,蚕蛾的嗅觉反应以雄蛾对性引诱的应答为主,而对幼虫期敏感的引诱物或忌避物没有反应,成虫期OBPs的主要功能可能和感受性信息素刺激有关。
     3对家蚕幼虫期ABP(Antennal binding protein)和ABPX(Antennal binding protein X)基因的蛋白质结构、功能位点、基因表达和功能分析发现,这2个蛋白差异较大,分属不同的OBP群;且这2个基因在嗅觉组织(器官)中均有较高的表达量,但并非仅在嗅觉器官中表达,基本上在所检测的组织中均有表达。摘除实验结果显示,二者可能和幼虫对食物的趋性相关;但5龄期注射dsRNA和口服细菌表达的dsRNA实验表明,RNAi能够显著降低目的基因的表达,但未引起家蚕的嗅觉失灵,而对家蚕幼虫5龄期的发育经过有明显的延缓作用。这些结果表明,这2个基因在幼虫期可能和幼虫的对食物的趋性相关,并具有其他重要的、和发育相关的生理功能。
     4克隆得到了野桑蚕性信息素感受过程中的重要基因PBP1、PBP2、PBP3、OR1和OR3。序列分析发现,家蚕和野桑蚕基因间的遗传距离很近,基因变异较小,且以转换为主,核苷酸变异未引起蛋白质二级结构的变化,其重要的功能位点也未发生变异,推测其基因的功能未发生变化,故二者能够相互感受、识别。为通过杂交开发、利用野桑蚕资源提供了理论依据;同时,这也是家蚕起源于野桑蚕的分子证据。
     5普遍认为,GOBP(general OBP)具有结合食物和环境中各种普通的气味分子的能力。对13种昆虫GOBP亚家族分子进化分析结果表明,GOBP1和GOBP2氨基酸和核苷酸的一致性很高,序列差异性很小,其亲缘关系非常近,其中半胱氨酸和色氨酸非常保守,但是它们来自不同的祖先基因,并在物种分化之前已经分化完成。基于氨基酸序列的ω分析表明,Ka/Ks率一般都很低,仅在烟夜蛾和棉铃虫GOBP1的分化进化过程中受到正向选择作用,而在其他分化过程中均未检测出正向选择作用。表明GOBP基因在昆虫间可能具有相似的功能。
     6家蚕的食性相关分子标记研究表明,家蚕对人工饲料育摄食性相关性状可能主要受不食基因控制;RAPD标记结果具有明显的多态性,SSR标记的多态性较少,其对应的特异引物主要为染色体第10、11、17、19、20、27、28号上的标记,其中以第20号染色体的标记最多,且多为高摄食性亲本的特异性条带,说明家蚕对人工饲料摄食性的基因很可能位于其上;而位于17号染色体的标记扩增出的特异性条带多来自于低摄食性亲本,表明家蚕对人工饲料不食基因可能位于其上。这为进一步确定食性相关性状的分子标记,利用分子标记辅助育种,培育对人工饲料育高摄食性品种奠定了基础,有助于产业进步,也有利于害虫的防治和其他益虫的饲养。
Domestic silkworm Bombyx mori is the closest insect with the production and living of homo-sapiens. Bombyx mori is the only Lepidopteran insect whole genome sequence available. And it has been considered as the lepidopteran model insect by The International Lepidoptera Society, TILS. In the past decades years, silk moths were also as the model insect utilized in moth olfactory reception conduction research, the odorant binding proteins (OBPs) were on the focus, especially the pheromone-binding proteins (PBPs). OBPs in insects play a primordial role in foraging, courtshiping, reproduction, and chemical communication with the environments. Accordingly, researches on the OBPs of silkworm would further recognize the functions, and illuminate the mechanism of silkworm olfactory, and be utilized in pests governing and in beneficial insects rearing. For those reasons, we investigated the genetic structure, chromosome location, expression profiles, gene function of OBPs, and the molecular markers related to feeding habit to artificial diet of silkworm utilized bioinformatics, gene localization, expression profile analysis, gene cloning, RNA interference (RNAi), molecular evolution analysis, and molecular markers analysis. The results as follows:
     1 We analyzed the OBP family members of Bombyx mori released in NCBI with bioinformatics methods and softwares, and found the family members located on the 7 disparity chromosomes, and emerged 4 gene clusters. The genetic structure showed obviously polymorphism. The disparities were fairly larger of nucleotide sequence similarity and genetic distance. The electronic expression profiles were extensive, and many genes expressed in different tissues. The family had similar biochemistry character to insect OBPs, and two were transmembrane proteins, 5 embrane-associated proteins. The amino acids had low level sequence identities and remote genetic distances, but cysteine and tryptophan were very conservative. There possessed Minus-C group like Drosophila melanogaster and other insects, and no Plus-C group in the family. The results indicated OBP probably functioned in many aspects in silkworm.
     2 Pheromone binding proteins/general binding proteins(PBPs/GOBPs) were an important monophyletic group of Lepidoptera. We mapped the genes in the genome of silkworm. The results exhibited those genes organized in the nscaf3052 of Chromosome 19~(th) in form of gene cluster, with similar gene structure and identical transcript direction, indicated them originated from homologous gene duplication and possessed functional similarity probably. Analysis the expression profiles in different tissues in different female and male tissues during pupal and adult stages, the results revealed that those genes possessed conspicuous temporal and special differences, the maximum relative expression level occured in the antennae, and lower in other most no-olfactory organization without significant sex differences. The results indicated the gene cluster may function as a olfactory organism, and others undiscovered. Otherwise, taxis experiment of silkworm adult males showed olfactory reaction between adults was the responses to sexual attraction and independence to attractant or repellent, the major function of OBPs were related to receipt sexual pheromone irritation.
     3 We analyzed the predicted tertiary structures and functional sites, gene expression profiles of the whole stages, and function of ABP and ABPX by RNAi in the 5th larva stage. The two proteins were significantly differences, and belonged to different groups. They were transcribed highly in olfactory tissues (organism), and by no means merely in those tissues, but expressed in all most tissues detected. Removal olfactory organisms experiment showed the two genes possibly correlated to the taxis to ingestas in larva stage. But the transcript levels of targeted genes significantly decreased after injected with dsRNA or oral application of bacterial expressed dsRNA. RNAi did not cause olfactory malfunction of silkworm, but postponed the developmental process of the 5th larva significantly. Those results indicated the two genes probably concerned with the taxis to ingestas and shouldered other important physiological functions related to development in larva stage.
     4 Sex pheromone signal transduction in moths was focused on PBP subfamily member and OR (olfactory receptor) genes at present. It formed a paradigm for the study of insect chemical communication. PBPs, OR1 and OR3 played an important role in the process of the male silkmoths perception and location of the females. For the purpose of finding out the molecular mechanism of difficult hybridization,and understanding the evolution of related genes to sexual recognition between the demostic and wild silkworm. We cloned the 3 PBP and 2 OR genes from wild silkmoths Bombyx mandarina. The results, of sequence analysis of coding regions, revealed that the genetic distances were very intimate and the base transversion was the predominant form of basic mutations. Secondary structure predicted suggested mutation sites had no influence on the adjoining regions, and nor on the functional sites. They are presumably no functional differences in the two related moths,So the two related species can receipt, recognize each other, and it founded the theoretical evidence for the exploitation of wild silkworm through mutual cross. Meanwhile, it was the molecular evidences of domestic silkworm originated from wild silkworm.
     5 General OBPs (GOBPs) were considered as the binding protein of variety of general odorant molecules associated with food and the environment. The molecular evolution based on GOBP subfamily sequences of 13 insects released by NCBI indicated there presented high identity in the GOBP1 and GOBP2 amino acid and nucleotide sequences, and low level sequence divergence. The genetic relationship was very close between the two genes. Also, cysteine and tryptophan were the most conservative amino acids. But the two genes originated from two different ancestral gene, and had been duplicated prior to the divergence of those 13 species.Theω(ka/ks) analysis based on the nucleotide and amino sequences indicated Ka/Ks ratios were generally small. Only one positive selection was detected during the evolutionary process of GOBP1 between Helicoverpa assulta and Helicoverpa armigera. Those results demonstrated GOBPs were probably functional similarity among insects.
