温度对Pt/Au异质外延薄膜生长影响的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异质外延生长的研究是薄膜生长中的重要研究方向,要认识异质薄膜生长的物理本质必须从原子级别来研究,无论是对改进制备工艺,还是提高薄膜质量都有着十分重要的指导作用。本文利用计算机模拟方法,采用了EAM原子间相互作用势对Pt/A(?)(111)异质外延生长进行了模拟,分析了不同的沉积温度对薄膜表面粗糙度的影响、薄膜的生长模式、薄膜和衬底界面处的互扩散现象、薄膜各原子层相对密度的变化关系等方面,并简单分析了在外界条件下,Pt/Au薄膜和Au/Pt薄膜生长状态的差异。
     本文主要结论如下:
     1.沉积温度影响Pt/Au外延薄膜的生长模式:在300K-700K沉积温度下,Pt/Au体系在生长初期均表现为二维的层状生长模式;但随外延时间的增长,在300K的温度下,Pt薄膜会呈现出三维的小岛状生长模式;在500K和700K的温度下,薄膜的生长模式则逐渐过渡到层状生长;在700K的温度下,Pt薄膜呈现出明显的层状生长特征。
     2.沉积温度影响Pt/Au外延薄膜的结构:随沉积温度的升高,Pt/Au薄膜的表面形貌由粗糙逐渐过渡为光滑,内部原子排列也越来越致密。
     3.沉积温度影响Pt/Au外延薄膜的界面互扩散:随沉积温度的升高,Pt/Au薄膜界面处的互扩散现象增强,300K和500K时,界面互扩散仅有2-3个原子层,扩散的原子数也很少,而700K时,界面互扩散可达7-9个原子层,存在大量的互扩散原子。
     4.温度对Au/Pt体系外延生长的影响规律类似,但在相同的条件下,Au/Pt体系比Pt/Au体系表面粗糙度更低,并且无界面互扩散现象。
Heteroepitaxial growth is an important research direction in thin film field. We should study the atomic level to recognize the physical nature of the heterogeneitaxial thin film growth,, whether it isthe improving improvement of the preparation process, and or to the enhancement of the quality of films have plays a very important role in guiding. In this paper, we use computer simulation method to simulate Au/Pt (001) and Pt/Au (001) heteroepitaxial growth, using by the EAM interaction potential between atoms and, respectively, for Au/Pt (001) and Pt/Au (001) heteroepitaxial growth has been simulated,analyzed the effect of the film surface roughness with the different substrate temperature on the film surface roughness, the film growth mode, film and substrate interdiffusion phenomena at the interface and the changing relationship of relative density of atomic layer film of the changes in the relationship and so on. We analyze the difference between Au/Pt thin film and Pt/Au thin film in the external conditions.
     In this paper, the main conclusions are:
     1、Pt/Au epitaxial thin film growth mode with different deposition temperature: Pt/Au system in the initial stage of growth shows two-dimensional layer growth mode between 300K and 700K.But with the extension of time, Pt films will be showing a three-dimensional island-like growth pattern at 300K. At 500K and 700K, the film growth mode gradually transforms to the layer growth. At 700K, Pt films exhibite a clear layer growth characteristics.
     2、The deposition temperature affects Pt/Au epitaxial film structure:Pt/Au film surface morphology gradually transforms to glossy from roughness and the internal atomic arrangement becomes increasingly dense.
     3、The deposition temperature influences Pt/Au epitaxial film interface interdiffusion:Pt/Au thin film interdiffusion phenomena at the interface with the deposition temperature. At 300K and 500K, the interface interdiffusion has only 2-3 atomic layers and the diffusion of atoms is also small, while and 700K, the interface interdiffusion is up to 7-9 atomic layers and there are a lot of inter-atomic diffusion.
     4、The regular is similar when we analyze the influence of the epitaxial growth of Au/Pt system with the different temperature. However, Au/Pt system shows lower surface roughness than the Pt/Au system and no interface interdiffusion phenomena in the same conditions.
