风浪破碎和波群统计特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海浪的破碎和群性是重要的海洋现象。风浪破碎率和白浪覆盖率是波浪破碎的基本统计特征量,是计算波浪破碎其它统计特征量(如平均破碎强度和平均破碎经历时间等)和计算水雾、气泡分布与浓度的基本参量,从而在上层海洋动力学、海一气交换、海洋遥感、海洋工程和海洋噪声等方面的研究中有直接意义,因此,有必要对二者的统计模式进行深入的研究。而波群对于波浪与建筑物的作用、海洋灾害及海洋结构物的设计等都有明显的影响,研究波群特征量的统计分布同样具有重要的科学意义和广泛的应用价值。
     本文基于Xu et al.(2000)的结果推出新的白浪覆盖率与风浪破碎概率理论计算模式,将风浪破碎统计特征量与海上观测更易获得的参量(如波周期、海面风速、摩擦风速)联系起来,避免了风区长度的计算,具有形式简单、实用性强的特点;风浪的破碎特征与海浪成长状态关系密切,且海浪的理论研究中常会涉及到海浪的状态参量波龄c /U ,因此本文将W与B发展成一种形式简单的波龄的函数,得到不同海浪状态下的风浪破碎统计特征。
     现存的波群统计特征的分布大多假定海浪是窄谱的且波面位移服从正态分布。考虑到实际海浪的随机性和复杂性,本文将信息熵的概念引入到推导波群特征量统计分布的研究中,基于最大熵原理在无任何假定的基础上推出波群统计特征量的最大熵分布,使其不仅能够很好的拟合已有观测数据,而且对未知数据的分布保持最大的不确定性(最大熵),即此分布可使作为随机变量的波群统计特征量的信息熵最大。为检验该分布与实际符合的情况,分别采用实验室数据与观测资料验证了该分布的合理性,并与至今仍被广泛应用的Longuet-Higgins (1984)的分布相比较验证其可靠性与实用性。
     为验证推导出的风浪破碎与波群理论模型的有效性,采用自行设计并搭建的声学测量系统在不同海域通过水声监测和海面观测相结合的方式进行了两次海上实验。从水声信号中判断破碎信息是获取风浪破碎率的前提,实验中借助于海面观测资料获得基于声谱级水平(SSL)的声学判据,并进一步验证了依赖于波龄的风浪破碎率的理论计算模式的合理性;分析实测资料时采用Xu et al. (2004)提出的快速带通滤波方法作相应处理后得到波群特征量的统计信息,通过最大熵分布与实测资料及Longuet-higgins(1984)推出的分布相比较可知最大熵分布能更好地描述波群统计特征量G、H、l ,并且其相应得最大熵分布f_(n= 0.6)(G )、f_(n=1) ( H)、f n= 0.5(l )拟合效果最好。初步分析同步测得的破碎与波群的实测资料得出风浪破碎与波群统计特征的关系:风浪破碎主要发生在连续且大的浪即群性大的风浪的波峰处。
Breaking and grouping are two important phenomena of sea waves. The breaking probability and whitecap coverage are usually used to evaluate breaking, from which other features of breaking waves (i.e. intensity and duration of breaking waves), as well as distribution and concentration of spray and bubble clouds can be easily calculated, hence play important parts in upper ocean dynamics, air-sea interaction, remote sensing, ocean engineering and sea noise. Thus models of breaking probability and whitecap coverage deserve lucubrating. While wave groups have great influence on wave-structure interaction, marine disasters and design of offshore structures. It would be not only of major scientific interest but also of practical significance to study the statistical properties of wave group parameters.
     In this paper, the models of Xu et al.(2000) for breaking probability and whitecap coverage are developed into new forms. To avoid the complex estimation of dimensionless fetch, the new models are expressed in terms of average wave period and wind speed, which are relatively easy to measure in field. Considering that wave age has been widely used to parameterize spectral models of ocean waves and air-sea fluxes, the derived models are further developed into simple functions of wave age, respectively.
     The conventional distribution of wave group statistics is derived by taking records of the sea surface elevation as a random Gaussian process, which ignores the nonlinear effect of sea waves. Thus another aim of this paper is to derive a new distribution for statistical properties of wave groups based on the maximum entropy principle. Such a distribution is desirable, because its acquisition is under the maximum uncertainty, i.e., free of a Gaussian hypothesis. Comparisons of both the maximum entropy distribution and the distribution of Longuet-Higgins (1984) with the laboratory wind-wave data show that the former gives a better fit.