     6 Correlated characters of feeding habit on artificial diet of silkworm perhaps regulated by no-feeding genes according to the molecular markers experiments. Polymorphism of RAPD (Random Amplified Polymorphic DNA) markers exceeded those of SSR (Simple Sequence Repeat). And special marks of SSR mainly came from the chromosome 10th, 11th, 17th,19th, 20th, 27th, and 28th. The major were on the chromosome 20th, and many special bands amplified from the parents with high feeding ability. It indicated the genes related foraging artificial diet located on the chromosome probably. And special bands amplified by the SSR marks of chromosome 17th mainly came from the parents with low feeding ability. The no-feeding genes perhaps located on it. Those results founded the base of determination molecular markers of feeding habit related characters and assisting molecular seed breeding. It would promote sericulture,and benefit in pests control and useful insects breeding.
引文
奥斯伯,布伦特,金斯顿,穆尔,塞德曼,史密斯,斯特拉尔.(王海林,颜子颖译).精编分子生物学实验指南[M].北京,科学出版社, 1998
    白会钗,徐安英,李木旺,赵云坡,郭秋红,钱荷英,张月华,赵远,黄勇平,郭锡杰.利用SSR标记对家蚕耐氟基因进行连锁定位分析.蚕业科学, 2008,34(2): 191-196
    彩万志,庞雄飞,花保祯,梁广文,宋敦伦.普通昆虫学.北京:中国农业大学出版社, 2001
    陈克平,姚勤.家蚕耐氟基因RAPD分子标记研究.农业生物技术学报, 2001, 9(2): 136-138
    丛海峰,徐世清,司马杨虎,张升祥,王更先,董航,刘莹,柳学广.野桑蚕铜锌超氧化物歧化酶基因的克隆分析与原核表达.蚕业科学, 2007, 33(2): 234- 240
    崔为正,李卫国,胡增娟,徐俊良.桑蚕摘除部分感觉器对人工饲料摄食性的影响.蚕桑通报, 1999, (3): 15-17
    崔为正.家蚕对人工饲料摄食性的生理遗传学研究与展望.蚕业科学, 2003, 29(2): 107-113
    崔为正.桑蚕(Bombyx mori L.)食性个体差异及提高对人工饲料摄食性的研究[D].浙江大学博士论文. 1999
    段雪梅.家蚕多种分子标记连锁图谱的构建及分析[B].苏州大学硕士论文.2008
    龚达平,赵萍,林英,张辉洁,夏庆友,向仲怀.家蚕信息素结合蛋白BmPBP2和BmPBP3基因的初步鉴定及表达分析.昆虫学报, 2006,49(3):355-362
    巩中军,原国辉,郭线茹,安世恒.烟实夜蛾触角普通气味结合蛋白ⅡcDNA的克隆、序列分析及在大肠杆菌中的表达.昆虫学报, 2005, 48(1):18-23
    郭秋红,李木旺,李明辉,司科,苗雪霞,徐安英,黄勇平.利用SSR标记鉴定家蚕不同系统的品种初探.蚕业科学, 2005,31(3):257-260
    何克荣,叶爱红.家蚕标记基因位点与数量性状基因位点重组参数的最大似然估计法. 蚕业科学, 1996, 22(1): 31-35
    何宁佳,鲁成.结合SADF与RAPD标记构建家蚕连锁图.昆虫学报, 2001, 44(4): 476-482
    侯成香,李木旺,张月华,钱荷英,孙平江,徐安英,苗雪霞,郭秋红,相辉,黄勇平.利用SSR标记进行家蚕部分品种资源的指纹图谱分析.中国农业科学, 2006, 39(10): 2124-2131
    黄恩炯,郭晓霞,赵彤言.昆虫嗅觉反应机理的研究进展.寄生虫与医学昆虫学报, 2008, 15(2): 115-119
    金丰良,董小林,许小霞,任顺祥.斜纹夜蛾普通气味结合蛋白ⅡcDNA的克隆及在原核细胞中的表达.中国科学(C辑), 2008, 38(11): 1076-1083
    黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报, 1999, 15(4): 19-22李斌.家蚕分子连锁图谱的构建和低分子量热激蛋白基因的克隆与特异表达[B].西南大学硕士论文.2001
    李斌,鲁成,赵爱春,向仲怀.家蚕全茧量及重要相关经济性状的多重区间作图分析. 中国农业科学, 2005, 38(7): 1474-1479
    李斌,鲁成,周泽扬,向仲怀. RAPD标记构建家蚕分子连锁图.遗传学报, 2000, 27(2): 127-132
    李红亮,高其康,程家安.中华蜜蜂信息素结合蛋白ASP1 cDNA的克隆及时空表达.昆虫学报, 2008, 51(7): 689-693
    李焕文.蚕桑与家蚕的起源及其化性变化的探索.蚕学通讯, 1985, 1: 41-45
    李竞,房守敏,刘文明,李斌,苗雪霞,黄勇平,鲁成. SSR标记在中国野桑蚕和家蚕的遗传多态性分析中的应用.蚕业科学, 2005, 31(3): 251-256
    李卫华,涂洪涛,苗雪霞,郭线茹.昆虫嗅觉相关蛋白的研究进展.昆虫知识, 2006, 43(6): 757-762
    李霞,李木旺,郭秋红,徐安英,黄勇平,郭锡杰.家蚕黄血抑制基因的SSR定位.遗传, 2008, 8: 1039-1042
    李正西, Zhou J.J.,沈佐锐, Field. L..疟蚊Anopheles gambiae和A. arabiensis嗅觉结合蛋白基因的鉴定和表达谱分型.中国科学(C辑), 2004, 34(3):243-251
    廖顺尧,鲁成.家蚕卵线粒体DNA限制性内切酶长度多态性研究.西南农业大学学报, 2001, 23(1): 29-32
    林健荣,梅曼彤.家蚕胚胎温敏性基因的RAPD标记筛选.农业生物技术学报, 2001, 9(2): 171-174
    林健荣,文哲光. RAPD分子标记技术应用于家蚕品种纯度检测的研究.湖北农业科学, 2002, (3): 56-58
    刘春,帅小蓉,程廷才,徐汉福,李春峰,代方银,夏庆友,向仲怀.家蚕胚胎发育时期的RNA干涉研究.生物化学与生物物理进展, 2004, 31(4): 322-327
    刘晓勇,姚勤,陈克平,徐庆刚.家蚕耐氟基因RAPD分子标记的筛选及其克隆.动物学研究, 2004, 1
    刘勇,倪汉祥.昆虫气味结合蛋白研究进展.昆虫知识, 2000, 37(6): 367-371
    娄永根,程家安.昆虫的化学感觉机理.生态学杂志, 2001, 20(2): 66-69
    鲁成,黄君霆. 21世纪蚕业科学基础研究发展趋势.蚕业科学, 2000, 26(2): 105-114
    鲁成,李斌,赵爱春,向仲怀.家蚕重要经济性状的QTL定位研究.中国科学(C辑), 2004, 34(3): 236-242
    鲁成,刘连碧.家蚕丝蛋白基因分子标记的建立.西南农业大学学报, 1996, 18(2): 100- 102
    鲁成,万春玲.中国野桑蚕遗传多样性的AFLP分析.动物学研究, 2002, 23(2): 166- 172
    鲁成,余红仕.中国野桑蚕和家蚕的分子系统学研究.中国农业科学, 2002, 35(1): 94- 101
    马瑞燕,杜家纬.昆虫的触角感器.昆虫知识, 2000, 37(3): 179-183
    那杰,于维熙,李玉萍,董鑫,焦娇.昆虫触角感器的种类及其生理生态学意义.沈阳师范大学学报:自然科学版, 2008, 26(2): 213-216
    潘敏慧,冯振月,田志强,刘敏,鲁成.家蚕胚胎细胞系的DNA指纹图谱分析.分子细胞生物学报, 2006, 39(6): 537-543
    钱荷英,李木旺,张月华,郭秋红,湘晖,赵云坡,孙平江,侯成香,徐安英.用SSR标记进行家蚕日系品种资源指纹图谱的构建及亲缘关系分析.蚕业科学, 2005, 31(4): 422-428
    任小青. RNA干扰技术及其应用.天津农学院学报, 2009, 16(1): 45-48
    沈利.家蚕SSR标记和CAPS标记的筛选及其应用[D].中国科学院研究生院(上海生命科学研究院), 2004
    沈利,李木旺,李明辉,苗雪霞,鲁成,黄勇平.家蚕微卫星标记的筛选及其在遗传多样性分析中的应用.蚕业科学, 2004, 30(3): 230-236
    史艳霞,张永军,王桂荣,梁革梅,高继国,吴孔明. Cry1Ac的绿色荧光蛋白GFP标记及其在棉铃虫幼虫中肠的定位分布.植物保护学报, 2007, 34(5): 455-460
    司马杨虎,李斌,陈大霞,徐海明,张烈,孙德斌,鲁成,向仲怀.不同标记数对家蚕茧质性状的QTL定位比较.蚕业科学, 2004, 30(3): 249-254
    司马杨虎,李斌,徐海明,陈大霞,孙德斌,赵爱春,鲁成,向仲怀.家蚕茧质性状的QTL定位研究.遗传学报, 2005, 32(6): 625-632
    谭远德,李发德.应用频数分布面积法定位家蚕QTL.生物数学学报, 1998, 13(1):97-103
    童晓玲,代方银,余泉友,颜虹,鲁成,魏泓,向仲怀.家蚕近交系遗传纯度的RAPD检测.中国实验动物学报, 2005, 13(3): 149-153
    万春玲,谭远德.利用AFLP标记构建家蚕分子连锁图谱.中国农业科学, 2001, 34(3): 338-341
    王东,李兵,王燕红,刘衬丽,赵华强,许雅香,沈卫德.野桑蚕羧酸酯酶基因(BmmCarE-2)的克隆及表达分析.蚕业科学, 2008, 34(4): 650-657
    王根洪,刘春,杨远萍,吴雪峰,夏庆友. siRNA介导的家蚕ABC转运蛋白相关基因的干涉研究.蚕业科学, 2005, 31(2): 117-120
    王更先.家蚕和棉铃虫若干lethal相关基因的克隆、表达及功能研究[D].苏州大学博士论文. 2009
    王桂荣,郭予元,吴孔明.棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定.昆虫学报, 2002, 45(3): 285-289
    王桂荣,郭予元,吴孔明,徐广.甜菜夜蛾GOBP2基因的克隆及序列测定.中国农业科学, 2001, 34(6): 619-625
    王桂荣,郭予元,吴孔明.昆虫触角气味结合蛋白的研究进展.昆虫学报, 2002, 45(1): 131-137
    王桂荣,郭予元,吴孔明.棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定.昆虫学报, 2002, 45(3): 285-289
    王桂荣,吴孔明,郭予元.棉铃虫触角普通气味结合蛋白1基因cDNA的部分克隆和定性分析.中国昆虫科学(英文版), 2001, 8(4): 289-297
    王桂荣,吴孔明,苏宏华,郭予元.棉铃虫嗅觉受体基因的克隆及组织特异性表达.昆虫学报, 2005, 48(6): 823-828
    王燕红,王东,李兵,赵华强,许雅香,沈卫德.野桑蚕细胞色素P450家族CYP4M5基因的克隆和诱导表达.蚕业科学, 2009, 35(1): 78-83.
    吴才宏,邹文云.桑野蚕雄蛾的性信息素感受细胞研究.北京大学学报(自然科学版),1995, 31(2): 250-254
    吴少英,王桂荣,吴孔明,郭予元,原国辉,郭线茹.烟青虫气味结合蛋白基因的克隆与序列分析.中国农业科学, 2005, 38(9): 1817-1824
    吴玉澄.家蚕种质资源和育种研究进展.中国蚕业, 1997, (3): 42-44
    吴仲南,杜永均,诸葛启钏.斜纹夜蛾普通气味结合蛋白GOBP1基因的表达定位分析.昆虫学报, 2009, 52(6): 610- 616
    夏庆友,帅小蓉,刘春,朱勇. RNA干涉及其在蚕功能基因组研究中的应用.蚕业科学, 2003, 29(3): 213-216
    夏庆友,周泽扬.家蚕Y, Nl基因和Z染色体的RAPD分子标记研究.西南农业大学学报, 1996, 18(2): 114-118
    夏庆友.家蚕分子系统学和基因分子标记研究[D].博士学位论文. Genetics Research, 1996, 66(01): 1-7
    徐生才,赵华强,李兵,沈卫德.野桑蚕细胞色素P450基因CYP9A20V1的克隆与序列分析.蚕业科学, 2009, 35(2): 295-301
    徐世清,陈息林,戴璇颖,司马杨虎,王玉军,吴阳春,朱端红,唐斌. DNA分子标记检测家蚕黄海,苏春品种和纯度的研究.江苏蚕业, 2005, 27(3): 4-9
    许西奎,徐升胜,李兵,许雅香,沈卫德.野桑蚕肌球蛋白轻链2基因(MLC2)的克隆和序列分析.蚕业科学, 2009, 35(1): 71-77
    杨慧,严善春,彭璐.鳞翅目昆虫化学感受器及其感受机理新进展.昆虫学报, 2008, 51(2): 204-215
    杨中侠,文礼章,吴青君,王少丽,徐宝云. RNAi技术在昆虫功能基因研究中的应用进展.昆虫学报, 2008, 51(10): 1077-1082
    杨子恒(钟扬,张文娟,梅旖,等译).计算分子生物学[M].上海:复旦大学出版社, 2008
    余海忠,祝增荣,杨璞,刘慧宏,杨霄,肖作安.昆虫气味结合蛋白基因家族序列多样性分析.信阳师范学院学报, 2008, 21(1): 64-69
    余海忠.昆虫触角感受器研究进展.安徽农业科学, 2007, 35(14): 4238-4240, 4243
    岳枫,马文丽,郑文岭. RNAi的不同沉默机制及其应用.生物技术通报, 2004, (3): 5-7
