苯胺生产过程危险介质热危险性实验模拟及其热分解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯胺是一种重要的有机化工原料,广泛应用于聚氨酯、染料、橡胶制剂、农药、感光化学品、医药及炸药等行业和领域。苯胺生产及其配套装置中使用大量易燃易爆、有毒有害的危险化学品,加上硝化反应和加氢反应生产工艺条件苛刻,装置及控制技术要求严格,使得苯胺生产过程事故具有突发性、灾害性的特点,成为业内公认的高危行业,稍有不慎,就会造成泄漏、爆炸等事故。近年来苯胺生产安全生产事故频频发生,给社会带来极大的灾难和损失。因此有必要系统分析苯胺生产过程存在的危害性,研究苯胺装置中各种危险介质热分解特性及热力学及动力学特性,揭示可能发生的反应性危害事故的致因机理。
     本文以苯胺生产过程中存在的硝基苯、苯胺、硫酸、硝酸、硝基酚、硝基苯酚钠、二硝基苯等典型危险介质为危险性分析研究对象,主要开展以下三个部分的研究内容:
     (1)使用高斯软件、实验值数据查询及简易估算法,计算和比较了危险介质各种化学键的键离解能,结果表明高斯计键能数据比实验值略低;硝基苯和硝基苯酚的热解和起爆的引发键是C-NO2键;亚硝基苯的热解引发键是C-NO键;苯胺的热解引发键为N-H键。
     (2)使用了C80微量量热仪、裂解炉-气相-质谱联用仪(PY-GC-MS)等设备,研究了危险介质及可能混合物的热分解特性,为改善此类物质热化学性和加强苯胺生产本质安全水平提供相应的理论依据。主要从以下三个方面展开:硝基苯和苯胺自身热分解特性研究;硝酸、硫酸及混酸(硝酸/硫酸)对硝基苯和苯胺热分解特性的影响研究;硝基苯生产过程中存在的中间产品和副产品的热分解特性以及它们对硝基苯热分解特性的影响研究。
     在硝基苯和苯胺热分解特性研究方面,使用C80微量量热仪通过等速升温实验观察了硝基苯和苯胺的热分解行为,采用气相色谱-质谱联用仪分析了纯品硝基苯、苯胺在不同裂解温度条件下的高速热分解特性及热分解过程中间产物分布情况,揭示了硝基苯和苯胺可能的热分解机理。
     在硝酸、硫酸及混酸对硝基苯和苯胺热分解特性影响研究方面,主要使用C80微量量热仪获得含有不同浓度无机酸的混合物样品溶液的热流速曲线,据此求解出混合溶液的化学反应动力学和热力学参数,并结合Semenov热爆炸模型,计算并比较混合物体系的自加速分解温度(SADT),从而研究了硝酸、硫酸及混合酸等杂质对硝基苯、苯胺热分解特性的影响规律。结果表明硝酸、硫酸及混酸等杂质的导入降低了混合物体系的放热开始温度和自加速分解温度,增加了混合物体系的危险性,并揭示了微量硫酸加入硝基苯后生成的不溶杂质的产生机理。
     在中间产品和副产品的热分解特性及其对硝基苯热分解特性的影响研究方面,揭示了硝基苯生产过程中间产物和副产物的产生机理,分析了硝基苯生产过程中潜在的危险性。
     (3)最后利用计算和实验分析结果,探讨了一起硝基苯生产典型事故的诱发原因及发展机理。事故的诱发原因为进料系统中粗硝基苯受酸类杂质的影响,在长期过热中发生的自加速放热反应过程;事故发展机理为空气进入真空的精馏塔中,氧化其中的硝基苯酚钠等副产品,使其在较低温度下发生自加速分解反应,导致热量积累,最终引起爆炸事故。
Aniline is an important organic chemical raw material and is widely used in the production of polyurethane, dyes, rubber agents, pesticides, photographic chemicals, pharmaceutical and explosives etc. the product process of aniline is regarded as a high-risk unit not only because there are a large amount of inflammable and explosive, toxic and harmful chemicals are used on the aniline production and its supporting device, but also because of the complex processing technology and demanding strict security technology of the nitration and hydrogenation reaction process. In recent years safety accidents of production of aniline occurred frequently, which caused complete catastrophe and loss. So it is necessary to analyze the risk and hazard factor, thermal decomposition characteristics of hazard materials and its thermodynamics and kinetics characteristics of the production process of aniline in order to reveal the mechanism of possible aniline production accident.