     To further test the validation of the above models, two measurements were conducted on Bohai Sea to provide real sea data of different conditions. Hydrophones and pressure sensor were adopted to record the wave breaking events and wave elevation, respectively. Instead of the acceleration criterion, the breaking criterion in terms of Sound Spectrum Level (SSL) is definitely employed to help detect wave breaking from the ambient sound signals. With the wave elevation and wind speed data observed, the wave age dependent model of wave breaking probability is reanalyzed. The result shows the new model is competent for breaking probability prediction. By use of the FFT filtering method proposed by Xu et al.(2004), the maximum entropy probability density function of wave records are plotted with comparison to the PDFs of Longuet-Higgins(1984). It has been shown that f_(n= 0.6)(G ), f_(n=1) ( H), and f n= 0.5(l ) have rather good agreements with the field data. Furthermore, tentatively examination of correlations between wave groups and breaking suggests that breaking occurs most commonly in the center of a group, which accords with the earlier findings.
引文
[1]Bortkovskii, R. S. Air-Sea Exchange of Heat and Moisture during Storms[M]. Kluwer Academic. 1987.
    [2]Hwang P.A., D. X., and J. Wu. Breaking of Wind-generated Waves:Measurements and Characteristics [J]. J Fluid Mech, 1989, 202: 177-200.
    [3]Thorpe, S. A., Humphries, P. N. Bubbles and breaking waves [J]. Nature, 1980, 283:: 463-465.
    [4]袁业立,华锋,潘增弟等.破碎波统计及其在上层大洋动力学中的应用[J].中国科学B辑, 1988: 1084-1091.
    [5]徐德伦.破碎与海面粗糙长度的关系[J].海洋与湖沼, 1987, 18(5): 477-486.
    [6]Banner, M. L., Babanin, A. V., Young, I. R. Breaking probability for dominant waves on the sea surface [J]. J Phys Oceanogr, 2000, 30:: 3145-3160.
    [7]Farmer, D. M., Vagle, S. On the determination of breaking surface wave distribution [J]. J Geophys Res, 1988, 93(C4): 3591- 3600.
    [8]Medina, J. R., Hudspeth, R. T. A review of analyses of ocean wave groups [J]. Coastal Engineering, 1990, 14(6): 515-542.
    [9]Donelan, M., Longuet-higins, M. S., Turner, J. S. Periodicity in whitecaps [J]. Nature, 1972, 239(5373): 255-261.
    [10]Banner, M. L., Melville, W. K. On the Separation of Air Flow over Water Waves [J]. J Fluid Mech, 1976, 2: 825-842.
    [11]Phillips, O. M. The Dynamics of the Upper Ocean[M]. Cambridge:Cambridge University Press:. 1977.
    [12]Hedges, T. S., Kirkgoz, M. S. An experimental study of the transformation zone of plunging breakers [J]. Coastal Engineering, 1981, 4: 319-333.
    [13]K. She, Greated, C. A., Easson, W. J. Experimental study of three-dimensional breaking waves [J]. Applied Ocean Research, 1997, 19: 329-343.
    [14]Stansell, P., MacFarlane, C. Experinental investigation of wave breaking criteria based on wave phase speeds [J]. J Phys Oceanogr, 2002, 32: 1269-1283.
    [15]孙孚.三维海浪要素的统计分布[J].中国科学(A辑), 1988, 5: 501-508.
    [16]Stokes, G. G. A supplement to a paper on the theory of oscillatory waves [J]. Mathematical and Physical Papers, 1880, 1: 314-326.
    [17]Dawson, T. H., Kriebel, D. L., Wallendor, L. A. Breaking waves in laboratory-generated JONSWAP seas [J]. Appl Ocean Res, 1993, 15: 85-93.
    [18]Michell, J. H. The highest waves in water [J]. Phil MagSeries 5, 1893, 36(222): 430~437.
    [19]Longuet-Higgins, M. S., Fox, M. J. H. Theory of the almost-highest wave: the Inner Solution [J]. J of Fluid Mech, 1977, 80: 721-741.