    曾燕如,黄敏仁,王明庥.一种新的分子标记--单核苷酸多态(SNP).南京林业大学学报:自然科学版, 2003, 27(3): 84-88
    张金卫,钟伯雄,丁农,吴卫成,赵丽华.应用AFLP分子标记对6个家蚕品种的鉴定.蚕业科学, 2004, 30(2): 137-142
    张明,邵宁生. RNA阻抑和基因沉默.军事医学科学院院刊, 2002, 26(1): 61-65
    张升祥.家蚕对颗粒饲料摄食性选择方法与育种研究[B].山东农业大学, 2003
    张帅,张永军,苏宏华,高希武,郭予元.棉铃虫信息素结合蛋白2 cDNA的克隆,表达与组织特异性表达.中国农业科学, 2009, 42(7): 2359-2365
    张同心,崔为正,孙绪艮,张卫光,梁中贵.松阿扁叶蜂对不同树种挥发物的触角电位反应.昆虫学报, 2005, 48(4): 514-517
    张瑶.家蚕气味结合蛋白基因时空表达的研究[B].山东农业大学硕士论文, 2008
    张月华,徐安英,李木旺,钱荷英,孙平江,侯成香.用SSR标记构建家蚕中系品种资源指纹图谱.江苏科技大学学报:自然科学版, 2006, 20(4): 77-83
    赵爱春,鲁成,李斌,普孝英,周泽扬,向仲怀.家蚕AFLP分子连锁图谱的构建及绿茧基因定位.遗传学报, 2004, 31(8): 787-794
    赵伊英.黄曲条跳甲关键功能基因的克隆及利用RNAi技术控制害虫[D].福建农林大学博士论文, 2008
    赵云坡,徐安英,李木旺,李明辉,郭秋红,孙平江,钱荷英,张月华,郭锡杰.利用 SSR标记对家蚕黄血基因的定位及连锁分析.蚕业科学, 2006, 32(4): 464-468
    浙江农业大学.家蚕良种繁育与育种学(第二版)[M].北京:农业出版社, 1999
    钟国华,李苗孟,胡美英,罗倩,胡黎明.斜纹夜蛾触角气味结合蛋白基因SlitGOBP2 的克隆与序列分析.华中农业大学学报, 2008, 27(5): 578-584
    钟涛,尹姣,刘怀,王进军,李克斌,韦永贵,曹雅忠.草地螟触角普通气味结合蛋白基因的克隆及序列分析.植物保护学报, 2008, 34(4): 31-36
    周耀振,修伟明,董双林.应用RNA干扰技术对甜菜夜蛾信息素结合蛋白功能的研究. 南京农业大学学报, 2009, 32(3): 58-62
    朱彬彬,姜勇,牛长缨,周兴苗,雷朝亮.家蝇气味结合蛋白基因cDNA片段的克隆与序列分析.昆虫学报, 2005, 48(5):804-809
    朱玉芳,谭远德.家蚕AFLP连锁框架图谱的构建.昆虫学报, 2001, 44(4): 483-493
    Abe H., Kanehara M., Terada T., Ohbayashi F., Shimada T., Kawai S., Suzuki M., Sugasaki T., Oshiki T. Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Genes& genetic systems, 1998, 73(4): 243-254
    Abe H., Ohbayashi F., Shimada T., Sugasaki T., Kawai S., Mita K., Oshiki T. Molecular structure of a novel gypsy-Ty3-like retrotransposon (Kabuki) and nested retrotransposable elements on the W chromosome of the silkworm Bombyx mori. Molecular and General Genetics MGG, 2000, 263(6): 916-924
    Agrawal N., Dasaradhi P. V. N., Mohmmed A., Malhotra P., Bhatnagar R. K., Mukherjee S. K. RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 2003, 67(4): 657-685
    Alvarado S. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. PNAS, 1999, 96(9): 5049-5054
    Araujo R. N., Santos A., Pinto F. S., Gontijo N. F., Lehane M. J., Pereira M. H. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol, 2006, 36(9): 683-693
    Aravin A. A., Naumova N. M., Tulin A. V., Vagin V. V., Rozovsky Y. M., Gvozdev V. A. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology, 2001, 11(13): 1017-1027
    Arunkumar K. P., Metta M., Nagaraju J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Molecular Phylogenetics and Evolution, 2006, 40(2): 419-427
    Baum J. A., Bogaert T., Clinton W., Heck G. R., Feldmann P., Ilagan O., Johnson S., Plaetinck G., Munyikwa T., Pleau M., Vaughn T., Roberts J. Control of coleopteran insect pests through RNA interference. Nat Biotechnol, 2007, 25(11): 1322-2326
    Benton R. On the ORigin of smell: odorant receptors in insects. Cellular and molecular life sciences, 2006, 63(14): 1579-1585
    Blomquist G., Vogt R. Insect pheromone biochemistry and molecular biology. Elsevier, 2003
    Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314-318
    Brantl S. Antisense-RNA regulation and RNA interference. BBA-Gene Structure and Expression, 2002, 1575(1-3): 15-25
    Breer H. Sense of smell: recognition and transduction of olfactory signals. Biochemical Society Transactions, 2003, 31: 113-116
    Breer H., Krieger J., Raming K. A novel class of binding proteins in the antennae of the silk moth Antheraea pernyi. Insect Biochemistry, 1990, 20(7): 735-740
    Briand L., Nespoulous C., Huet J. C., Pernollet J. C. Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee (Apis mellifera L). J Pept Res, 2001, 58(6): 540-545
    Briand L., Nespoulous C., Huet J. C., Takahashi M., Pernollet J. C. Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem, 2001, 268(3): 752-760
    Brown S. J., Mahaffey J. P., Lorenzen M. D., Denell R. E., Mahaffey J. W. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evolution & Development, 1999, 1(1): 11-15
    Bucher G., Scholten J., Klingler M. Parental RNAi in Tribolium (Coleoptera). Current Biology, 2002, 12(3): 85-86
    Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1): 175-187
    Callahan F. E., Vogt R. G., Tucker M. L., Dickens J. C., Mattoo A. K. High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuiid moths. Insect Biochem Mol Biol, 2000, 30(6): 507-514
    Calvello M., Guerra N., Brandazza A., D'Ambrosio C., Scaloni A., Dani F. R., Turillazzi S., Pelosi P. Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci, 2003, 60(9): 1933-1943
    Campanacci V., Lartigue A., Hallberg B. M., Jones T. A., Giudici-Orticoni M. T., Tegoni M., Cambillau C. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. PNAS, 2003, 100(9): 5069-5074
    Caplen N. J., Fleenor J., Fire A., Morgan R. A. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene, 2000, 252(1-2): 95-105
    Caplen N. J., Zheng Z., Falgout B., Morgan R. A. Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Molecular Therapy, 2002, 6(2): 243-251
    Chatterjee S. N., Mohandas T. P. Identification of ISSR markers associated with productivity traits in silkworm, Bombyx mori L. Genome, 2003, 46(3): 438-447
    Cogoni C., Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 1999, 399(6732): 166-169
    Cogoni C., Romano N., Macino G. Suppression of gene expression by homologous transgenes.Antonie Van Leeuwenhoek, 1994, 65(3): 205-209
    Danty E., Michard-Vanhee C., Huet J. C., Genecque E., Pernollet J. C., Masson C. Biochemical characterization, molecular cloning and localization of a putative odorant-binding protein in the honey bee Apis mellifera L. (Hymenoptera: Apidea). FEBS Letters, 1997, 414(3): 595-598
    David B. RNA silencing: Diced defence. Nature, 2001, 409: 295-298
    de Bruyne M., Foster K., Carlson J. R. Odor coding in the Drosophila antenna. Neuron, 2001, 30(2): 537-552
    Du G., Ng C. S., Prestwich G. D. Odorant binding by a pheromone binding protein: active site mapping by photoaffinity labeling. Biochemistry, 1994, 33(16): 4812-4819
    Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498
    Elbashir S. M., Harborth J., Weber K., Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26(2): 199-213
    Fabrick J. A., Kanost M. R., Baker J. E. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. Journal of Insect Science, 2004, 4-15
    Feinberg E. H., Hunter C. P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 2003, 301(5639): 1545-1547
