多晶硅纳米薄膜压阻特性及其压力传感器应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多晶硅薄膜良好的压阻特性使其在压阻式传感器中得到了广泛应用。已有研究结果表明,多晶硅纳米薄膜与普通多晶硅薄膜相比具有更加优越的压阻特性,因此有着广阔的应用前景。
     本文对多晶硅纳米薄膜的压阻特性进行研究,主要包括工艺条件对压阻特性的影响和多晶硅纳米薄膜杨氏模量的研究。在对压阻特性进行研究的基础上,进行多晶硅纳米薄膜的压力传感器应用研究。
     在工艺条件对压阻特性的影响研究中,利用LPCVD方法在不同工艺条件下制备了多晶硅纳米薄膜,研究了工艺条件对多晶硅纳米薄膜电阻、应变系数及其温度系数的影响,选取了优化工艺条件。此时,多晶硅纳米薄膜的应变系数达到34,比相同掺杂浓度的普通多晶硅薄膜高25%以上;应变系数的温度系数在1×10-3/℃附近,比普通多晶硅薄膜小近一倍;电阻的温度系数小于1×10-4/℃,比普通多晶硅薄膜小近一个数量级。优化工艺条件的选取,为多晶硅纳米薄膜的压力传感器应用研究提供了必要的设计依据。此外,还研究了掺杂浓度与压阻非线性的关系。对多晶硅纳米薄膜的压阻非线性进行了分析,发现多晶硅纳米薄膜的压阻非线性主要来源于晶界。对于多晶硅纳米薄膜,晶粒度很小,随着掺杂浓度的变化,晶界宽度发生变化,同时晶界压阻效应在多晶硅压阻效应中占据的比重也发生变化,因此晶界对多晶硅压阻非线性的影响随着掺杂浓度的变化而变化。掺杂浓度与压阻非线性关系的研究同样为研制多晶硅纳米膜压力传感器提供了设计依据。
     在压阻特性的研究中,对多晶硅纳米薄膜的杨氏模量进行了研究。在隧道压阻理论中,多晶硅纳米薄膜的杨氏模量是采用单晶硅的杨氏模量与一修正系数相乘而来,而对该修正系数的取值并没有给出合理的解释。在传感器的结构设计中,为了使有限元仿真结果与实际情况更加接近,需要多晶硅纳米薄膜的杨氏模量作为仿真参数。本文利用扫描电镜和透射电镜对多晶硅纳米薄膜的微观结构进行表征,根据多晶硅纳米薄膜的生长、结构特点,建立了晶粒模型。以该模型为基础,提出了用于计算多晶材料纳米薄膜杨氏模量的方法,并计算了多晶硅纳米薄膜的杨氏模量。利用原位纳米力学测试系统对多晶硅纳米薄膜的杨氏模量进行了测试。理论计算结果与测试结果进行比较,二者吻合。多晶硅纳米薄膜杨氏模量的研究完善了隧道压阻理论,同时为后续压力传感器的结构设计提供了依据。
     在对多晶硅纳米薄膜压阻特性进行研究的基础上,进行了多晶硅纳米薄膜的压力传感器应用研究。对多晶硅纳米膜压力传感器进行有限元仿真,根据仿真结果对传感器的结构进行了优化设计。利用多晶硅纳米薄膜作为传感器压敏电阻的制作材料,制定完整工艺流程,解决了传感器研制过程中的关键工艺,完成压力传感器的研制。该压力传感器的量程为0~0.6MPa。多晶硅纳米薄膜具有良好的高温压阻特性,在0~200℃的温度范围内,对所研制传感器的性能进行了测试。将研制的多晶硅纳米膜压力传感器和普通多晶硅压力传感器以及其他类型高温压力传感器进行比较,多晶硅纳米膜压力传感器具有高灵敏度、低温度系数以及工艺简单等优点。
     本文为将多晶硅纳米薄膜应用于压阻式传感器的研究奠定了基础,同时实现了多晶硅纳米膜压力传感器的研制。
Polysilicon film, due to its favorable piezoresistive properties, has been widely used in piezoresistive sensors. The previous researches have shown that the polysilicon nanofilm have better piezoresistive properties than common polysilicon film, and have promising future of application.