     In this paper, several hazard chemicals from the aniline production unit were selected as the object of the risk analysis. And the three part of researches were executed as follow:
     (1) the calculate and comparison of the BDE of nitrobenzene, aniline, nitrosobenzene, nitrophenol, nitrophenol sodium and dinitrobenzene by the methods of Gaussian03simulate computation, and experimental value database query and estimation method. The results show Gaussian calculations are slightly lower than the experiment query value. The thermolysis trigger bond of nitrobenzene and nitrophenol is C-NO2bond. The trigger bond of nitrosobenzene and aniline are C-NO and N-H bond respectively.
     (2) The researches were proceeded, using C80calorimetry, PY-GC-MS, from these three aspects:①Thermal decomposition behavior of nitrobenzene and aniline;②Influence of nitric acid, sulfuric acid and there mixed acid on Thermal decomposition behavior of nitrobenzene and aniline;③Influence of intermediate products and by-products on Thermal decomposition behavior of nitrobenzene and aniline.
     In the first research topic, thermal decomposition behavior of nitrobenzene and aniline was observed under the constant heating rate experiment. A GCT gas chromatography-time of flight mass spectrography was used to analyze the thermal decomposition of pure nitrobenzene and aniline under high temperature. The thermal decomposition mechanism of nitrobenzene and its mixture with nitric acid was conjectured.
     In the second topic, A CALVET calorimeter C80was used to analyze the thermal behavior of pure nitrobenzene and its mixtures with sulfuric acid and nitric acid. The chemical reaction kinetic parameters such as activation energy, frequency factor, and heat of reaction were calculated based on C80experimental data. Based on theses parameters and the Semenov thermal explosion theory, the self-accelerating decomposition temperature (SADT) of the samples were calculated and compared. The results show that the impurity of sulfuric acid, nitric acid and their mixture acid decrease the Ton-set and SADT and also increase the risk of the nitrobenzene mixture. The mechanism of new insoluble impurity after the sulfuric acid's mixture with nitrobenzene was conjectured.
     In the third topic, the thermal decomposition behavior of intermediate products and by-products and their influence on the decomposition behavior of nitrobenzene were researched by using C80calorimetry.
     (3) Based on results of above analysis and experiment, the cause and development mechanism of an accident was discussed. The immediate cause is the self-accelerating exothermic reaction process of raw nitrobenzene catalyzed by the impurity of acids. The follow-up mechanism is the high-risk by-products'oxidation by air and the exothermic reaction in the vacuum distillation tower, then the heat accumulation lead to an explosion accident at last.
引文
[1].崔克清.安全工程大词典[M],化学工业出版社,1995.
    [2].刘振海.分析化学手册(第八分册)热分析[M].北京:化学工业出版社.2004.
    [3].沈玉芳,陈栋华,胡小安.热分析动力学处理方法现状及进展[J].中南民族大学学报,2002.
    [4].冯长根.热爆炸理论[M].科学出版社,1988
    [5].J.亨利奇.爆炸动力学及其应用[M].科学出版社,1987
    [6]. Taffanel, C. & Floch, J. le. Comptes Rendus de l's Academie des Sciences de Paris,1913, 157:714
    [7]. Liljentoth, F. G. Chem. Metall, Eng.,1918,19:287
    [8]. Semenov, N. N. Some problems in chemical kinetics and reactivity. U.S.A.:Princeton University Press.1959. Vol.2:Chap.8
    [9]. Frank-Kamenetskii D A. Zh Comptes Rendus (doklady) de l'Academie des Seiences de Science l'U. R.S.S.S,1938,409:18
    [10]. Frank-Kamenetskii D A. Zh FIz Khim,19309,13:1594
    [11]. Frank-Kamenetskii D A. Diffusion and heat transfer in chemical kinetics,2nd edn. Pleum Press, New York, London,1969
    [12]. Thomas P. H. Tans faraday soc,1958,54:60
    [13]. Thomas P. H. Proc roy soc lond, A262,1961:192
    [14].孙金华,丁辉.化学物质热危险性评价[M],北京:科学出版社,2007.