    Feng L., Prestwich G. D. Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem Mol Biol, 1997, 27(5): 405-412
    Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998: 806-810
    Fitzpatrick M. J., Feder E., Rowe L., Sokolowski M. B. Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature, 2007, 447(7141): 210-212
    Foret S., Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res, 2006, 16(11): 1404-13
    Forstner M., Gohl T., Breer H., Krieger J. Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invert Neurosci, 2006, 6(4): 177-187
    Galindo K., Smith D. P. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics, 2001, 159(3): 1059-1072
    Galvani A., Sperling L. RNA interference by feeding in Paramecium. Trends in Genetics, 2002, 18(1): 11-12
    Getchell T. V., Margolis F. L., Getchell M. L. Perireceptor and receptor events in vertebrate olfaction. Progress in neurobiology, 1984, 23(4): 317
    Goldsmith M. R. The Bombyx mori genome-mapping project. Sericologia, 1991, 31: 145-155
    Goldsmith M. R., Shimada T., Abe H. The genetics and genomics of the silkworm Bombyx mori . 2004, 50: 71-100
    Gong D.P., Zhang H.J., Zhao P., Lin Y., Xia Q.Y., Xiang Z.H. Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2007, 37(3): 266-277
    Gordon K. H., Waterhouse P. M. RNAi for insect-proof plants. Nat Biotechnol, 2007, 25(11): 1231-1232
    Graham L. A., Brewer D., Lajoie G., Davies P. L. Characterization of a subfamily of beetle odorant-binding proteins found in hemolymph. Mol Cell Proteomics, 2003, 2(8): 541-549
    Graham L. A., Davies P. L. The odorant-binding proteins of Drosophila melanogaster: annotation and characterization of a divergent gene family. Gene, 2002, 292(1-2): 43-55
    Graham L. A., Tang W., Baust J. G., Liou Y.-C., Reid T. S., Davies P. L. Characterization and cloning of a Tenebrio molitor hemolymph protein with sequence similarity to insect odorant-binding proteins. Insect Biochemistry and Molecular Biology, 2001, 31(6-7): 691-702
    Grosse-Wilde E., Svatos A., Krieger J. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chemical Senses, 2006, 31(6): 547-555
    Guo S., Kemphues K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4): 611-620
    Gyorgyi T. K., Roby-Shemkovitz A. J., Lerner M. R. Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta: a tissue-specific developmentally regulated protein.PNAS, 1988, 85(24): 9851-9855
    Hall I. M., Shankaranarayana G. D., Noma K., Ayoub N., Cohen A., Grewal S. I. S.Establishment and maintenance of a heterochromatin domain. Science, 2002, 297(5590): 2232-2237
    Hallem E. A., Carlson J. R. Coding of odors by a receptor repertoire. Cell, 2006, 125(1): 143-160
    Hallem E. A., Ho M. G., Carlson J. R. The Molecular Basis of Odor Coding in the Drosophila Antenna. Cell, 2004, 117(7): 965-979
    Hekmat-Scafe D. S., Scafe C. R., McKinney A. J., Tanouye M. A. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res, 2002, 12(9): 1357-1369
    Hofmann F., Feil R., Kleppisch T., Schlossmann J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiological reviews, 2006, 86(1): 1-23
    Huang J., Zhang Y., Li M., Wang S., Liu W., Couble P., Zhao G., Huang Y. RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS letters, 2007, 581(4): 697-701
    Hughes C. L., Kaufman T. C. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development, 2000, 127(17): 3683-3694
    Hurst L. D. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genetics, 2002, 18(9): 486-487
    Ishida Y., Chiang V. P., Haverty M. I., Leal W. S. Odorant-binding proteins from a primitive termite. J Chem Ecol, 2002, 28(9): 1887-1893
    Jacquin-Joly E., Francois M. C., Burnet M., Lucas P., Bourrat F., Maida R. Expression pattern in the antennae of a newly isolated lepidopteran Gq protein alpha subunit cDNA. Eur J Biochem, 2002, 269(8): 2133-2142
    Jacquin-Joly E., Merlin C. Insect olfactory receptors: Contributions of molecular biology to chemical ecology. Journal of chemical ecology, 2004, 30(12): 2359-2397
    Jacquin-Joly E., Vogt R. G., Francois M. C., Nagnan-Le Meillour P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses, 2001, 26(7): 833-844
    Jin F., Dong X., Xu X., Ren S. cDNA cloning and recombinant expression of the general odorant binding protein II from Spodoptera litura. Sci China C Life Sci, 2009, 52(1): 80-87
    Jin X., Brandazza A., Navarrini A., Ban L., Zhang S., Steinbrecht R. A., Zhang L., Pelosi P. Expression and immunolocalisation of odorant-binding and chemosensory proteins inlocusts. Cell Mol Life Sci, 2005, 62(10): 1156-1166
    Jones W. D., Nguyen T. A. T., Kloss B., Lee K. J., Vosshall L. B. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Current Biology, 2005, 15(4): 119-121
    Kaissling K. Chemo-electrical transduction in insect olfactory receptors. Annual review of neuroscience, 1986, 9(1): 121-145
    Kaissling K. E. A quantitative model of odor deactivation based on the redox shift of the pheromone-binding protein im moth antennae. Ann N Y Acad Sci, 1998, 855: 320-2
    Kaissling K. E. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses, 2001, 26(2): 125-150
    Kaissling K. E., Rospars J. P. Dose-response relationships in an olfactory flux detector model revisited. Chemical senses, 2004, 29(6): 529-531
    Kasang G.. Bombykol reception and metabolism on the antennae of the silkmoth Bombyx mori, Academic Press, 1970
    Kennerdell J. R., Carthew R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 1998, 95: 1017-1026
    Ketting R. F., Fischer S. E. J., Bernstein E., Sijen T., Hannon G. J., Plasterk R. H. A. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & Development, 2001, 15(20): 2654
    Ketting R. F., Haverkamp T. H. A., Van Luenen H., Plasterk R. H. A. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell, 1999, 99: 133-142
    Kikuchi Y., Mori K., Suzuki S., Yamaguchi K., Mizuno S. Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene, 1992, 110(2): 151-160
    Kim J., Hirsch J. P. A nucleolar protein that affects mating efficiency in Saccharomyces cerevisiae by altering the morphological response to pheromone. Genetics, 1998, 149(2): 795-805
    Kim M. S., Repp A., Smith D. P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics, 1998, 150(2): 711-721
    Kimura M. Evolutionary rate at the molecular level. Nature, 1968, 217(5129): 624-626