     In this paper, the piezoresistive characteristics of polysilicon nanofilm are investigated, including the influence of process on piezoresistive properties and theoretical calculation of Young’s modulus of the film. Based on the studies, application of the film on pressure sensor is investigated.
     The influences of the process on piezoresistive properties of the film were studied. The optimized process parameters for best piezoresistive properties were obtained. Here, the piezoresistive properties of the film are followed: gauge factor can reach 34 which is higher about 25% than that of common polysilicon film under same high doping concentration; temperature coefficient of resistance is less than 1×10-4/℃which is almost an order lower than that of common polysilicon film; temperature coefficient of gauge factor is about 1×10-3/℃which is about half of that of common polysilicon film. The optimized process parameters provide the necessary design rules of polysilicon nanofilm pressure sensor. The influence of process on piezoresistive nonlinearity is investigated also. The piezoresistive nonlinearity of the film is analyzed; the results show that the piezoresistive nonlinearity of the film is mainly influcened by piezoresistive nonlinearity of grain boundary. The relation between piezoresistive nonlinearity and doping concentration was studied, and the results provide the design rules of the sensor too.
     The Young’s modulus of the film is studied. The Young’s modulus is a parameter which associate piezoresistive coefficient and gauge factor, and is an important parameter in structure design of the sensor. In tunneling piezoresistive theory, the Young’s modulus is obtained by Young’s modulus of single silicon multiply a modified factor which is not explained reasonably. In structure design of the sensor, to make the results of finite element analyses(FEA)simulation are more close to reality, the Young’s modulus is necessary as simulation parameter. The microstructures of the film were observed by scanning electron microscope and transmission electron microscope, the grain model of the film was built according to characters of growth and structure. Based on the grain model, the method to calculate the Young’s modulus was presented, and the Young’s modulus was theoretically calculated. The Young’s modulus of the film was measured by in-situ Nano mechanical test system. The comparision between theory results and experimental results is conducted, and theory results agree with experimental results. The grain model can analyze the Young’s modulus and the calculation method is valid. The studies of Young’s modulus complement the tunneling piezoresistive theory, and provide simulation parameter in structure design of the sensor.
     Based on the studies of piezoresistive properities, application of the film on pressure sensor is investigated.The FEA of the sensor was performed; the sensors’s structure is optimized designed according to the results of FEA. Utilizing the film as piezoresistors of sensor, the complete process of the sensor was described, and the key technology in sensor’s fabrication was solved, finally the sensor was developed. The measured range of the sensor is 0-0.6MPa. Because of the better high temperature piezoresistive properties of the film, the input-output characteristics of the sensor were tested from 0℃to 200℃. The comaprision between polysilicon nanofilm pressure sensor and common polysilicon film pressure sensor, other high temperature pressure sensor were made, the polysilicon nanofilm pressure sensor provide advantages of high sensitivity, low temperature drift and simple fabrication process.
     The study of the sensor is completed, and the study results lay a foundation for application of the film to piezoresistive sensor.