    [20]Longuet-Higgins, M. S., Cokelet, E. D. The deformation of steep surface waves on water, II. Growth of Normal-Mode Instabilities [J]. Proc Roy Soc London, 1978, A(364): 1-28.
    [21]Mclean, J. W. Instabilities of Finite-amplitude Water Waves [J]. J Fluid Mech, 1982, 114: 315-330.
    [22]Melville, W. K., Rapp, R. J. Momentum flux in breaking waves [J]. Nature, 1985, 317: 514-516.
    [23]M.Y. Su. Three-dimensional deep-water waves. Part 1. Experimental measurement of skew and symetric wave patterns [J]. J Fluid Mech, 1982, 124: 73-108.
    [24]Benjamin, T. B., Feir, J. E. The disintegration of wave trains on deep water [J]. J Fluid Mech, 1967, 27(5): 417-430.
    [25]Weissman, M. A., Atakturk, S. S., Katsaros, K. B. Detection of breaking events in a wind-generated wave field [J]. J Phys Oceanogr, 1984, 14(10): 1608-1619.
    [26]Holthuijsen, L. H., Herbers, T. H. C. Statistics of breaking waves observed as whitecaps in the open sea [J]. J Phys Oceanogr, 1986, 16(2): 290-297.
    [27]Longuet-Higgins, M. S., Smith, N. D. Measurement of Breaking by a Surface Jump Meter [J]. J Geophys Res, 1983, 88: 9823-9831.
    [28]Xu, D., Hwang, P. A., Wu, J. Breaking of Wind-Generated Waves [J]. J Phys Oceanogr, 1986, 16(12): 2172-2178.
    [29]Li, D., Farmer, D. M. On the dipole acoustic source level of breaking waves [J]. J Acoust Soc Am, 1994, 96(5): 3036-3044.
    [30]Katsaros, K. B., S.S. Atakturk. Dependence of wave-breaking statistics on wind stress and wave development[A], M. L. Banner, and R. H. J. Grimshaw. In Breaking Waves[C], Springer1992, pp. 119-132.
    [31]Gemmrich, J. R., Farmer, D. M. Observations of the scale and occurrence of breaking surface waves [J]. J Phys Oceanogr, 1999, 29: 2595-2606.
    [32]Melville, W. K., Matusov, P. Distribution of breaking waves at the ocean surface [J]. Nature, 2002, 417: 58 - 63.
    [33]Lafon, C., Piazzola, J., Forget, P. et.al. Analysis of the variations of the whitecap fraction as measured in coastal zone during the FETCH experiment [J]. Boundary Layer Meteorology, 2004, 111: 339-360.
    [34]Srokosz, M. A. On the probability of wave breaking in deep water [J]. J Phys Oceanogr, 1986, 16(2): 382-385.
    [35]Ochi, M. K., Tsai, C. H. Prediction of occurrence of breaking waves in deep water [J]. J Phys Oceanogr, 1983, 13(11): 2008-2019.
    [36]Ding, L., Farmer, D. M. Observations of breaking wave statistics [J]. J Phys Oceanogr, 1994a, 24: 1368-1387.
    [37]Glazman, R. E. Statistical characterization of sea surface geometry for a wave slope field discontinuous in the mean square [J]. J Geophys Res, 1986, 91(C5): 8629-8641.
    [38]Hasselman, K. On the spectral dissipation of ocean waves due to whitecap [J]. Boundary Layer Met, 1974, 6(1): 107-127.
    [39]Wu, J. Spray in the atmospheric surface layer: Laboratory study [J]. J Geophys Res, 1973, 78: 511-519.
    [40]Blanchard, D. C. The electrification of the atmosphere by particles from bubbles in the sea [J]. Prog Oceanogr, 1963, 1: 71-202.
    [41]Korman, B. C., Gas transfer at the air-sea interface by breaking waves[R], Canada:1980
    [42]Snyder, R. L., Kennedy, R. M. On the formation of whitecaps by a threshold mechanism, PartⅠ: Basic formalism [J]. J Phys Oceanogr, 1983, 13(8): 1482-1492.
    [43]Monahan, E. S. Oceanic whitecaps [J]. J Phys Oceanngr, 1971, 1: 139-144.