    Kitabayashi A. N., Arai T., Kubo T., Natori S. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem Mol Biol, 1998, 28(10): 785-790
    Klein U. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochemistry, 1987, 17(8): 1193-1204
    Klusak V., Havlas Z., Rulisek L., Vondrasek J., Svatos A. Sexual attraction in the silkworm moth. Nature of binding of bombykol in pheromone binding protein--an ab initio study. Chem Biol, 2003, 10(4): 331-340
    Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 1993, 4(2): 403-410
    Krieger J., Grosse-Wilde E., Gohl T., Breer H. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur J Neurosci, 2005, 21(8): 2167-2176
    Krieger J., Klink O., Mohl C., Raming K., Breer H. A candidate olfactory receptor subtype highly conserved across different insect orders. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189(7): 519-526
    Krieger J., Raming K., Breer H. Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim Biophys Acta, 1991, 1088(2): 277-284
    Krieger J., von Nickisch-Rosenegk E., Mameli M., Pelosi P., Breer H. Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol, 1996, 26(3): 297-307
    Krieger M. J., Ross K. G. Identification of a major gene regulating complex social behavior. Science, 2002, 295(5553): 328-332
    Krol A. R., Mur L. A., Lange P., Mol J. N. M., Stuitje A. R. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Molecular Biology, 1990, 14(4): 457-466
    Lander E. S. The new genomics: global views of biology. Science, 1996, 274(5287): 536-539
    Larsson M. C., Domingos A. I., Jones W. D., Chiappe M. E., Amrein H., Vosshall L. B. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 2004, 43(5): 703-714
    Lartigue A., Campanacci V., Roussel A., Larsson A. M., Jones T. A., Tegoni M., Cambillau C. X-ray structure and ligand binding study of a moth chemosensory protein. Journal of Biological Chemistry, 2002, 277(35): 32094-32098
    Lartigue A., Gruez A., Briand L., Pernollet J. C., Spinelli S., Tegoni M., Cambillau C. Optimization of crystals from nanodrops: crystallization and preliminary crystallographic study of a pheromone-binding protein from the honeybee Apis mellifera L. Acta Crystallogr D Biol Crystallogr, 2003, 59(Pt 5): 919-921
    Lartigue A., Gruez A., Spinelli S., Riviere S., Brossut R., Tegoni M., Cambillau C. The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem, 2003, 278(32): 30213-30218
    Lartigue A., Riviere S., Brossut R., Tegoni M., Cambillau C. Crystallization and preliminary crystallographic study of a pheromone-binding protein from the cockroach Leucophaea maderae. Acta Crystallogr D Biol Crystallogr, 2003, 59(Pt 5): 916-918
    Laughlin J. D., Ha T. S., Jones D. N., Smith D. P. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell, 2008, 133(7): 1255-1265
    Lautenschlager C., Leal W. S., Clardy J. Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem Biophys Res Commun, 2005, 335(4): 1044-1050
    Lautenschlager C., Leal W. S., Clardy J. Bombyx mori pheromone-binding protein binding nonpheromone ligands: implications for pheromone recognition. Structure, 2007, 15(9): 1148-1154
    Leal W. S., Chen A. M., Erickson M. L. Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein. J Chem Ecol, 2005, 31(10): 2493-2499
    Leal W. S., Chen A. M., Ishida Y., Chiang V. P., Erickson M. L., Morgan T. I., Tsuruda J. M. Kinetics and molecular properties of pheromone binding and release. PNAS, 2005, 102(15): 5386-5391
    Leal W. S., Nikonova L., Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett, 1999, 464(1-2): 85-90
    Li B., ., Xia Q., Lu C., Zhou Z., Xiang Z. Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori). Science in China Series C: Life Sciences, 2005, 48(4): 414-418
    Li H., Li W. X., Ding S. W. Induction and suppression of RNA silencing by an animal virus. Science, 2002, 296(5571): 1319-1321
    Li Z. X., Pickett J. A., Field L. M., Zhou J. J. Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis. Arch Insect Biochem Physiol, 2005, 58(3): 175-189
    Lipardi C., Wei Q., Paterson B. M. RNAi as random degradative PCR siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001, 107(3): 297-307
    Lohmann J. U., Endl I., Bosch T. C. G. Silencing of developmental genes in Hydra. Developmental Biology, 1999, 214(1): 211-214
    Maibeche-Coisne M., Jacquin-Joly E., Francois M. C., Nagnan-Le Meillour P. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol Biol, 2002, 11(3): 273-281
    Ma(?)bèche-Coisne M., Sobrio F., Delaunay T., Lettere M., Dubroca J., Jacquin-Joly E., Meillour P. N. L. Pheromone binding proteins of the moth Mamestra brassicae: specificity of ligand binding. Insect Biochemistry and Molecular Biology, 1997, 27(3): 213-221
    Maida R., Mameli M., Muller B., Krieger J., Steinbrecht R. A. The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori. J Neurocytol, 2005, 34(1-2): 149-163
    Maleszka J., Forêt S., Saint R., Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Development Genes and Evolution, 2007, 217(3): 189-196
    Mao Y. B., Cai W. J., Wang J. W., Hong G. J., Tao X. Y., Wang L. J., Huang Y. P., Chen X. Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol, 2007, 25(11): 1307-1313
    Margaryan A., Moaddel R., Aldrich J. R., Tsuruda J. M., Chen A. M., Leal W. S., Wainer I. W. Synthesis of an immobilized Bombyx mori pheromone-binding protein liquid chromatography stationary phase. Talanta, 2006, 70(4): 752-755
    McDonald M. J., Rosbash M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell, 2001, 107(5): 567-578
    McKenna M. P., Hekmat-Scafe D. S., Gaines P., Carlson J. R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. Journal of Biological Chemistry, 1994, 269(23): 16340-16347
    Miao X. X., Xub S. J., Li M. H., Li M. W., Huang J. H., Dai F. Y., Marino S. W., Mills D. R., Zeng P., Mita K. Simple sequence repeat-based consensus linkage map of Bombyx mori. PNAS, 2005, 102(45): 16303-16308
    Miller S. C., Brown S. J., Tomoyasu Y. Larval RNAi in Drosophila? Development Genes and Evolution, 2008, 218(9): 505-510
    Mita K., Kasahara M., Sasaki S., Nagayasu Y., Yamada T., Kanamori H., Namiki N., Kitagawa M., Yamashita H., Yasukochi Y. The genome sequence of silkworm, Bombyx mori. DNA research, 2004, 11(1): 27-35
    Miyawaki K., Mito T., Sarashina I., Zhang H., Shinmyo Y., Ohuchi H., Noji S. Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket,Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mechanisms of development, 2004, 121(2): 119-130