引文
1彭英才,何宇亮.纳米硅薄膜研究的最新进展.稀有金属. 1999, 23(1):2~45
    2王阳元, T. I.卡明斯.多晶硅薄膜及其在集成电路中的应用.科学出版社, 1998:83~85
    3 J. Akhtar, B. B. Dixit, B. D. Pant, et al. Polysilicon Piezoresistive Pressure Sensors Based on MEMS Technology. IEEE Journal of Research. 2003, 49(6):365~377
    4 D. J. Bell, T. J. Lu, N. A. Fleck, et al. MEMS Actuators and Sensors: Observation on their Performance and Selection for Purpose. Journal of Micromechanics and Microengineering. 2005, 15(7):S153~S156
    5 I. Obieta, E. Castano, F. J. Gracia. High-temperature Polysilicon Pressure Microsensor. Sensors and Actuators A. 1995, 46-47:161~165
    6 Kijin Kwon, Sekwang Park. Three Axis Piezoresistive Accelerometer using Polysilicon Layer. International Conference on Solid-state Sensors and Actuators, 1997, 4B2.10P:1221~1224
    7 Druzhinin A., Lavitska E., Maryamova I, et al. Mechanical Sensors Based on Laser-recrystallized SOI Structures. Sensors and Actuators A. 1997, 61(1-3):400~404
    8 Z. H. Wu, P. T. Lai, Johnny K. O. Sin. A New High-temperature Thermal Sensor Based on Large-grain Polysilicon on Insulator. Sensors and Actuators A. 2006, 130-131:129~134
    9王善慈.多晶硅敏感技术(连载一).传感器技术. 1994, 1:56~64
    10 P. Kleimann, B. Semmache, M. Leberre, D. Barbier. Thermal Drift of Piezoresistive Properties of LPCVD Polysilicon thin films between Room Temperature and 200℃. Materials Science and Engineering. 1997, B46:43~46
    11 D. Dimova-malinovska, O. Angelov, m. Sendova-Vassileva, et al. Polycrystalline Silicon Thin Films on Glass Substrate. Thin Solid Films. 2004, 451-452:303~307
    12 D. Griginoudi, A. mitsinakis, M. Kotsani, et al. Properties of Polycrystalline Silicon Films Obtained by Rapid Thermal Processing for Micromechanical Sensors. Journal of Non-crystalline Solids. 2004, 343:54~60
    13 T. I. Kamins. Structure and Properties of LPCVD Silicon Films. Journal of Electrochemical Society. 1980, 127:686~690
    14 Bin Ai, Hui Shen, Zongcun Liang, et al. Electrical Properties of B-doped polycrystalline Silicon Thin Films Prepared by Rapid Thermal Chemical Vapour Deposition. Thin Solid Films. 2006, 497:157~162
    15 C. Malharire, D. Barbier. Design of a Polysilicon-on-insulator Pressure Sensors with Original Polysilicon Layout for harsh Environment. Thin Solid Films. 2003, 427:362~366
    16 James C. Erskine. Polycrystalline Silicon-on-metal Strain Gauge Transducer. IEEE Transactions on Electron Devices. 1983, ED-30(7):796~801
    17 P. J. French, A. G. R. Evens. Piezorersistance in Polysilicon. Electronics Letters. 1984, 20:999~1000
    18 D.Schubert, W. Jenschke, T. Uhlig, et al. Piezoresistive Properties of Polycrystalline and Crystalline Silicon Films. Sensors and Actuators. 1987, 11:145~155
    19 V. A. Gridchin, V. M. Lubimsky, M. P. Sarina. Piezoresistive Properties of Polysilicon Films. Sensors and Actuators. 1995, A49:67~72
    20 P. J. French, A. G. R. Evens. Polycrystalline Silicon Strain Sensors. Sensors and Actuators. 1985, 7:135~142
    21刘晓为,霍明学,陈伟平.多晶硅薄膜压阻系数的理论研究.半导体学报. 2004, 25(3):292~296
    22揣荣岩,刘晓为,霍明学.掺杂浓度对多晶硅纳米薄膜应变系数的影响.半导体学报. 2006, 27(7):1230~1235
