路堑边坡锚杆(索)受力演化与地震动响应规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用预应力锚杆加固边坡是岩土锚固的主要手段,已经逐渐应用于高速公路、铁路、建筑、水利、矿业工程等领域中,作为一种经济、实用且高效的岩土锚固方式,预应力锚固技术的发展已有几十年的历史,但是其机理和设计方法研究还落后于工程实践,特别是锚杆(索)受力演化及地震动响应规律研究更是相对薄弱。
     论文结合国家自然科学基金(50874085)“边坡加固的压力分散型锚索的加固机理与设计方法”和广东省科技计划项目(63123)“高速公路高陡边坡失稳预测与处治关键技术研究”,以高速公路边坡加固工程中常用的锚杆与预应力锚索为研究对象,采用数值模拟方法,对路堑边坡施工中边坡不同位置锚索的受力演化与在地震作用下的锚索受力变化规律进行了系统研究。
     首先,论文综述了锚杆(索)的锚固机理与地震作用下锚固边坡的受力分析等的研究进展。其次,采用数值模拟方法对均值类土质不同坡高(30-70米)的路堑台阶边坡施工过程中锚杆(索)预应力变化规律进行了分析,结果表明:边坡不同位置的锚杆(索)受力是不同的,同台阶上中下三根锚索,中间锚索预应力值最大;不同台阶同样位置锚杆(索)随边坡高度增加预应力呈衰减趋势;坡脚台阶中间锚杆(索)预应力值最大;边坡预应力随开挖施工过程,大部分锚杆(索)预应力有损失,但坡脚位置台阶中间锚杆(索)预应力有增大,且随着边坡高度增加,超过初始预应力锚杆(索)数增加。最后,采用数值模拟方法对地震动作用下边坡预应力锚索受力动态响应进行了模拟分析,结果表明:锚索在地震作用过程中的轴力峰值分布规律与静力条件下相似,同台阶上中下三根锚索,中间锚索在震中轴力最大峰值最大;不同台阶同样位置锚索随边坡高度增加预应力呈衰减趋势,锚索在震中的最大轴力峰值出现在坡脚位置。在7级地震和8级地震作用过程中锚索轴力变化很小,在9级地震动作用过程中处于坡脚处锚索的轴力最大峰值增加十分明显,但在同一个边坡模型中,边坡高度的增加锚索轴力减小的很快,边坡其他位置锚索轴力变化不大。随着边坡高度增加,坡脚处台阶上中下三根锚索中,最下面的一根锚索轴力最大。
Using pre-stress anchor for slope anchoring is a major way of rock-soil anchoring, it has gradually applied in many engineering like the highway, railway, architectural, hydraulic engineering etc, as a kind of economical、practical and effective way of rock-soil anchoring, the development of pre-stressing anchor technology has decades of history, but to the theoretical study and practical design is far behind the engineering practice. Especially the evolution of anchor stress and the response research of anchor seismic are relatively weak.
     The thesis combines the national natural science funds (50874085)"The reinforced mechanism and design method of slope reinforce by dispersed pressure of anchor cable "and and science and technology plan of GuangDong projects (63123)" The high and steep slope instability prediction and major treatment techniques of highway ", use prestressed anchor bolt and normal anchor as research object, the numerical simulation method was used to systematic study the discipline of anchor cable force which caused by different location of highway slope under earthquake.
     First, the paper summarized anchorage mechanism of anchor (cable) and the slope anchorage force analysis are reviewed under seismic action of earthquake. Second, this paper used the numerical simulation method to analyze the change rules of prestressed anchor (cable) force in different high (30-70meters) soil slope of highway., and the results show that: the anchor (cable) force of the slope in different locations is different, one step contain3anchor cables, the uppest one,the middle one and the downest one, and the middle prestress value most; Different steps but the same location anchor (cable) with the slope height increase prestressed show decreaseing trend; The cable located in the slope toe (cable) prestress value the most; as construction proceeding in highway slope, most of the prestressed anchor (cable) have prestress loss, but the middle location of slope steps anchor (cable) stress are increasing, and with the slope's attitude increase,the number of anchor which force bigger than the initial prestress are increased. Finally, this paper used numerical simulation method analyzed the the action of slope prestressed anchor stress dynamic response under earthquake, and the results showed that the anchor force change law in earthquake and the anchor force change law without earthquake condition are similar,3different anchor cable in the same step, the middle one had the maximum peak axial force; Different steps but the same location anchor (cable) with the slope height increase prestressed show decreaseing trend, the biggest axial force of slope anchor appeard in the slope toe position. In the seven earthquake and eight earthquake process anchor axial force changed little, in9levels earthquake motion process in slope feet of anchor's cable axial force increase obviously, but with the increase of slope height and the axial force of the anchor stay almost unchangeable. With the slope attitude increases,3three anchor cabl in slope foot step, the downmost one anchor's axial force is the largest.