    [15].孙占辉.反应性化学物质热自燃化学动力学机器热危险性评价方法[D].中国科学技术大学博士学位论文,2004.
    [16].中华人民共和国国家标准.物质热稳定性的热分析实验方法[M].GB/T 13464-92,1992.
    [17].徐国华,袁靖.常用热分析仪器[M].上海:上海科学技术出版社,1990.
    [18].刘振海.分析化学手册(第八分册)热分析[M].北京:化学工业出版社.2004.
    [19].刘雄民,长谷川和俊,田村昌三.有机过氧化物热分解激烈度的危险性评价方法[J].自然灾害学报,2003.
    [20]. Wang Xingzhong, Ou Yu xiang, Chen Boron, et al. Determination of the thermal stability of C1-20 and HMX using Accelerating Rate Calorimeter(ARC) [J], Proceeding of the third Beijing International Symposium on Pyrotechnics and Explosives,1995:520
    [21]. Wang Yun, Feng Changgen, Zeng Qingxuan, Wang Xingzhong. Methods to calculate activation energy using accelerating rate calorimeter(ARC) data[J]. Theory and Practice of Energetic Materials,1997:550-557
    [22].王耘,冯长根,曾庆轩.加速量热仪系统及应用[J].兵工安全技术,2000(2):21-23
    [23].崔克清主编.安全工程大词典[M],化学工业出版社,1995.
    [24].吕咏梅.苯胺生产回顾与市场展望[J].橡胶科技市场,2010.
    [24].薛叙明.精细有机合成技术[M],化学工业出版社,2005.
    [26].孟庆茹.绝热硝化法生产硝基苯工艺的进展[J].石油化工,2005.
    [27].陶钢,崔克清.苯胺生产过程的危险分析和安全对策[J],现代化工,2001(5):43-46.
    [28].梁诚.苯胺生产市场回顾与展望[J].第六届全国橡胶环保型助剂生产和应用技术研讨会论文集,2010.
    [29].张惜光.苯胺装置火灾爆炸原因分析及防范措施[J].石油化工安全技术,2006.
    [30].中华人民共和国国家发展和改革委员会,关于加强硝基苯及苯胺行业安全生产管理的通知.发改办工业[2006]2号,2006.
    [31].国家安全监管总局政策法规司,吉化”11.13”特大爆炸事故及松花江特别重大水污染事件基本情况及处理结果,安全监管总局政府网站,2006.
    [32].姜玲沪.苯胺装置:事故原因不在你[J],安全与健康,2006.
    [33].周公度.化学辞典[M].北京:化学工业出版社,2004.
    [34].李速延,周晓奇,苯胺生产技术研究进展[J],工业催化,2006(12):7-10.
    [35].汪智国,景山,魏飞.硝基苯在湍动流化床加氢制取苯胺[J].化学反应工程与工艺,2001(9):278-281
    [36].凌乙梁,马丽景,金劭,骞伟中,魏飞,流化床中间二硝基苯与硝基苯同时加氢过程[J],现代化工.2007.
    [37].周莲凤,徐宏,杨根山.硝基苯催化加氢制苯胺的技术概况[J].化学工业与工程技术.2007(2)
    [38].陈利平,陈网桦,李春光,刘颖,张幼平,彭金华,混酸中甲苯半间歇硝化过程的危险性研究[J],中国安全科学学报,2007(12):102-106
    [39].李正启,岑颗.硝基苯生产技术的改进[J].化学工程,2010(11):101-102.
    [40].陈皓,赵丽霞,刘希尧,沸石固体酸催化苯硝基化研究[J],石化技术,1999.
    [41]. Berten L E, Kenwenhoven H W, Prins R. Vapor-phase nitration of benzene over modified mordenite catalysts[J]. Apple Catal A:General,1995,129(2):229.
    [42]. Berten L E, Kenwenhoven H W, Prins R. Vapor-phase nitration of benzene over modified Y-zeolites catalysts:Influence of catalyst treatment [J]. Stud Surf Sci Catal,1993.78:607.
    [43]. Berten L E, Kenwenhoven H W, Prins R. Vapor-phasenitration of benzene over zeolites catalysts [J]. Stud Surf Sci Catal,1994,84:973.