    23 Liu Xiaowei, Chuai Rongyan, Song Minghao, et al. The Influence of Thickness on Piezoresistive Properties of Poly-Si nanofilms. Hakan Urey, Ayman EI-Fatatry. Proceding of SPIE, France, 2006, 6186:0V1-0V9
    24揣荣岩,刘晓为,潘慧艳,等.不同淀积温度多晶硅纳米薄膜的压阻特性.传感技术学报. 2006, 19(5):1810~1814
    25 Xiaowei Liu, Wu Yajing, Rongyan Chuai, et al. Temperature Characteristics of Polysilicon Piezoresistive Nanofilm Depending on Film Structure. Proceeding of 2nd IEEE International Nanoelectronics, Zhuhai, 2008:909~913
    26揣荣岩.多晶硅纳米薄膜压阻机理与特性的研究.哈尔滨工业大学工学博士论文. 2007: 45~77 59~62 71~72
    27 C. S. Smith. Piezoresistance Effect in Germanium and Silicon. Physical Review. 1954, 94(1):42~49
    28 J. Richter, J. Pedersen, M. Brandbyge, E. V. Thomsen, O. Hansen.Piezoresistance in P-type Silicon Revisited. Journal of Applied Ohysics. 2008, 104(023715):1~8
    29 W. P. Mason, R. N. Thurston. Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque. The Acoustical Society of America. 1957, 29(10):1096~1101
    30 O. N. Tufte, E. l. Stelzer. Piezoresistive Properties of Silicon Diffused Layer. Journal of Applied Physics. 1963, 34(2):313~318
    31 Shyam Aravamudhan, Shekhar Bhansali. Reinforced Piezoresistive Pressure Sensor for Ocean Depth Measurements. Sensors and Actuators A. 2008, 142:111~117
    32 J. Albert Chiou, Steven Chen. Pressure Nonlinearity of Micromachined Piezoresistive Pressure Sensors with Thin Diaphragms under High Residual Stresses. Sensors and Actuators A. 2008, 147:332~339
    33徐淑霞.多晶硅高温压力传感器设计.沈阳工业大学硕士学位论文, 2003:3~5
    34 J. M. Jaffe. Monolithic Polycrystalline-silicon Pressure Transducer. Electronic Letters. 1974, 10(20):420~421
    35 J. Suzuki, V. Mosser, J. Goss. Polysilicon SOI Pressure Sensors. Sensors and Actuators. 1989, 17:405~414
    36 V. Mosser, J. Suzuki, J. Goss, et al. Piezoresistive Pressure Sensors Based on Polycrystalline Silicon. Sensors and Actuators A. 1991, 28:113~132
    37刘晓为,张国威,刘振茂.多晶硅高温压力传感器.传感器技术. 1990, 5:34~35
    38 Guo Shuwen, Tan Songsheng, Wang Weiyuan. Temperature characteristics of Microcrystalline and Polycrystalline Silicon Pressure Sensors. Sensors and Actuators. 1990, A21-A23:133~136
    39张维新,毛赣如,姚素英.多晶硅压力传感器.天津大学学报. 1996, 29(3): 466~468
    40 Liu Xiaowei, Wang Wei, Wang Xilian, et al. High-temperature Pressure and Temperature Multi-function Sensors. Procedding of 5th International Conference on Solid-State and Integrated Circuit Technology, 1998, 9:947~949
    41 H. L. Kevin. Chau Clifford, D. Fung. A Versatile Polysilicon Diaphragm Pressure sensor Chip. IEEE Transaction on Electron Devices, 1991, IEDM91:761~764
    42 E. Obermeier, P. Kopystynski. Polysilicon as a Material for MicrosensorApplcation. Sensors and Actuators A. 1992, 30(1-2):149~155
    43王跃林,刘理天,郑心畲,等.多晶硅应变膜压力传感器.半导体学报. 1990, 11(9):695~697
    44毛赣如,姚素英,曲宏伟.新型多晶硅压力传感器.天津大学学报. 1997, 30(6):767~770
    45曲宏伟,张为,姚素英.双岛结构多晶硅压力传感器削角补偿技术的研究.天津大学学报. 2000,33(2):244~246
    46 Xinxin Li, Yitshak, Man Wong. Fabrication and Characterization of Nickle-induced Laterally Crystallined Polycrystalline Silicon Piezo-resistive Sensors. Sensors and Actuators. 2000, 82:281~285
    47 M. Wang, Z. Meng, M. Wong, et al. Metal-induced Laterally Crystallized Polycrystalline Silicon for Integrated Sensor Applications. IEEE Transaction on Electron Devices. 2001, 48(4):794~800