    Mohanty S., Zubkov S., Gronenborn A. M. The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J Mol Biol, 2004, 337(2): 443-451
    Monteforti G., Angeli S., Petacchi R., Minnocci A. Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida: Phasmatidae). Arthropod Structure & Development, 2002, 30(3): 195-205
    Moore S. S., Sargeant L. L., King T. J., Mattick J. S., Georges M., Hetzel D. J. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 1991, 10(3): 654-660
    Mourrain P., Béclin C., Elmayan T., Feuerbach F., Godon C., Morel J. B., Jouette D., Lacombe A. M., Nikic S., Picault N. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 2000, 101(5): 533-542
    Nagaraju J., Kathirvel M., Kumar R. R., Siddiq E. A., Hasnain S. E. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. PNAS, 2002, 99(9): 5836-5841
    Nagaraju J., Kathirvel M., Subbaiah E. V., Muthulakshmi M., Kumar L. D. FISSR-PCR: a simple and sensitive assay for highthroughput genotyping and genetic mapping. Molecular and cellular probes, 2002, 16(1): 67-72
    Nagaraju J., Reddy K. D., Nagaraja G. M., Sethuraman B. N. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 2001, 86(5): 588-597
    Nakagawa T., Sakurai T., Nishioka T., Touhara K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science, 2005, 307(5715): 1638-1642
    Napoli C., Lemieux C., Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell , 1990, 2(4): 279-289
    Nardi J. B., Miller L. A., Walden K. K. O., Rovelstad S., Wang L., Frye J. C., Ramsdell K., Deem L. S., Robertson H. M. Expression patterns of odorant-binding proteins in antennae of the moth Manduca sexta. Cell and tissue research, 2003, 313(3): 321-333
    Nekrutenko A., Makova K. D., Li W. H. The Ka/Ks ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study [M]. Cold Spring Harbor Laboratory Press, 2002
    Ng H., Tschudi C., Gull K., Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. PNAS, 1998, 95(25): 14687-14692
    Nikonov A. A., Peng G., Tsurupa G., Leal W. S. Unisex pheromone detectors and pheromone-binding proteins in scarab beetles. Chem Senses, 2002, 27(6): 495-504
    Novina C. D., Murray M. F., Dykxhoorn D. M., Beresford P. J., Riess J., Lee S. K., Collman R. G., Lieberman J., Shankar P., Sharp P. A. siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 2002, 8(7): 681-686
    Ohnishi A., Hull J. J., Matsumoto S. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proceedings of the National Academy of Sciences, 2006, 103(12): 4398-4403
    Olson M., Hood L., Cantor C., Botstein D. A common language for physical mapping of the human genome. Science, 1989, 245(4925): 1434-1435
    Ono Y., Fujibuchi W., Suwa M. Automatic gene collection system for genome-scale overview of G-protein coupled receptors in Eukaryotes. Gene, 2005, 364: 63-73
    Osborne K. A., Robichon A., Burgess E., Butland S., Shaw R. A., Coulthard A., Pereira H. S., Greenspan R. J., Sokolowski M. B. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science, 1997, 277(5327): 834-836
    Ozaki M., Morisaki K., Idei W., Ozaki K., Tokunaga F. A putative lipophilic stimulant carrier protein commonly found in the taste and olfactory systems. A unique member of the pheromone-binding protein superfamily. Eur J Biochem, 1995, 230(1): 298-308
    Paesen G. C., Happ G. M. The B proteins secreted by the tubular accessory sex glands of the male mealworm beetle, Tenebrio molitor, have sequence similarity to moth pheromone-binding proteins. Insect Biochem Mol Biol, 1995, 25(3): 401-408
    Pal-Bhadra M., Bhadra U., Birchler J. A. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell, 1999, 99(1): 35-46
    Palauqui J. C., Elmayan T., Pollien J. M., Vaucheret H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO, 1997, 16(15): 4738-4745
    Park S. K., Shanbhag S. R., Wang Q., Hasan G., Steinbrecht R. A., Pikielny C. W. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res, 2000,300(1): 181-192
    Pelletier J., Bozzolan F., Solvar M., Fran?oiss M-C., Jacquin-Joly E., Ma?bech-Coisne M. Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation. Gene, 2007, 404(1-2): 31-40
    Pelosi P. Odorant-binding proteins. Crit Rev Biochem Mol Biol, 1994, 29(3): 199-228
    Pelosi P., Maida R. Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol, 1995, 111(3): 503-514
    Pelosi P., Maida R. Physiological functions of odorant-binding proteins. Biofizika, 1995, 40(1): 137-145
    Pelosi P., Zhou J. J., Ban L. P., Calvello M. Soluble proteins in insect chemical communication. Cell Mol Life Sci, 2006, 63(14): 1658-1676
    Pennisi E. NEUROBIOLOGY: Fruit Fly Odor Receptors Found. Science, 1999, 283(5406): 1239-1240
    Picimbon J.-F., Dietrich K., Krieger J., Breer H. Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol, 2001, 31(12): 1173-1181
    Picimbon J. F., Gadenne C. Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol, 2002, 32(8): 839-846
    Pikielny C. W., Hasan G., Rouyer F., Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron, 1994, 12(1): 35-49
    Pinyarat W., Shimada T., Xu W. H., Sato Y., Yamashita O., Kobayashi M. Linkage analysis of the gene encoding precursor protein of diapause hormone and pheromone biosynthesis-activating neuropeptide in the silkmoth, Bombyx mori. Genetics Research, 1995, 65(02): 105-111
    Pophof B. Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem Senses, 2004, 29(2): 117-125
    Prestwich G. D., Du G., LaForest S. How is pheromone specificity encoded in proteins? Chem Senses, 1995, 20(4): 461-469
    Promboon A., Shimada T., Fujiwara H., Kobayashi M. Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori. Genetics Research, 1995, 66(1): 1-7
    Quan G. X., Kanda T., Tamura T. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect molecular biology, 2002, 11(3): 217-222
    Reddy K. D., Nagaraju J., Abraham E. G. Genetic characterization of the silkworm Bombyx mori by simple sequence repeat (SSR)-anchored PCR. Heredity, 1999, 83(6): 681-687
    Robertson H. M., Martos R., Sears C. R., Todres E. Z., Walden K. K., Nardi J. B. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol, 1999, 8(4): 501-518
    Robertson H. M., Warr C. G., Carlson J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. PNAS, 2003, 100(Suppl 2): 14537-14542