引文
[1]耿卫红, 罗春华.岩土锚同工程技术及其应用[J].探矿工程,1997,(4):8-10.
    [2]闫莫明,徐祯祥,苏自约.岩土锚固技术的新进展[M].北京:人民交通出版社,2000,1-2.
    [3]周裕利.压力型锚固体系受力机理分析及工程应用研究[D].重庆大学硕士学位论文.2010.5
    [4]程良奎,李象范.岩土锚固·土钉·喷射混凝土——原理、设计与应用[M].中国建筑工业出版社,2008.10-11
    [5]徐祯祥,岩土锚固工程技术发展之回顾与展望[J].市政技术,2009,27(2),139-140
    [6]程良奎,李象范.岩土锚固土钉·喷射混凝土——原理、设计与应用[M].中国建筑工业出版社,2008.10-11
    [7]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3),8-12.
    [8]徐祯祥,岩土锚固工程技术发展之回顾与展望[J].市政技术,2009,27(2),139-140
    [9]程良奎,胡建林.土层锚杆的几个力学问题[c].中国岩土锚固工程协会主编.岩土工程中的锚固技术.北京:人民交通出版社,1996.
    [10]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式.岩土工程学报.2001,23(6):696-699.
    [11]吴学兵,靖洪文.压力分散型锚索剪应力分布规律的研究[J].山西建筑,2006,32(6):82-83.
    [12]卢黎,张四平,张永兴,林蔚勋.软硬互层岩体中压力分散型锚索结构布置优化.2010,29(增2):4124-4130
    [13]曹兴松,周德培.压力分散型锚索锚固段的设计方法[J].岩土工程学报,2005,(09):1033-1039
    [14]U.M. Rao Karanamw, S.K. Dasyapu. Experimental and numerical investigations of stresses in a fully grouted rock bolts[J], Geotechnical and Geological Engineering.2005, 23:297-308
    [15]Lutz L. Gergeley P. Mechanics of band and slip of deformed bars in concrete[J]. Journal of American Concrete Institute.1967,64(11):711-721.
    [16]Hanson, N. W. Influence of surface roughness of prestressing strand on band performance[J]. Journal of Prestressed Concrete Institute.1969,14(1):32-45.
    [17]Goto.Y.Cracks formed in concrete around deformed tension bars[J]. Journal of American Concrete Institute,1971,68(4):244-251.
    [18]顾金才,明治清,沈俊等.预应力锚索内锚固段受力特点现场试验研究[J].岩石力学与工程学报,1998,17(增):788-792.
    [19]顾金才,沈俊,陈安敏,明治清.预应力锚索加固机理与设计计算方法研究[J].第八次全国岩石力学与工程学术大会论文集:32-39.
    [20]王永卫,陈从新,刘秀敏,王群伟,李群.拉力型锚索破坏过程试验研究[J].施工技术,2011,8(40):94-97.
    [21]朱训国,关洪峰.预应力锚索锚固段粘结破坏本构模型研究[J].大连大学学报,2001,28(6):20-26.
    [22]李海民,李鑫,赵干明,李丽芬,黄晓宜.大吨位压力分散型锚索在边坡工程中的应用[J].岩土锚固.2001,6:
    [23]李正兵.强卸荷、倾倒拉裂破碎岩体条件下高边坡岩锚破坏性试验研究[J].水利水电技术.2009,40(2):22-26
    [24]张勇,赵红玲,张向阳.压力分散型锚索锚固段力学性能试验研究[J].岩石力学与工程学报.2010,29(增1):3052-3056
    [25]Nak-Kyung Kim, A.M.ASCE. Performance of Tension and Compression Anchorsin Weathered Soil[J]. Geotechnical and Geoenvironmental Engineering,2003.12:1138-1150.