    48张威,王阳元.多晶硅集成高温压力传感器研究.电子学报. 2003, 31(11):1736~1738
    49张为,姚素英,张生才.多晶硅高温压力传感器的温度特性.西安电子科技大学学报(自然科学版). 2002, 29(1):142~145
    50 H. Sch?fer, V. Graeger, R. Kobs. Temperature-indepedent Pressure Sensors Using Polycrystalline Silicon Strain Gauges. Sensors and Actuators. 1989, 17:521~527
    51 K. N. Bhat, E. Bhattacharya, A. Dasgupta, et al. Polysilicon Piezoresistive Pressure Sensor Using Silicon-on-insulator(SOI) Approach. S. Gopalakrishnan. Proceedings of SPIE, 2003, 5062:853~862
    52朱秀文,候曾燏,米健.高性能多晶硅压力传感器的研制.传感技术学报. 1993, 1:1~6
    53庞克,张生才,姚素英.多晶硅高温压力传感器的芯片内温度补偿.传感器技术学报. 2004, 1:118~121
    54 C. Malharire, D. Barbier. Design of a Polysilicon-on-insulator Pressure Sensor with Original Polysilicon Layout for Harsh Environment. Thin Solid Films. 2003, 427:362~366
    55 K. Sivakmmar, N. Dasgupta, K. N. Bhat. Sensitivity Enhancement of Polysilicon Piezoresistive Pressure Sensors with Phosphorous Diffused Resistors. Journal of Physics: Conference Series. 2006, 34:216~221
    56 M. M. Mandurah, K. C. Sarawat, C. R. Helms, et al. Dopant Segregation in Polycrystalline Silicon. Journal of Applied Physics. 1980, 51:5755~5763
    57 K. Inoue, F. Yano, A. Nishida, T. Tsunomura, et.al. Three Dimensional Characterization of Dopant Distribution in Polycrystalline Silicon by Laser-assisted Atom Probe. Applied Physics Letters. 2008, 93(133507): 1~3
    58 S. A. Campbell.微电子制造科学原理与工程技术.曾莹,严利人,王纪民,张伟.第二版.电子工业出版社, 2003:38-63 97-109 106~108
    59 Alex Morta, Guilhem Dezanneau, Albert tarancon, et al. Simulation of the Influence of Particle Size Distribution and Grain Boundary Resistance on the Electrical Response of 2D Polycrystals. IEEE, 2004, 5:225~228
    60 J. Lindhard, M. Scharff, H. Schoitt. Range Concepts and Heavy Ion Ranges. Mat. Fys. Med. Dan. Vid. Selsk. 1963, 33(14):1~20
    61 K. Yamada, M. Nishihara, S. Shimada, M. Tanabe, M. Shimazoe, Y. Matsuoka. Nonlinearity of the Piezoresistance effect of p-type Silicon Diffused Layers. IEEE Transactions on Electron Devices. 1982, ED-29(1):71~77
    62 K. Suzuki, T. Ishihara, M. Hirata, H. Tanigawa. Nonlinear Analysis of a CMOS Integrated Silicon Pressure sensor. IEEE Transactions on Electron Devices. 1982, ED-34(6):1360~1367
    63 K. Suzuki, H. Hasegawa, Y. Kanda. Origin of the Linear and Nonlinear Piezoresistance Effects in P-type Silicon. Japanese Journal of Applied Physics. 1984, 23(11):L871~L874
    64 K. Matsuda, K. Suzuki. K. Yamamura. Y. Kanda. Nonlinearity Piezoresistance effect in Silicon. Journal of Applied Physics. 1993, 73(4):1838~1847
    65 M. P. Sarina, V. A. Gridchin. The Theoretical Estimation of Second-order Gauge Factors of Polycrystalline Silicon. Procedding of the fifth Russian-Korean Symposium on Science and Technology, 2001, 1:169~172
    66 J. M. Chen, N. C. Macdonald. Measuring the Nonlinearity of Silicon Piezoresistance by Tensile Loading of a Submicron Diameter Fiber Using a Microinstrument. Review of Scientific Instruments. 2004, 75(1):276~278
    67 S. I. kozlovskiy, V. V. Nedostup, I. I. Boiko. First-order Piezoresistance Coefficients in Heavily Doped P-type Silicon Crystals. Sensors and Actuators A. 2007, 133:72~81