    [44]. Choudary B M, Sateesh M, Kantam L M,et al. Selective nitration of aromatic compounds by solid catalysts [J]. Chem Commun,2000,25.
    [45].赵红林,田先国.硝基苯生产工艺评述与技术进展[J].化学工业与工程技术,2003(10): 37-40.
    [46].徐益.硝基苯生产的安全技术分析[J],化学工业与工程技术,2002(2)45-47.
    [47].丁朝刚,郭志伟,王鹏辉,硝基苯催化加氢制苯胺的安全技术分析[J],河南化工,2006.
    [48].李玉恒,邱建忠,陈来锁等.抑制硝化副产品确保安全操作提高经济效益[J],化工时刊,2006(7):57-59
    [49].杜昶,朱静波.硝基苯还原生产苯胺安全性评价[J],2006(7):11-13.
    [50].何咏玲.用《化工厂危险程度分级》对某硝基苯生产系统进行安全评价[J],《工业安全与防尘》,1995.
    [51].魏刚,张守贵,HAZOP分析法在硝基加氢生产苯胺反应过程的应用研究[J],兰州石化职业技术学院学报,2008(12)14-18.
    [52]. SHUKLA PK, PUSHPAVANA S. Parametric sensitivity, runaway, and safety in batch reactors:experiments and models[J], Industrial & Engineering Chemistry Research, 1994(12):3202-3208
    [53].陈网桦,陈利平,彭金华,李春光,朱贤峰,刘婷婷,间歇式与半间歇式化学反应热危险性的分级研究,2008年第二届全国石油和化工生产安全与控制技术交流会会议论文集.2008.
    [54]. Hong-Chun Wu. Explosion accident analysis of diaminodiphenolether process [J], Journal of Loss Prevention in the Process Industries,2004(17):373-376
    [55].刘武成,浦慧玲.硝基苯精馏事故原因探讨[J],化工劳动保护,1995(3):14-16.
    [56].杜昶,朱静波.硝基苯精馏生产装置爆炸原因分析研究[J],宁波化工,2006(1、2):47-49
    [57].李卫明.硝基苯精制再沸器爆炸事故的探讨[J],化学工业与工程技术,2007(8):54-57.
    [58].生迎夏,沙锡东,张礼敬,崔克清.硝基苯精馏再沸器爆炸事故分析[J],火炸药学报,2002(3):28-30.
    [59].徐晓明,两起硝基苯爆炸事故的分析[J],化工劳动保护,1999(8):284-285.
    [60].王晓媛,赵东风,刘乐,苯胺装置火灾爆炸事故的多米诺效应分析[J],安全与环境工程,2009(9):80-84.
    [61].王峰,高金吉,刘文彬,化工过程危险与可操作性及爆炸事故分析技术[J],化工学报,2008.
    [62]. Qingsong Wang, Song Guo, Jinghua Sun. Nitrobenzene and aniline caused fire and explosion: A Case Study, IChemE SYMPOSIUM SERIES,2007 NO.153.
    [63].张礼敬礼,孟亦飞,陶刚等.硝基苯精馏再沸器爆炸事故机理研究[J],中国安全科学学报,2006(10):89-93
    [64].翁绍琳.防止硝基化合物生产中的爆炸事故[J],染料工业,1996(5):19-22
    [65]肖鹤鸣.高能化合物的结构与性质[M].北京,国防工业出版社,2004.
    [66]曾秀琳,陈网桦,刘家璁,阚金妗.两种太根(tri-EGDN)和(tetra-EGDN)的几何结构和键裂解的理论[J].原子和分子物理学报,2007(24):135-140.
    [67]Rice B M, Sahu S, Owens F J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroacromatic molecules[J]. J. Mol. Structure,2002,583:69-72.
    [68]Xu S, Lin M C. Computational study on. the kinetics and mechanism for the unimolecular decomposition of C6H5NO2 and the related C6H5+NO2 and C6H5O+NO reactions [J]. J. Phys. Chem. B,2005(109):8367-8373.
    [69]Song X S, Cheng X L, Yang X D, et al. Relationship between the bond dissociation energies and impact sensitivities of some nitroexplosives[J]. Prop. Explos. Pyrotech.2006(31):306-310.