    [26]M. Moosavi, W. F. Bawden and A. J. Hyett,.Mechanism of bond failure and load distribution along fully grouted cable-bolts[J], Trans. Instn Min. Metall.2002,111 (1):A1-A12
    [27]B. Benmokrane, M. Chekired, H.Xu, G. Ballivy. Behavior of Grouted Anchors Subjected to Repeated Loadings in Field[J], Geotechnical and Geological Engineering.1995,121(5): 413-420
    [28]Kilic, E.Yasar, A.G. Celik, Effect of grout properties on the pull-out load capacity offully grouted rock bolt[J]. Tunneling and underground Space Technology,2002,17:355-362
    [29]Yoshiaki Goto, Makoto Obata, Hirofumi Maeno, Yoichi Kobayashi. Failure Mechanism of New Bond-Type Anchor Bolt Subject to Tension[J], Journal of Structural Engineering, 1993,119(4):1168-1187
    [30]Eur.Ing. A D BARLEY BSc(Eng), MSc C Eng, FICE, FGS Theory and Practice of the Single Bore Multiple Anchor System[A]. International Symposium on "Anchors in Theory and Practice"[C].9 and 10 October 1995, at Salzburg, Austria
    [31]Eur.Ing. A D BARLEY. The single bore multiple anchor system[M]. Director of Engineering, Keller Ground Engineering, Wetherby, UK
    [32]M. Moosavi, R. GrayeliA model for cable bolt-rock mass interaction:Integration withdiscontin uous deformation analysis (DDA) algorithm[J], Intelnational Journal of Rock Mechanics and Mining Science,2006,43:661-670
    [33]A.F. Ashour, M.A. Alqedra. Concrete breakout strength of single anchors in tension using neural networks. [J], Advances in Engineering Software,2005,36:87-97
    [34]J.B. Jang, Y.P. Suh. The experimental investigation of a crack's influence on theconcrete breakout strength of a cast-in-place anchor. [J], Nuclear Engineering and Design,2006,236: 948-953
    [35]夏元友,范卫琴,芮瑞,王艳丽.压力分散型锚索作用效果的数值模拟分析[J].岩土力学,2008,29(11):3145-3148
    [36]张四平,侯庆.压力分散型锚杆剪应力分布与现场试验研究[J].重庆建筑大学学报,2004,26(2):41-47.
    [37]雷金山,阳军生,王安正,肖武权.压力分散型锚索锚固段受力特性分析[J].铁道科学与工程学报.2010,7(3):60-64
    [38]金永军,何满潮,王树仁,刘成禹.适用于软岩边坡的压力分散型预应力锚索锚固机理研究[J].土木工程学报,2006,39(4):63-67.