    68 S. I. Kozlovskiy, I. I. Boiko. First-order Piezoresistance Coefficients in Silicon Crystals. Sensors and Actuators A. 2005, 118:33~43
    69何培杰,陈翠英,王多辉.传感器独立线性度的研究.传感器技术. 1999, 18(6):26~28
    70 Yu Ningmei, Gao Yong, Chen Zhiming. Resistivity Instability in Polysilicon Resistors under Metal Interconnects and its Suppression by Compensating Ion Implantation. Chinese Journal of Semiconductors. 2001, 22(4):511~515
    71王玉请.固体杨氏模量的测量.物理测试. 2007, 25(5):47~48
    72 Wan Y. Shih. Qing Zhu, Wei-Heng Shih. Length and Thickness Dependence of Longitudinal Flexural Resonance Frequency Shifts of a Piezoelectric Microcantilever Sensor due to Young’s Modulus Change. Journal of Applied Physics. 2008, 104(074503):1~5
    73 Wenteng Chang, Christian Zoeman. Determination of Young’s Moduli of 3C(110) Single-crystal and (111) Polycrystalline Silicon Carbide from Operating Frequencies. Journal of Materials Science. 2008, 43:4512~4517
    74赵艳平,丁建宁,杨继昌.微型高温压力传感器芯片设计与优化.传感技术学报. 2006, 19(5):1829~1834
    75 J. J. Wortman, R. A. Evans. Young’s Modulus, Shear Modulus, And Poisson’s Ration in Silicon and Germanium. Journal of Applied Physics. 1965, 36(1):153~156
    76 Staffan Greek, Fredric Ericson, Stefan johansson, et.al. Mechanical Characterization of Thick Polysilicon Films: Young’s Modulus and Fracture Strength Evaluated with Microstructures. Journal of Micromechanics and Microengineering. 1999, 9:245~251
    77 Chun-Hyung Cho. Characterization of Young’s Modulus of Silicon Versus Temperature Using a“Beam Deflection”Method with a Four-point Bending Flexures. Current Applied Physics. 2009, 9:538~545
    78 Chun-Hyung Cho. Characterization of Young’s Modulus of Silicon versus Temperature using a“Beam Deflection”Method with a Four-point Bending Fixture. Current Applied Physics. 2009, 9:538~545
    79 James G. Berryman. Bounds and Estimates for Elastic Constants of Random Polycrystals of laminates. International Journal of Solids and Structures. 2005, 42:3730~3743
    80 James G. Berryman. Bounds and Self-consistent Estimates for Elastic Constants of Random Polycrystals with Hexagonal, Trigonal, and Tetragonal Symmetries. Journal of the Mechanics and physics of Solids. 2005, 53:2141~2173
    81 Ding Jianning, Meng Yonggang, Wen Shizhu. Experimental and Theoretical Study of Young’s Modulus in Micromachined Polysilicon Films. Tsinghua Science and Technology. 2002, 7(3):270~275
    82 Ioannis Chasiotis. The Strength of Polycrystalline Silicon at the Micro- and Nano-Scale with Applications to MEMS. California Institute of Technology Dissertation for Doctor of Philosophy, 2002:115~116
    83 Jaehwan Choi, M. S. Statistical Approach to the Elastic Property Extraction and Planar Elastic Response of Polycrystalline Thin-films. The Ohio State University Dissertation for Doctor of Philosophy, 2004:28~35
    84丁建宁,孟永钢,温诗铸.多晶硅微悬臂梁断裂失效强度的尺寸效应.中国机械工程. 2001, 12(11):1228~1232
    85丁建宁,孟永钢,温诗铸.微结构和尺寸约束下多晶硅微机械构件拉伸强度的尺寸效应.科学通报. 2001, 46(5):436~440
    86 Ioannis Chasiotis, Wolfgang G. Knauss. Mechanical Properties of Thin Polysilicon Films by Means of Probe Microscopy. Santa Clara. Part of the SPIE Conference on Materials and Device Characteristics in Micromachining, California, 1998, 3512:66~75.