    [44]Toba, Y., Chaen, M. Quantitative expression of the breaking of wind waves on the sea surface [J]. Records Oceanography Works Japan, 1973, 12: 1-11.
    [45]Ross, D. B., Cardone, V. J. Observations of oceanic whitecaps and their relation to remote- measurements of surface wind speed [J]. J Geophys Res, 1974, 79: 444- 452.
    [46]Wu, J. Oceanic whitecaps and sea states [J]. J Phys Oceanogr, 1979, 9(5): 1064-1068.
    [47]Monahan, E. S., O'Muircheartaigh, I. Optimal power-law description of oceanic whitecap coverage dependence on wind speed [J]. J Phys Oceanogr, 1980, 10(12): 2094-2099.
    [48]Wu, J. Variation of whitecap coverage with wind stress and water. temperature [J]. J Phys Oceanogr, 1988, 18: 1448-1453.
    [49]Nolte, K. G., Hsu, F. H. Statistics of ocean wave groups[A]. Fourth Annual Offshore Technology Conf. Dallas,Texas:, 1972.637-644
    [50]Goda, Y. Numerical experiments on wave statistics with spectral simulation [J]. Rept Port and Harbour Res Inst, 1970, 9(3): 3-57.
    [51]Rye, H., Ocean wave groups[R], Dep. Marine Technology, Norw. Inst Technol.,1982
    [52]俞聿修,柳淑学.海浪的波群特性[J].港口工程, 1988, 5:: 1-7.
    [53]Kimura, A. Statistical properties of random waves groups[A]. Sydney:17th International Conference on Coastal Engineering, 1980.2955-2973
    [54]Battjes, J. A., Van Vledder. Verification of Kimura's Theory for Wave Group Statistics[A]. Proc., 19th Int. Conf. Coastal Eng., 1984.642-648
    [55]Goda, Y. Analysis of wave grouping and spectra of long-travelled swell [J]. Rept Port Harbour Res Inst, 1983, 22(31): 3-41.
    [56]Mase, H., Iwagaki, Y. Run-up of random waves on gentle slopes[A]. 19th Coastal Eng. Conf. Proc., ASCE, 1984.593-609
    [57]Longuet-Higgins, M. S. The statistical analysis of a random moving surface [J]. PhilTransRoySoc(A), 1957, 249: 321-387.
    [58]Ewing, J. A. Mean length of runs of high waves [J]. J Geophys Res, 1973, 78: 1933-1936.
    [59]Longuet-Higgins, M. S. Statistical properties of wave groups in a random sea state [J]. Phil Trans R Soc London,, 1984, A312: 219-250.
    [60]Sawnhey, M. D. A Study of Ocean Wave Amplitudes in Terms of the Theory of Runs and a Markhov Chain Process[M]. New York:New York University. 1962.
    [61]Funke, E. R., Mansard, E. P. D. On the Synthesis of Realistic Sea States in a Laboratory Flume[A]. HLR Report LTR-HY 66. Ottawa, 1980. National Research Council of Canada
    [62]Bitner-Gregersen, E. M., Gran, S. Local properties of sea waves. derived from a wave record [J]. Appl Ocean Res, 1983, 5: 210-214.
    [63]赵锰,徐德伦. Hilbert变换在波群统计中的应用(Ⅰ) [J].海洋学报, 1990, 12(3): 284-290.
    [64]Cartwright, D. E., Longuet-Higgins, M. S. The statistical distribution of the maxima of random function[A]. Proc. Roy. Soc. London, 1956.212-232
    [65]Xu D., Liu, X., Yu, D. Probability of wave breaking and whitecap coverage in a fetch-limited sea [J]. JGeophysRes, 2000, 105(C6): 14253-14259.
    [66]Reul, N., Chapron, B. A model of sea-foam thickness distribution for passive microwave remote sensing applications [J]. JGeophysRes-Ocean, 2003, 108(C10): 3321,doi:3310.1029/2003JC001887.
    [67]Hasselmann, D. E., Dunckel, M., Ewing, J. A. Directional wave spectra observed during JONSWAP [J]. J Phys Oceanogr, 1973, 10: 1264-1280.
    [68]Zhao, D., Toba, Y. Dependence of whitecap coverage on wind and wind-wave properties [J]. J Oceanogr, 2001, 57: 605~616.