    Rogers M. E., Sun M., Lerner M. R., Vogt R. G. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. Journal of Biological Chemistry, 1997, 272(23): 14792-14799
    Roignant J. Y., CarréC., Mugat B., Szymczak D., Lepesant J. A., Antoniewski C. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA, 2003, 9(3): 299-308
    Rothemund S., Liou Y. C., Davies P. L., Krause E., Sonnichsen F. D. A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Structure, 1999, 7(11): 1325-1332
    Rybczynski R., Reagan J., Lerner M. R. A pheromone-degrading aldehyde oxidase in the antennae of the moth Manduca sexta. Journal of Neuroscience, 1989, 9(4): 1341-1353
    Sakurai T., Nakagawa T., Mitsuno H., Mori H., Endo Y., Tanoue S., Yasukochi Y., Touhara K., Nishioka T. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. PNAS, 2004, 101(47): 16653-16658
    Sambrook J., Williams J., Sharp P. A., Grodzicker T. Physical mapping of temperature-sensiti sensitive mutations of adenoviruses. Journal of molecular biology, 1975, 97(3): 369-390
    Sandler B. H., Nikonova L., Leal W. S., Clardy J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol, 2000, 7(2): 143-151
    Sato K., Pellegrino M., Nakagawa T., Vosshall L. B., Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 2008, 452(7190): 1002-1006
    Scaloni A., Monti M., Angeli S., Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun, 1999,266(2): 386-391
    Schneider D. Insect olfaction: deciphering system for chemical messages. Science, 1969, 163(871): 1031-1037
    Seydoux G., Fire A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development, 1994, 120(10): 2823-2834
    Shanbhag S. R., Hekmat-Scafe D., Kim M. S., Park S. K., Carlson J. R., Pikielny C., Smith D. P., Steinbrecht R. A. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc Res Tech, 2001, 55(5): 297-306
    Shanbhag S. R., Müller B., Steinbrecht R. A. Atlas of olfactory organs of Drosophila melanogaster: 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Structure & Development, 2000, 29(3): 211-229
    Shi J., Heckel D. G., Goldsmith M. R. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms. Genetics Research, 1995, 66(02): 109-126
    Sijen T., Fleenor J., Simmer F., Thijssen K. L., Parrish S., Timmons L., Plasterk R. H. A., Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001, 107(4): 465-476
    Smith C. J. S., Watson C. F., Ray J., Bird C. R., Morris P. C., Schuch W., Grierson D. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature, 1988, 334: 724-726
    Soares C. A., Lima C. M., Dolan M. C., Piesman J., Beard C. B., Zeidner N. S. Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Mol Biol, 2005, 14(4): 443-452
    St rtkuhl K. F., Kettler R. Functional analysis of an olfactory receptor in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 2001, 98(16): 9381-9385
    Steinbrecht R. A. Experimental morphology of insect olfaction: tracer studies, X-ray microanalysis, autoradiography, and immunocytochemistry with silkmoth antennae. Microsc Res Tech, 1992, 22(4): 336-350
    Steinbrecht R. A. Structure and function of insect olfactory sensilla. Ciba Found Symp, 1996, 200: 158-174; discussion 174-177
    Steinbrecht R. A. Odorant-binding proteins: expression and function. . Ann. N. Y. Acad. Sci., 1998, 30: 323-332
    Steinbrecht R. A., Laue M., Maida R., Ziegelberger G. Odorant-binding proteins and their rolein the detection of plant odours. Entomologia Experimentalis et Applicata, 1996, 80(1): 15-18
    Steinbrecht R. A., Laue M., Ziegelberger G. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell and Tissue Research, 1995, 282(2): 203-217
    Syed Z., Ishida Y., Taylor K., Kimbrell D. A., Leal W. S. Pheromone reception in fruit flies expressing a moth's odorant receptor. PNAS, 2006, 103(44): 16538-16543
    Tabunoki H., Higurashi S., Ninagi O., Fujii H., Banno Y., Nozaki M., Kitajima M., Miura N., Atsumi S., Tsuchida K. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS letters, 2004, 567(2-3): 175-178
    Tan Y. D., Wan C., Zhu Y., Lu C., Xiang Z., Deng H. W. An amplified fragment length polymorphism map of the silkworm. Genetics, 2001, 157(3): 1277-1284
    Tanoue S., Nishioka T. Molecular characterization of a membrane-bound cGMP dependent protein kinase from the silk moth Bombyx mori. Insect Mol Biol, 2003, 12(6): 621-629
    Tegoni M., Campanacci V., Cambillau C. Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci, 2004, 29(5): 257-264
    Tenllado F., Barajas D., Vargas M., Atencio F. A., González-Jara P., Díaz-Ruíz J. R. Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. Molecular Plant-Microbe Interactions, 2003, 16(2): 149-158
    Thompson J. D. Applications of antisense and siRNAs during preclinical drug development. Drug discovery today, 2002, 7(17): 912-917
    Thorne N., Amrein H. Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons. Journal of Comparative Neurology, 2008, 506(4): 548-568
    Thymianou S., Mavroidis M., Kokolakis G., Komitopoulou K., Zacharopoulou A., Mintzas A. C. Cloning and characterization of a cDNA encoding a male-specific serum protein of the Mediterranean fruit fly, Ceratitis capitata, with sequence similarity to odourant-binding proteins. Insect Mol Biol, 1998, 7(4): 345-353
    Tian H., Peng H., Yao Q., Chen H., Xie Q., Tang B., Zhang W. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One, 2009, 4(7): e6225
    Tijsterman M., May R. C., Simmer F., Okihara K. L., Plasterk R. H. A. Genes required for systemic RNA interference in Caenorhabditis elegans. Current Biology, 2004, 14(2): 111-116
    Timmons L., Fire A. Specific interference by ingested dsRNA. Science, 1998, 263: 802-805
    Tobback J., Heylen K., Gobin B., Wenseleers T., Billen J., Arckens L., Huybrechts R. Cloning and expression of PKG, a candidate foraging regulating gene in Vespula vulgaris. Animal Biology, 2008, 58(4): 341-351
    Tomoyasu Y., Denell R. E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution, 2004, 214(11): 575-578
    Tomoyasu Y., Miller S., Tomita S., Schoppmeier M., Grossmann D., Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome biology, 2008, 9(1): R10
    Travanty E. A., Adelman Z. N., Franz A. W. E., Keene K. M., Beaty B. J., Blair C. D., James A. A., Olson K. E. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochemistry and Molecular Biology, 2004, 34(7): 607-613