    87 Taechung Yi, Chang-Jin Kim. Measurement of Mechanical Properties for MEMS Materials. Measurement and Science Technology. 1999, 10:706~716
    88 Dong-chan Lee, hyeun-seok Choi, Chang-soo Han, Hee-jun Jeong. A compensation of Young’s Modulus in Polysilicon Structure with Discontinuous Material Distribution. Materials Letters. 2005, 59:3900~3903
    89宋震煜.纳米梁的非线性行为研究即单晶硅纳米薄膜杨氏模量的分子动力学模拟.东南大学大学硕士学位论文, 2006:27~46
    90孙泽辉.纳米薄膜力学行为的分子动力学模拟研究.中国科技大学博士学位论文, 2006:11~32
    91周耐根.薄膜晶体缺陷形成与控制的分子动力学模拟研究.南昌大学博士学位论文, 2005:16~36
    92肖鹏,冯晓利,李志信.单晶硅薄膜法向热导率分子动力学研究.工程热物理学报. 2002, 23(60:724~726
    93齐卫宏.分子动力学模拟Pb纳米薄膜的结合能和晶格参数的尺寸效应.材料导报. 2006, 20(8):131~133
    94曾凡林,孙毅.纳米薄膜润滑的分子动力学模拟.哈尔滨工业大学学报.2006, 38(9):1426~1430
    95王阳元, T. I.卡明斯,赵宝瑛.多晶硅薄膜及其在集成电路中的应用.第二版.科学出版社, 2001:42~48
    96魏希文,陈国栋.多晶硅薄膜及其应用.大连理工大学出版社, 1988: 30~34
    97 H. J. Bunge, R. Kiewel, Th Reinert, L. Fritsche. Elastic Properties of Polycrystals—influence of Texture and Stereology. Journal of the Mechanics and Physics of Solids. 2000, 48:29~66
    98 Cliff Y. Guo, Lewis Wheeler. Extreme Poisson’s Ratios and Related Elastic Crystal Properties. Journal of Mechanical and Physics of Solid. 2006, 54:690~707
    99 B. C. Hendrix, L. G. Yu. Self-consistent Elastic Properties for Transversely Isotropic Polycrystals. Actuator Materials. 1998, 46(1):127~135
    100 P. J. French. Polysilicon: a Versatile Material for Microsystem. Sensors and Actuators A. 2002, 99:3~12
    101 D. Girginoudi, A. Mitsinakis, M. Kotsani, et.al. Properties of Polycrystalline Silicon Films Obtained by Rapid Thermal Processing for Micromechanical Sensors. Journal of Non-Crystallin Solid. 2004, 343:54~60
    102王玉清.固体杨氏模量的测量.物理测试. 2007, 25(5):47~48
    103顾利忠,苏菲,赵喆,张以恒.微机械材料杨氏模量的测量.光学精密工程. 2000, 8(3):242~245
    104 W. N. Sharpe, Jr. K. T. Turner, R. L. Edwards. Tensile Testing of Polysilicon. Experimental Mechanics. 1999, 38(3):162~170
    105张泰华,杨业敏,赵亚博,白以龙. MEMS材料力学性能测试.力学进展. 2002, 32(4):546~562
    106 J. Richter M. B. Arnoldus O. Hansen, E. V. Thomsen. Four Point Bending Setup for Characterization of Semiconductor Piezoresistance. Review of Scientific Instruments. 2008, 79(044703):1~10
    107黄元林,石宗利,李重庵.薄膜弹性模量测定的四点弯曲法.兰州铁道学院学报. 2000, 19(6):66~69
    108丁建宁,孟永钢,温诗铸.纳米硬度计研究多晶硅微悬臂梁的弹性模量.仪器仪表学报. 2001, 22(2):186~189
    109李刘合,金杰,刘惊涛,等.不同晶粒形状材料力学性能的研究.航天制造技术. 2006,2:19~22
    110周向阳,蒋庄德,王海容,蒋志强.纳米压入法测试薄膜力学性能的若干关键影响因素分析.机械强度. 2007, 29(5):737~744
    111将锐,胡小方,许晓慧,伍小平.纳米压痕法研究PZT压电薄膜的力学性能.实验力学. 2007, 22(6):575~580
    112 Chung-Seog Oh, Hak-Joo Lee, Soon-Gyu Ko, et.al. Comparison of the Young’s Modulus of Polysilicon Film by Tensile Testing and Nanoindentation. Sensors and Actuators A. 2005, 117:151~158
    113李明,蓝林刚,庞海燕,温茂萍,敬仕明.基于纳米压痕方式测定PBX的弹性模量.含能材料. 2007, 15(2):101~104