    [39]Zhu Hongwei, Xiang qin. Invalidation Risk Evaluation for Prestressed Cable Bolt Based on Matter-Element Analysis[J]. Emergency Management and Management Sciences (ICEMMS),2010 IEEE International Conference:277-280
    [40]Sherief S.S. Sakla a, Ashraf F. Ashour. Prediction of tensile capacity of single adhesive anchors using neural networks[J]. Consumer Electronics, Computers and Structutres, 2005,83:1792-1803
    [41]Zhou ZhiGang, Gong Xiaonan. Internal force calculation and stability analysis of the slope reinforced by pre-stressed anchor cables and frame beams[J]. Consumer Electronics, Communications and Networks (CECNet),2011 International Conference:3230-3234
    [42]汀鹏程,朱大勇,许强.强震作川下加固边坡的动力响应及不同加固方式的比较研究[J].合肥工业大学学报.2009,32(10):1051-1054
    [43]石玉成,秋仁东,孙军杰,胡明清.地震作用下预应力锚索加固危岩体的动力响应分析[J].岩土力学.2011,32(4):1157-1162
    [44]秋仁东,石玉成,付长华.高边坡在水平动荷载作用下的动力响应规律研究[J].世界地震工程.2007,23(2):131-138
    [45]言志信,曹小红,张刘平,张海东.地震作用下黄土边坡动力响应数值分析[J].岩土力学.2011,32(supp.2):610-614
    [46]朱宏伟,项琴.锚杆支护边坡动力响应规律及锚固参数影响[J].公路交通科技.2011,28(7):30-34
    [47]叶海林,郑颖人,黄润秋,李安洪,杜修力.锚杆支护岩质边坡地震动力响应分析[J].后勤工程学院学报.2010,26(4):1-7
    [48]张学东,言志信,张森ANSYS在岩质边坡动力响应分析中的应用[J].西北地震学报.2010,32(2):117-121
    [49]王环玲,徐卫亚.高烈度区水电工程岩石高边坡三维地震动力响应分析[J].岩石力学与工程学报.2005,24(2):5890-5894
    [50]彭宁波,言志信,刘子振,蔡汉成.地震作用下锚固边坡稳定性数值分析[J].工程地质学报.2012,20(1):44-50
    [51]叶海林,郑颖人,陆新,李安洪.边坡锚杆地震动特性的振动台试验研究[J].土木土程学报.2011,44:152-176
    [52]杨庆华,姚令侃,邱燕玲,刘兆生.高烈度地震区岩土体边坡崩塌动力学特性研究[J].西北地震学报.2011,33(1):33-39
    [53]崔芳鹏,殷跃平,许强,胡瑞林,张明.地震纵横波时差耦合作用的斜坡崩滑响应研究[J].岩土工程学报.2010,32(8):1266-1273
    [54]蒋良潍,姚令侃,胡志旭,杨庆华.地震扰动下边坡的浅表动力效应与锚固控制机理试验研究[J].四川大学学报.2010,42(5):164-174
    [55]王建,姚令侃,蒋良潍.边坡岩石块体动力响应及锚固抗震效应研究[J].公路交通科技.2010,27(3):6-10
    [56]樊晓一.地震与非地震诱发滑坡的运动特征对比研究[J].岩土力学.2010,31(supp.2):164-174
    [57]许江波,郑颖人,叶海林.土质及软岩边坡地震稳定性影响因素分析[J].地下空间与工程学报.2011,6(7):1233-1240
    [58]郑颖人,叶海林,黄润秋,李安洪,许江波.边坡地震稳定性分析探讨[J].地震工程与工程震动.2010,30(2):173-180
    [59]叶海林,黄润秋,郑颖人,唐晓松.地震作用下边坡稳定性安全评价的研究[J].地下空间与工程学报.2009,5(6):1248-1252
    [60]叶海林,郑颖人,陆新,李安洪.边坡锚杆地震动特性的振动台试验研究[J].土木土程学报.2011,44:152-176
    [61]文畅平,杨果林.地震作用下挡土墙位移模式的振动台试验研究[J].岩石力学与工程学报.2011,30(7):1503-1511
    [62]下丽萍,张嘎,张建民,李焯芬.土钉加固黏性土坡动力离心模型试验研究[J].岩石力学与工程学报.2009,28(6):1227-1230
    [63]孟芹.地震作用下锚索破坏模式[J].重庆交通大学硕十学位论文.2010,4
    [64]段建,言志信,郭锐剑,刘子振.地震边坡岩土体破坏特征探讨[J].煤炭学报.2011,36(10):1643-1646