引文
[1]Frenkel J, Theorie der Adsorption und verwandter Erscheinungen, Zeitschrift fur Physik A Hadrons and Nuclei,1924,Vol.26(1):117-138
    [2]Bauer E, Phanomenologische Theorie der Kristallabscheidung an Oberflachen, Zeitschrift fur Kristallographie,1958,Vol.110(1-6):372-395
    [3]Walton D, Nucleation of vapor deposits, The Journal of Chemical Physics,1962,37(10): 2182-2188
    [4]Venables J A, Spiller G D T, Hanbucken M, Nucleation and growth of thin films,Reports on Progress in Physics,1984, Vol.47(1):399-459
    [5]Lassen H,z.Physik,1934,35:172 Lassen H, Bruck L.Ann.Physik,1935,22:233; 1935,23:18
    [6]Niehus H, Ion scattering spectroscopy and scanning tunneling microscopy:A powerful combination for surface structure analysis, Applied Physics A,1991, Vol.53(5):388-402
    [7]Nakamura S, Pearton S, Fasol G, the blue laser diode, Berlin:Springer,2000,47
    [8]Gomez L J, Bourgeal S, Ibaez J, Salmeron M, He scattering study of the nucleation and growth of Cu(100) from its vapor, Physical Review B,1985, Vol.31 (4):2551-2553
    [9]Koziol C, Lilienkamp G, Bauer E, Intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxy of Ni on W(110), Applied Physics Letters,1987, Vol.51(12):901-903
    [10]Kunkel R, Poelsema B, Verheij L K, et al. Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates, Physical review letters,1990, Vol. 65(6):733-736
    [11]Egelhoff W F, Jr., Jacob I, Reflection high-energy electron diffraction (RHEED) oscillations at 77 K, Physical review letters,1989, Vol.62(8):921-924
    [12]Poelsema B, Kunkel R, Nagel N, et al. New phenomena in homoepitaxial growth of metals, Applied Physics A,1991, Vol.53(5):369-376
    [13]Flynn-Sanders D K, Evans J W, Thiel P A, Homoepitaxial growth on Pd (100), Surface Science,1993, Vol.289(1-2):75-84
    [14]Ernst H J, Fabre F, Lapujoulade J, Growth of Cu on Cu (100), Surface Science,1992, Vol. 275(1-2):L682-L684
    [15]Bedrossian P, Poelsema B, Rosenfeld G, et al. Electron density contour smoothening for epitaxial Ag islands on Ag (100), Surface Science,1995, Vol.334(1-3):1-9
    [16]Purcell S T, Heinrich B, Arrott A S, Intensity oscillations for electron beams reflected during epitaxial growth of metals, Physical Review B,1987, Vol.35(12):6458-6460
    [17]Zhang Z H, Hasegwa S, Ino S, RHEED intensity oscillation during epitaxial growth of Ag on Si(111) surfaces at low temperature, Physical Review B,1997, Vol.55(15):9983-9989
    [18]van der Vegt H A, van Pinxteren H M, Lohmeier, M, et al. Surfactant-induced layer-by-layer growth of Ag on Ag(111), Physical review letters.,1992, Vol.68(22):3335-3338
    [19]Rosenfeld G, Servaty R, Teichert C, et al. Layer-by-layer growth of Ag on Ag (111) induced by enhanced nucleation:A model study for surfactant-mediated growth,Physical review letters,1993, Vol.71(6):895-898
    [20]Vrijmoeth J, van der Vegt H A, Meyer J A, et al. Surfactant-induced layer-by-layer growth of Ag on Ag (111):Origins and side effects, Physical review letters,1994, Vol.72(24):3843-3846
    [21]van der Vegt H A, Huisman W J, Howes P B, et al. Surfactants used in Ag (111) homoepitaxy: Sb, In, Pt and O2, Surface science,1996, Vol.365(2):205-211
    [22]Murry P W, Stensgaard I, Laegsgaard E, et al. Growth and structure of Pd alloys on Cu (100), Surface science,1996, Vol.365(3):591-601
    [23]Zhang Z Y, Lagally M G, Atomic-scale mechanisms for surfactant-mediated layer-by-layer growth in homoepitaxy, Physical review letters,1994, Vol.72(5):693-696
    [24]Jacobsen J, Nielsen L P, Besenbacher F, et al. Atomic-scale determination of misfit dislocation loops at metal-metal interfaces, Physical review letters,1995, Vol.75(3):489-492
    [25]Cunther C, Vrijmoeth J, Hwang R Q, et al. Strain relaxation in hexagonally close-packed metal-metal interfaces, Physical review letters,1995, Vol.74(5):754-757
    [26]Brune H, Roder H, Boragno C el at. Strain relief at hexagonal-close-packed interfaces, Physical Review B,1994, Vol.49(4):2997-3000
    [27]Palmberg P W, Rhodin T N J. Chem. Atomic Arrangement of Au (100) and Related Metal Overlayer Surface Structures. I, The Journal of Chemical Physics,1968, Vol.49(1):134-146
    [28]Sprunger P T, Laegsgaard E, Besenbacher F. Growth of Ag on Cu (100) studied by STM: From surface alloying to Ag superstructures, Physical Review B,1996, Vol.54(11):8163-8171