    Tsuchihara K., Fujikawa K., Ishiguro M., Yamada T., Tada C., Ozaki K., Ozaki M. An odorant-binding protein facilitates odorant transfer from air to hydrophilic surroundings in the blowfly. Chem Senses, 2005, 30(7): 559-564
    Tuccini A., Maida R., Rovero P., Mazza M., Pelosi P. Putative odorant-binding protein in antennae and legs of Carausius morosus (Insecta, Phasmatodea). Insect Biochemistry and Molecular Biology, 1996, 26(1): 19-24
    Tuccini A., Maida R., Rovero P., Mazza M., Pelosi P. Putative odorant-binding protein in antennae and legs of Carausius morosus (Insecta, Phasmatodea). Insect Biochem Mol Biol, 1996, 26(1): 19-24
    Turner C. T., Davy M. W., MacDiarmid R. M., Plummer K. M., Birch N. P., Newcomb R. D. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol, 2006, 15(3): 383-391
    Uhlirova M., Foy B. D., Beaty B. J., Olson K. E., Riddiford L. M., Jindra M. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proceedings of the National Academy of Sciences, 2003, 100(26): 15607-15612
    van den Berg M. J., Ziegelberger G. On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. Journal of Insect Physiology, 1991, 37(1):79-85
    Vogt R. G. Molecular basis of pheromone detection in insects. Endocrinology, 2005, 3: 753–804
    Vogt R. G., Callahan F. E., Rogers M. E., Dickens J. C. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses, 1999, 24(5): 481-95
    Vogt R. G., Kohne A. C., Dubnau J. T., Prestwich G. D. Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci, 1989, 9(9): 3332-46
    Vogt R. G., Lawrence I. G., Kostas I., Sarjeet S. G.. Molecular Basis of Pheromone Detection in Insects. Comprehensive Molecular Insect Science. Amsterdam, Elsevier: 2005
    Vogt R. G., Miller N. E., Litvack R., Fandino R. A., Sparks J., Staples J., Friedman R., Dickens J. C. The insect SNMP gene family. Insect Biochemistry and Molecular Biology, 2009, 39(7): 448-456
    Vogt R. G., Prestwich G. D., Lerner M. R. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol, 1991, 22(1): 74-84
    Vogt R. G., Riddiford L. M. Pheromone binding and inactivation by moth antennae. Nature, 1981, 293(5828): 161-163
    Vogt R. G., Riddiford L. M., Prestwich G. D. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. PNAS,1985, 82(24):8827-8831
    Vogt R. G., Rogers M. E., Franco M. D., Sun M. A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol, 2002, 205(Pt 6): 719-744
    Vogt R. G., Rybczynski R., Lerner M. R. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci, 1991, 11(10): 2972-2784
    Volpe T. A., Kidner C., Hall I. M., Teng G., Grewal S. I. S., Martienssen R. A. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 2002, 297(5588): 1833-1837
    Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic AcidsResearch, 1995, 23(21): 4407-4414
    Vosshall L. B., Amrein H., Morozov P. S., Rzhetsky A., Axel R. A Spatial Map of Olfactory Receptor Expression in the Drosophila Antenna. Cell, 1999, 96(5): 725-736
    Wang Y., Wright N. J. D., Guo H.-F., Xie Z., Svoboda K., Malinow R., Smith D. P., Zhong Y. Genetic Manipulation of the Odor-Evoked Distributed Neural Activity in the Drosophila Mushroom Body. Neuron, 2001, 29(1): 267-276
    Wanner K. W., Anderson A. R., Trowell S. C., Theilmann D. A., Robertson H. M., Newcomb R. D. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol Biol, 2007, 16(1): 107-120
    Wanner K. W., Willis L. G., Theilmann D. A., Isman M. B., Feng Q., Plettner E. Analysis of the insect os-d-like gene family. J Chem Ecol, 2004, 30(5): 889-911
    Wargelius A., Ellingsen S., Fjose A. Double–Stranded RNA Induces Specific Developmental Defects in Zebrafish Embryos. Biochemical and Biophysical Research Communications, 1999, 263(1): 156-161
    Waterhouse P. M., Graham M. W., Wang M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. PNAS, 1998, 95(23): 3959-13964
    Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990, 18(24): 7213-718
    Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18(22): 6531-6535
    Winston W. M., Molodowitch C., Hunter C. P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 2002, 295(5564): 2456-2459
    Wogulis M., Morgan T., Ishida Y., Leal W. S., Wilson D. K. The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem Biophys Res Commun, 2006, 339(1): 157-164
    Xia Q. Y., Wang J., Zhou Z. Y., Mita K. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol, 2008, 38: 1036-1045
    Xia Q. Y., Zhou Z. Y., Lu C., Cheng D., Dai F., Li B., Zhao P., Zha X., Cheng T., Chai C. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). 2004, 306(5703): 1937-1940
    Xu P. X., Zwiebel L. J., Smith D. P. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae.Insect Mol Biol, 2003, 12(6): 549-560
    Xu W., Leal W. S. Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem Biophys Res Commun, 2008, 372(4): 559-564
    Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics, 1998, 150(4): 1513-1525
    Yukuhiro K, Sezutsu H, Itoh M. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina , and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol, 2002, 19:1385—1389.
    Zhang D. y., Leal W. S. Conformational isomers of insect odorant-binding proteins. Archives of Biochemistry and Biophysics, 2002, 397(1): 99-105
    Zhang S., Maida R., Steinbrecht R. A. Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chemical Senses, 2001, 26(7): 885-896
    Zhou J. J., He X. L., Pickett J. A., Field L. M. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol Biol, 2008, 17(2): 147-163
    Zhou J. J., Huang W., Zhang G. A., Pickett J. A., Field L. M. "Plus-C" odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene, 2004, 327(1): 117-129
    Zhou J. J., Kan Y., Antoniw J., Pickett J. A., Field L. M. Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. Chem Senses, 2006, 31(5): 453-465
    zhou J. J., Robertson G., He X., Dufour S., Hooper A. M., Pickett J. A., Keep N. H., Field L. M. Characterisation of Bombyx mori Odorant-Binding Proteins Reveals that a‘General Odorant-Binding Protein’Discriminates Between Sex Pheromone Components. Journal of Molecular Biology 2009, 389(3):529-545
    Ziegelberger G. Redox-shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem, 1995, 232(3): 706-711
    Zwiebel L. J., Takken W. Olfactory regulation of mosquito-host interactions. Insect Biochemistry and Molecular Biology, 2004, 34(7): 645-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700