    [65]罗杰,张艺.基于FLAC 3D不同震级下压力刑锚索内力变化研究[J].公路建设与养护.2011,245:10-14
    [66]王凤山,吴华杰,卢厚清,刘猛.基于DEA的地震作用下岩石边坡工程整体安全风险分析[J].地下空间与工程学报.201 1,7(4):791-794
    [67]马毅,王希良,刘振,郭阳阳.基于模糊因素的岩质边坡地震稳定性多模型组合评价[J].岩土力学.2011,32(1):626-629
    [68]叶海林,郑颖人,黄润秋,李安洪,杜修力.锚杆支护岩质边坡地震动力响应分析[J].后勤工程学院学报.2010,26(4):1-7
    [69]赖杰,郑颖人,方玉树,叶海林.预应力锚索支护边坡地震作用下动力响应研究[J]. 地下空间与工程学报.2011,7(增2):1768-1773
    [70]叶海林,黄润秋,郑颖人,杜修力,李安洪.岩质边坡锚杆支护参数地震敏感性分析[J].岩土工程学报.2010,32(9):1374-1379
    [71]郑颖人,叶海林,黄润秋,李安洪,李江波.边坡地震稳定性分析探讨[J].地震工程与工程振动.2010,30(2):173-180
    [72]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [73]GB50011——2001,《建筑抗展设计规范》[s].(GB5001 Ⅰ—2001, Code for Seismic Design of Buildings.(in Chinese))
    [74]SL203——97,《水工建筑物抗展设计规范》[S].(SL203—97, Specifications for Seismic Design of Hydraulic Structures[S].(in Chinese))
    [75]JTJ004-89,《公路工程抗震设计规范》[S].(JTJ004—89, Code for Seismic Design of Highway En-gingering.(in Chinese))
    [76]徐江波,郑颖人,叶海林.土质及软岩边坡地震稳定性影响因素分析[J].地下空间与工程学报.2011,7(6):1233-1240
    [77]叶海林,黄润秋,郑颖人,唐晓松.地震作用下地震稳定性安全评价的研究[J].地下空间与工程学报.2009,5(6):1248-1257
    [78]陈国兴.岩土工程地震学[M].北京:科学出版社,2007.
    [79]陈祖煜,汪小刚,杨建,贾志欣,王玉杰.岩质边坡稳定性分析[M].中国水利水电出版社,2005.
    [80]陈祖煜,汪小刚,杨建,贾志欣,王玉杰.岩质边坡稳定性分析[M].中国水利水电出版社,2005.
    [81]陈国兴.岩土工程地震学[M].北京:科学出版社,2007
    [82]陈祖煜,汀小刚,杨建,贾志欣,王玉杰.岩质边坡稳定性分析[M].中国水利水电出版社,2005.
    [83]谢定义.岩质土动力学[M].高等教育出版社,2011.
    [84]彭宁波,言志信,刘子振,蔡汉成.地震作用下锚固边坡稳定性数值分析[J].工程地质学报.2012,20(1):44-50;
    [85]叶海林,郑颖人,黄润秋,李安洪,杜修力.锚杆支护岩质边坡地震动力响应分析[J].后勤工程学院学报.2010,26(4):1-7
    [86]赖杰,郑颖人,方玉树,叶海林.预应力锚索支护边坡地震作用下动力响应研究[J].地下空间与工程学报.2011,7(增2):1768-1773
    [87]叶海林,黄润秋,郑颖人,杜修力,李安洪.岩质边坡锚杆支护参数地震敏感性分析[J].岩土工程学报.2010,32(9):1374-1379
    [88]赖杰,郑颖人,方玉树,叶海林.预应力锚索支护边坡地震作用下动力响应研究[J].地下空间与工程学报.2011,7(增2):1768-1773,
    [89]叶海林,郑颖人,黄润秋,李安洪,杜修力.锚杆支护岩质边坡地震动力响应分析[J]. 后勤工程学院学报.2010,26(4):1-7
    [90]郑颖人,叶海林,黄润秋.地震边坡破坏机制机器破裂而的分析探讨[J].岩石力学与工程学报.2009,28(8):1714-1723
    [91]土层锚杆设计与施工规范CECS 20:90 (1990)冶金部建筑研究总院
    [92]水利水电工程边坡设计规范(水利部)SL386-2007.中华人民共和国水利部
    [93]建筑边坡工程技术规范GB50330-2002.中华人民共和国建设部
    [94]伍平,于建华.结构抗震设计中地震动输入的若干问题[J].西南交通大学.2002.37(增):44-49
    [95]朱东生,劳远吕,沈大元等.桥梁地震反应分析中输入地震波的确定[J].桥梁建设,2000,3:1-4
    [96]马行东,李海波.地震动荷载作用下锚固边坡稳定性研究[C].第二届全国岩土与工程学术大会论文集,2006:446-451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700