    [69]徐德伦,于定勇.随机海浪理论[M].北京:高等教育出版社. 2001.
    [70]Monahan, E. C. Oceanic whitecaps [J]. JPhysOceanogr, 1971, 1(2): 139~144.
    [71]Toba, Y., Chaen, M. Quantitative expression of the breaking of wind waves on the sea surface [J]. RecOceanogrWorks Jpn, 1973, 12: 1-11.
    [72]Ross, D. B., Cardone, V. J. Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed [J]. JGeophysRes, 1974, 79: 444-452.
    [73]Thorpe, S. A., Humphries, P. N. Bubbles and breaking waves [J]. Nature, 1980, 283: 463-465.
    [74]Johnson, R. R., Mansard, E. P. D., Ploeg, J. Effects of Wave Grouping on Brekwater Stability[A]. Proc. 16th ICCE. Hamburg, Germany, 1978.2228-2243
    [75]Gravesen, H., Frederiksen, E., Kirkegaard, J. Model tests with directly reproduced nature wave trains[A]. Proc. ICCE 14, 1974.372-385
    [76]Holton, G., Stephen, G. Introduction to Concepts & Theories in Physical Science[M]. New York: Addison-Wesley. 1952.
    [77]张金泉.克劳修斯在热学发展中的地位和作用[J].物理通报, 2002, 9:: 43-45.
    [78]汪志诚.热力学统计物理(第一版) [M].人民教育出版社. 1980.
    [79]Jaynes, E. T. Information theory and statistical mechanics [J]. Physical Review, 1957, 106: 620-630.
    [80]Shannon, C. E. The Mathematical Theory od Communication[M]. University of Illinois Press:. 1949.
    [81]田振清,周越.信息熵基本性质的研究[J].内蒙古师范大学学报(自然科学版), 2002, 31(4): 347-350.
    [82]史玉峰,靳奉祥,王健.基于信息熵的测量数据粗差识别法[J].测绘通报, 2002, 2: 9-10.
    [83]冯乃勤.模糊概念的模糊度研究[J].模式识别与人工智能, 2002, 15(3): 290-293.
    [84]吴有富,金明仲.信息分类中的一种模糊技术[J].贵州科学, 2002, 20(3): 24-29.
    [85]陈文强.熵、信息与生命本质的探讨[J].汉中师范学院学报(自然科学), 2002, 1: 84-87.
    [86]郑炜,胡正国,汤小春,等.基于熵的信息隐藏算法研究[J].西北工业大学学报, 2003, 21(1): 21-25.
    [87]严济慈.热力学第一和第二定律[M].北京:人民教育出版社. 1966.
    [88]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社. 1986.
    [89]罗江山,宋影泉,罗久里.非理想性对BZ反应体系热力学性质的影响[J].四川大学学报(自然科学版), 2003, 40(2): 325-329.
    [90]陈光旨.理论物理概论[M]. 1985.
    [91]张学文.物理场的熵及其自发减小现象[J].自然杂志, 1986, 11: 847-850.
    [92]左战春,李嫒,夏云杰.原子自发辐射中偶极矩的涨落与最大纠缠态的保持[J].原子与分子物理学报, 2003, 20(2): 182-186.
    [93]De Luca, A., Termini, S. A. Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory [J]. 1972, 20: 301-312.
    [94]Bedrosian, S. D., Xie, W. Fuzzy measure justification of some grey-tone image experimental data [J]. Electron Lett, 1982, 18: 615-617.
    [95]Liu, T. P., Ruggeri, T. Entropy Production and Admissibility of Shocks [J]. Acta Math Appl Sin, 2003, 19(1): 1-12.
    [96]许清海.混沌投资时间序列的嬗变[J].漳州师范学院学报(自然科学版), 2003, 16(1): 31-34.
    [97]罗哲贤.大尺度大气运动的形态与耗散结构[J].气象学报, 1986, 44(2): 140-148.
    [98]Lovejoy, S. Area-perimeter relation for rain and cloud areas. [J]. Science, 1982, 216(4542): 185-187.
    [99]浦天舒.高分子溶液的混合熵[J].纺织高校基础科学学报, 2003, 16(1): 64-66.
    [100]盛国芳,焦李成.基于遗传算法的最佳熵阈值的图像分割[J].计算机工程与应用, 2003, 39(12): 103-105.