    [29]York S M, Leibsle F M, Scanning tunneling microscope-induced modification of Ag films and nanowire arrays on Cu (100) surfaces, Applied Physics Letters,2001, Vol. 78(18):2763-2765
    [30]Witten T A, Sander L M. Diffusion-limited aggregation, a kinetic critical phenomenon, Physical Review Letters,1981, Vol.47(19):1400-1403
    [31]Schneider M, Rahman A, Schuller K, Role of relaxation in epitaxial growth:A molecular-dynamics study, Physical review letters,1985, Vol.55(6):604-606
    [32]Voter A F, Classically exact overlayer dynamics:Diffusion of rhodium clusters on Rh(100), Physical Review B,1986, Vol.34(10):6819-6829
    [33]Jacobsen J, Jacobsen K W, Stoltze P et al. Island shape-induced transition from 2D to 3D growth for Pt/Pt (111), Physical review letters,1995, Vol.74(12):2295-2998
    [34]Breeman M, Rosenfeld G, Comsa G, Phys.Rev.B, Mechanism for island formation during low-temperature growth on (100) surfaces of fcc metals, Physical Review B,1996, Vol. 54(23):16440-16443
    [35]Tersoff J, Denier van der Gon A W, Tromp R M, Critical island size for layer-by-layer growth, Physical review letters,1994, Vol.72(2):266-269
    [36]Roder H, Bromann K, Brune H, et al. Strain mediated two-dimensional growth kinetics in metal heteroepitaxy:AgPt (111), Surface science,1997, Vol.376(1-3):13-31
    [37]Bolding B C, Carter E A, Effect of strain on thin film growth:deposition of Ni on Ag (100), Surface science.1992, Vol.268(1-3):142-154
    [38]Haftel M I, Rosen M, Franklin T, et al. Molecular dynamics observations of interdiffusion and Stranski-Krastanov growth in the early film deposition of Au on Ag (110), Physical review letters,1994, Vol.72(12):1858-1861
    [39]Fenter P,Gustafsson T, Bilayer growth in a metallic system:Au on Ag (110), Physical review letters,1990, Vol.64(10):1142-1145
    [40]Bohnen K P, Chan C T, Ho K M, On the bilayer growth mode of Au on Ag (110), Surface science,1992, Vol.268(1-3):L284-L286
    [41]Bartelt M C, Evans J W, Dendritic islands in metal-on-metal epitaxy Ⅰ. Shape transitions and diffusion at island edges, Surface science,1994, Vol.314(1):L829-L834
    [42]Bartelt M C, Evans J W, Dendritic islands in metal-on-metal epitaxy Ⅰ. Shape transitions and diffusion at island edges, Surface scienc,1994, Vol.314(1):L829-L834
    [43]Hamilton J C and Foiles S M, Misfit dislocation structure for close-packed metal-metal interfaces, Physical review letters,1995, Vol.75(5):882-885
    [44]Meunier I, Treglia G, Legrand B,et al. Molecular dynamics simulations for the Ag/Cu (111) system:from segregated to constitutive interfacial vacancies, Surface science,2000, Vol. 162-163:219-226
    [45]Bartelt M C,Evens J W. Surf. Sci.,1994,314:L829
    [46]Bartelt M C,Evens J W. Surf. Sci.,1994,314:L835
    [47]Frank F C, van der Merwe, Proc. R. Soc.(London),1949,198:205
    [48]Jacobsen K W, Norskov J K, Puska M J. Interatomic interactions in the effective-medium theory, Physical Review B,1987, Vol.35(14):7423-7442
    [49]Metropolis N, Rosenbluth A W, Teller A H. et al. Equation of state calculations by fast computing machines, Journal of Chemical Physics,1953, Vol.21 (6):1087-1092
    [50]Alder B J, Wainwright T E. J. Chem. Phase transition for a hard sphere system, The Journal of Chemical Physics,1957, Vol.27(5):1208-1209
    [51]Wood W W, Parker F R. J. Chem. Monte Carlo Equation of State of Molecules Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature, The Journal of Chemical Physics,1957, Vol.27(3):720-733
    [52]Rahman A, Stillinger F H, Molecular Dynamics Study of Liquid Water,The Journal of Chemical Physics,1971, Vol.55(7):3336-3359
    [53]Verlet L. Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review,1967, Vol.159(1):98-103
    [54]Alder B J, Wainwrihgt T E. Decay of the velocity autocorrelation function, Physical review A, 1970, Vol.1(1):18-21
    [55]Rahman A, Stillinger F H, Molecular Dynamics Study of Liquid Water,The Journal of Chemical Physics,1971, Vol.55(7):3336-3359
    [56]Andersen H C. J. Chem. Molecular dynamics simulations at constant pressure and/or temperature, The Journal of chemical physics,1980, Vol.72(4):2384-2393