    [70]Field L E, Manaa M, Pagoria P F. Simpson R L. Design and synthesis of energetic materials[J]. Ann. Rev. Mater. Res.,2001(31):291-321.
    [71].王桂香,贡雪东,肖鹤鸣,苯和苯胺类硝基衍生物热解机理和撞击感度的理论研究[J],化学学报[J],2008(7):711-716
    [72].舒远杰,高能硝胺炸药的热分解,国防工业出版社[M],2010.6.
    [73].宗和厚,黄奕刚,舒远杰,王新峰.FOX-7热分解起始机理及NO_2对其催化效应的理论研究[J].含能材料,2006(6):425-428.
    [74].高大元,邓志国编译,芳香族硝基化学物的高速热分解[J],爆破器材,1996(4):35-38.
    [75]. Mitsuru ARAI, Renhao CHE, Mamoru ITOH etc. Pyrolysis of aromatic nitro compounds[J], Kogyo Kayaku (Sci. Tech. Energetic Materials), Vol.54, No.4,1993, p172-177(in Japanese).
    [1]孙金华,丁辉.化学物质热危险性评价[M].北京:科学出版社,2005.
    [2]孙金华,陆守香,孙占辉.自反应性化学物质的热危险性评价方法[J].中国安全科学学报,2003,13(4):44-47.
    [3]Setaram Co. C80 Ⅱ user manual. Setaram Co., France,2001.
    [4]王青松.锂离子电池材料的热稳定性及电解液阻燃添加剂研究[D].中国科学技术大学博士学位论文,2005.
    [5]刘志广,张华,李亚明.仪器分析[M].大连:大连理工出版社,2004.
    [6]气相色谱-高分辨飞行时间质谱联用仪 ,http://dxyq.hfcas.ac.cn/equipment/2009/7/10/93349_70.html.
    [1]胡荣祖,史启桢.热分析动力学[M].北京:科学出版社,2001.
    [2]J. Sestak, G. Berggren. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta,1971,3:1-12.
    [3]C. F. Dickinson, G. R. HealSolid. Liquid diffusion controlled rate equations[J]. Thermochimica Acta,1999,340-341:89-103.
    [4]J. H. Flynn. The 'temperature integral'-Its use and abuse[J]. Thermochimica Acta,1997, 300(1-2):83-92.
    [5]孙占辉.反应性化学物质热自燃化学动力学机器热危险性评价方法[D].中国科学技术大学博士学位论文,2004.
    [6]徐国华,袁靖.常用热分析仪器.上海:上海科学技术出版社,1990.10
    [7]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.6
    [8]陈则韶,葛新石,顾毓沁.量热技术和热物性测定.合肥:中国科学技术大学出版社,1990
    [1]肖鹤鸣.高能化合物的结构与性质[M].北京,国防工业出版社,2004.
    [2]罗渝然,郭庆祥,俞书勤,张先满.现代科学中的化学键能及其广泛应用[M].中国科学技术大学出版社,2008.
    [3]靳瑞发,龙梅.高斯量子化学计算与应用[M].内蒙古科学技术出版社,2009.
    [4]Gaussian 03, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA,2003.
    [5]James B. Foresman,(?)Eleen Frisch. Explorer Chemistry with Electronic Structure Methods [M]. Gaussian, Inc.1996.
    [6](?)Eleen Frisch, Michael J. Frisch, Gary W. Trucks. Gaussian 03 User's Refrence[M], Gaussian, Inc.2003.
    [7]Lide, David R. CRC Handbook of Chemistry and Physics[M]. Florida. Boca Raton:CRC Press, 2002. http://www.hbcpnetbase.com/hbcp.
    [8]Luo, Yu-Ran. Handbook of Bond Dissociation Energies in Organic Compounds[M], CRC Press,2002.
    [9]罗渝然.化学键能数据手册[M].科学出版社,2005.
    [10]Benson S W. Thermochemical kinetics[M]. New York:Wiley,1976.
    [11]CORWIN HANSCH, A. Leo, R.W. TAFT. A Survey of Hammett Substituent Constants and Resonance and Field Parameters [J]. Chem. Rev.1991,91:165-195.
    [1].孙金华,丁辉.化学物质热危险性评价[M],北京:科学出版社,2007.