    114黎明,温诗铸.纳米压痕技术理论基础.机械工程学报. 2003, 39(3):142~145
    115谭孟曦.利用纳米压痕加载曲线计算硬度—压入深度关系即弹性模量.金属学报. 2005, 41(10):1020~1024
    116张天林,陈宇航,黄文浩,王祥.纳米压痕中针尖效应的分析.中国科学技术大学学报. 2009, 39(4):403-408
    117 Abhishek Srivastava, Karl J Astrom, Kimberly L. Turner. Experimental Characteristics of Micro-Friction on a Mica Surface Using the Lateral Motion and Force Measurement Capability of an Instrumented Indenter. Tribo Letter. 2007, 27:315~322
    118 A.T. Al-Halhouli, I. Kampen, T. Krah, S. Buttgenbach. Nanoindentation Testing of SU-8 Photoresist Mechanical Properties. Microelectronic Engineering. 2008, 85: 942~944
    119徐泰然. MEMS与微系统—设计与制造.机械工业出版社, 2004:225~226
    120 Li Ma, Jianguang Wang, Jijun Zhao, Guanghou Wang. Anisotropy in Stability and Young’s Modulus of Hydrogenated Silicon Nanowires. Chemical Physics Letters. 2008, 452:183~187
    121 Xinxin Li, Takahito Ono, Yuelin Wang, Masayoshi Esashi. Study on Ultra-thin NEMS Cantilevers-High Yield Fabrication and Size-effect on Young’s Modulus of Silicon. The Fifteenth IEEE International Conference on Microelectronmechnical Systems, 2002:427~430
    122 F. Cacchione, A. Corigliano, B. De Masi, C. Riva. Out of Plane vs. in Plane Flexural Behaviour of Thin Polysilicon Films: Mechanical Characterization and Application of the Weibull Approach. Microelectronics Reliability. 2005, 45:1758~1763
    123 William N., Sharpe, Jr., Bin Yuan, Ranji Vaidyanathan. Measurements of Young’s Modulus, Poisson’s Ratio, and Tensile Strength of Polysilicon. Proceeding of IEEE MEMS, Tenth Annual international Workshop on Microelectromechnical Systems, 1997:424~429
    124 Jing Wang, Qing-An Huang, Hong Yu. Young’s Modulus of Silicon Nanoplates at Finite Temperature. Applied Surface Science. 2008, 255:2449~2455
    125杨震宇,王明湘,王槐生.多晶硅薄膜晶体管自加热效应温度分布的有限元分析.半导体学报. 2008, 29(5):954~959
    126 Kurt E. Petersen. Silicon as a Mechanical Material. Proceeding of IEEE, 1982, 70(5):420~457
    127 Quan Wang, Jianning Ding, Wenxiang Wang. Fabrication and Temperature Coefficient of Low Cost High Temperature Pressure Sensor. Sensors and Actuators A. 2005, 120:468~473
    128 Shuwen Guo, Harald Eriksen, Kimiko, Childress, Anita Finl, Mary Hoffman. High Temperature Smart-cut SOI Pressure Sensor. Sensors and Actuators A. 2009, 154(2):255~260
    129孙以材,刘玉岭,孟庆浩.压力传感器的设计、制造与应用.冶金工业出版社, 2000:366~388
    130 A. Boukabache, P. Pons, G. Blasquez, Z. Dibi. Characterisation and Modelling of the Mismatch of TCRs and their Effects on the Drift of the Offset Voltage of Piezoresistive Pressure sensors. Sensors and Actuators. 2000, 84:292~296
    131谭一云,于虹,黄庆安,刘同庆.温度对硅纳米薄膜杨氏模量的影响.电子器件. 2007, 30(3):755~758

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700