    [57]Nose S. Mol. A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics,1984, Vol.52(2):255-268
    [58]Nose S, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics,1981, Vol.81(1):511-519
    [59]Hoover W G. Canonical dynamics:Equilibrium phase-space distributions, Physical Review A, 1985, Vol.31(3):1695-1697
    [60]Parrinello M, Rahman A. J. Polymorphic transitions in single crystals:A new molecular dynamics method, Journal of Applied Physics,1981, Vol.52(12):7182-7190
    [61]Massobrio C, Pontikis V, Ciccotti G. Diffusion in the Lennard-Jones glass model studied by equilibrium and nonequilibrium molecular dynamics, Physical Review B,1989, Vol. 39(4):2640-2653
    [62]Brown D, Clarke J H R. Mol. A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids, Molecular Physics,1984, Vol.51(5):1243-1252
    [63]Fox J R, Andersen H C. J. Molecular dynamics simulations of a supercooled monatomic liquid and glass, The Journal of Physical Chemistry,1984, Vol.88(18):4019-4027
    [64]Rahman A. Correlations in the motion of atoms in liquid argon, Phys. Rev,1964, Vol. 136(2A):A405-A411
    [65]Schneider M, Rahmna A, SchullerI K. Vapor-phase growth of amorphous materials:A molecular-dynamics study, Physical Review B,1986, Vol.34(3):1802-1085
    [66]Schneider M, Rahman A, Schuller I K, Epitaxial growth of thin films studied by molecular dynamics simulation, Superlattices and microstructures,1990, Vol.7(1):39-46
    [67]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B,1990, Vol.41(11):7892-7895
    [68]Morse P M, Diatomic molecules according to the wave mechanics. Ⅱ. vibrational levels, Physical Review,1929, Vol.34(1):57-64
    [69]Born M, Mayer J E. Zur gittertheorie der ionenkristalle, Zeitschrift fur Physik A Hadrons and Nuclei,1932, Vol.75(1-2):1-18
    [70]Abell G C. Empirical chemical pseudopotential theory of molecular and metallic bonding, Physical Review B,1985, Vol.31(10):6184-6196
    [71]Tersoff J. New empirical model for the structural properties of silicon, Physical Review Letters,1986, Vol.56(6):632-635
    [72]Tersoff J. New empirical approach for the structure and energy of covalent systems, Physical Review B,1988, Vol.37(12):6991-7000
    [73]Tersoff J, Modeling solid-state chemistry:Interatomic potentials for multicomponent systems, Physical Review B,1989, Vol.39(8):5566-5568
    [74]Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B,1990, Vol.42(15):9458-9471
    [75]BrennerD W. Erratum:Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B,1992, Vol.46(3):1948-1948
    [76]Tersoff J. Empirical interatomic potential for silicon with improved elastic properties, Physical Review B,1988, Vol.38(14):9902-9905
    [77]周耐根,周浪,杜丹旭,面心立方晶体外延膜沉积生长中失配位错的结构与形成过程,物理学报,2006,1
    [78]周耐根,周浪,外延生长薄膜中失配位错形成条件的分子动力学模拟研究,物理学报,2005.7
    [79]周耐根,周浪,失配性质对面心立方外延晶体失配位错结构及其形核机制的影响,人工晶体学报,2006,(01)
    [80]Zhou N G, Gao H J, Zhou L, Misfit dislocations and adatom domain competitions in Cu/Ni (1-1-1) heteroepitaxial growth, Journal of Crystal Growth,2009. Vol.311(9):2736-2741
    [81]Gear C W, Nmuerical initial value problems in ordinary differential equations. NJ:
    [82]Hoffmann K H, Schreiber M, Computational Physies, Berlin Heidelberg:Springer-Verlag, 1996,268-326
    [83][110] Berendsen H J C, Postma J P M, van Gunsteren W F, Dinola A, Haak J R, Molecular Dynamics with Coupling to an External Bath, Journal of Chemical Physics,1984,81(8): 3684-3690
    [84]Nose S, A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, Journal of Chemical Physics,1984,81(1):511-519
    [85]Hoover W G, Canonical Dynamics Equilibrium Phase-Space Distributions, Physical Review A,1985,31(3):1695-17027
    [86]Schneider T, Stoll E, Molecular Dynamics Study of a Three-Dimensional one-Component Model for Distortive Phase Transitions, Physical Review B,1978,17(3):1302-1322
    [87]Schneider T, Stoll E, Molecular-Dynamics Study of Second Sound., Physical Review B,1978, 18(12):6468-6482
    [88]Anderson H C, Molecular Dynmaics Simulations at Constant Press and/or Temperature, The Journal of Chemical Physics,1980,72:2384-2393
    [89]Daw M S. Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Physical Review Letters,1983, Vol.50(17):1285-1288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700