    [2].周国泰.危险化学品安全技术全书[M],化学工业出版社,1997.
    [3].王桂香,贡雪东,肖鹤鸣,苯和苯胺类硝基衍生物热解机理和撞击感度的理论研究,化学学报,2008(7):711-716.
    [4].舒远杰,高能硝胺炸药的热分解,国防工业出版社,2010.6.
    [5]. Mitsuru ARAI, Renhao CHE, Mamoru ITOH etc. Pyrolysis of aromatic nitro compounds[J], Kogyo Kayaku (Sci. Tech. Energetic Materials), Vol.54, No.4,1993, p172-177(in Japanese).
    [6]. Yu Y H, Hasegava K. Derivation the self-acceleratingdecomposition temperature for self-reactive substances using isothermal calorimetry[J]. Journal of Hazardous Materials,1996,45: 193-205
    [7].阮继锋,平平,孙金华,丁辉,硝酸及硫酸对硝基苯热稳定性的影响研究,兵器材料科学与工程,2011.7
    [8].谢晶曦,常俊标,王绪明,红外光谱在有机化学和药物化学中的应用,科学出版社,2001.
    [9].中西香尔(美),索罗曼(美),红外光谱分析100例,科学出版社,1984.
    [10].丛浦珠,苏克曼,分析化学手册第九分册:质谱分析,化学工业出版社,2000.5.
    [11].田永亮,王玉海,项玉芝,夏道宏,汽油和液化石油气中硫醇氧化反应机理的研究进展,石油化工腐蚀与防护,2005.
    [1].中华人民共和国国家发展和改革委员会,关于加强硝基苯及苯胺行业安全生产管理的通知.发改办工业[2006]2号,2006.
    [2].李卫明.硝基苯精制再沸器爆炸事故的探讨,化学工业与工程技术,2007(8):54-57.
    [3].杜昶,朱静波.硝基苯精馏生产装置爆炸原因分析研究,宁波化工,2006(1、2):47-49.
    [4].翁绍琳.防止硝基化合物生产中的爆炸事故,染料工业,1996(5):19-22.
    [5].张礼敬礼,孟亦飞,陶刚等.硝基苯精馏再沸器爆炸事故机理研究,中国安全科学学报,2006(10):89-93.
    [6].薛叙明,精细有机合成技术,化学工业出版社,2005.
    [7].周公度.化学辞典[M].北京:化学工业出版社,2004.
    [8].百度百科,2-硝基苯酚,http://baike.baidu.com/view/5873114.htm.
    [9].百度百科,邻硝基苯酚钠,http://baike.baidu.com/view/4313608.html.
    [10].百度百科,对硝基苯酚钠,http://baike.baidu.com/view/1279183.html.
    [11].百度百科,二硝基苯,http://baike.baidu.com/view/4256565.htm.
    [1].孙金华,丁辉.化学物质热危险性评价[M],北京:科学出版社,2007.
    [2].李雪华,张海峰,叶丛胜,危险化学品活性反应危害及混配危险的规则研究,第九届全国爆炸与安全技术学术会议,2006.
    [3].魏海俊,从吉化双苯厂爆炸事故处置解读化工火灾扑救对策,武警学院学报,2006.12.
    [4].周公度.化学辞典[M].北京:化学工业出版社,2004.
    [5].百度百科,苯胺,http://baike.baidu.com/view/81150.htm.
    [6].百度百科,硫酸苯胺,http://baike.baidu.com/view/4363236.htm
    [1].何咏玲.用《化工厂危险程度分级》对某硝基苯生产系统进行安全评价,《工业安全与防尘》,1995.
    [2]魏海俊.从吉化双苯厂爆炸事故处置解读化工火灾扑救对策[J].武警学院学报,2006(12):27-29
    [3]Qingsong Wang, Song Guo, Jinghua Sun. Nitrobenzene and aniline caused fire and explosion: A Case Study, IChemE SYMPOSIUM SERIES,2007 NO.153.
    [4]新华社.调查组查明吉林石化公司双苯厂爆炸事故直接原因.http://news.xinhuanet.com/society/2005-11/17/content_3795304.htm.2005.
    [5].王峰,高金吉,刘文彬,化工过程危险与可操作性及爆炸事故分析技术[J],化工学报,2008(12):3184-3190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700