    [101]Mars, G., Sato, H. irreversibility of cosmological expansion[A]. International Journal of Modern Physics, 1987 133
    [102]Peacocke, A. The Physical Chemistry of Biological Organizaiton[M]. Oxford: Oxford University Press. 1983.
    [103]陈文强.熵、信息与生命本质的探讨[J].汉中师范学院学报(自然科学), 2002, 3: 84-87.
    [104]张言彩.熵理论在组织结构优化设计中的应用[J].淮阴师范学院学报, 2003, 25(3): 369-372.
    [105]徐梅,梅世强.经济波动谱分析方法的比较研究[J].控制与决策, 2003, 18(3): 351-354.
    [106]王维.熵理论的哲学意义[J].自然辩证法通讯, 1987, 3.
    [107]Ulrych, T. J., Thomas, N. B. Maximum Entropy Spectral Analysis and Autoregressive Decomposition [J]. Rev Geophys Space Phys, 1975, 13: 183-200.
    [108]徐福敏.最大信息熵原理在波高分布中的应用[J].河海大学学报, 2000, 28(1): 67~71.
    [109]郭佩芳,孙孚.海浪波高场熵及其在西北大西洋的年际变化[J].海洋学报, 1996, 18(6): 18-25.
    [110]吴克俭,孙孚.最大熵原理与海浪波高的统计分布[J].海洋学报, 1996, 18(3): 21-26.
    [111]戚建华,孙孚,郭佩芳.风应力系数与波高熵关系的研究初探[J].科学通报, 1996, 41(23): 2174-2177.
    [112]Chen, W. Y., Stegen, G. R. Experiments with Maximum Entropy Power Spectra of Si- nusoids [J]. J Geophys Res, 1974, 79: 3019-3022.
    [113]Ulrych, T. J. Maximum entropy power spectrum. of. truncated sinusoids [J]. J Geophys Res, 1972a, 77(8): 1396-1400.
    [114]Ulrych, T. J., Smylie, D. E., Jensen, O. G. et.al. Predictive filtering and smoothing of short records by using maximum entropy [J]. J Geophys Res, 1973, 78: 4959-4964.
    [115]蔡蒨蒨,许履瑚,梁在中.实用数学手册[M].北京:科学出版社. 2001.
    [116]张军.非线性海浪波高的最大熵分布及其应用[D],青岛.中国海洋大学,2005
    [117]Xu, D. L., Li, X., Zhang, L. Z. et.al. On the Distribution of Wave Periods, Wavelengths and Amplitudes in a Random Wave Field [J]. J Geophys Res, 2004, 109, C05016.
    [118]Papoulis, A. Probability, Random Variables, and Stochastic Processes[M]. New York: McGraw-Hill Book Co. 1984.
    [119]Lamb, H. Hydrodynamics 6th edn.[M]. London: Cambridge University Press. 1932.
    [120]文圣常,余宙文.海浪理论和计算原理[M].北京:科学出版社. 1984.
    [121]Melville, H. Wave modulation and breakdown [J]. J Fluid Mech, 1983, 128:: 489-506.
    [122]Ding, L., Farmer, D. M. On the dipole acoustic source level of breaking waves [J]. The Journal of the Acoustical Society of America, 1994b, 96(5): 3036- 3044.
    [123]朱晓华,冯玉田,章玉鉴.基于组件技术的虚拟仪器开发方法的研究[J].上海大学学报, 1999, 5(4): 357-361.
    [124]Arase, E. M., Arase, T. Ambient noise measurement in an insonified ocean [J]. J Acoust Soc Am, 1974, 58: 703-705.
    [125]Burgess, A. S., Kewley, D. J. Wind generated surface noise levels in deep water east of Austrilia [J]. J Acoust Soc Am, 1983, 73: 201-210.
    [126]Urick, R. J. Principles of underwater Sound[M]. McGraw-Hill 3rd, Ed. 1983.
    [127]Longuet-Higgins, M. S., Fox, M. J. H. Theory of the Almost Highest Wave: the Inner Solution [J]. J Fluid Mech, 1977, 80: 721-741.
    [128]Tulin, M. P., Waseda, T. Laboratory observations of. wave group evolution, including breaking effects [J]. J Fluid Mech, 1999, 378: 197-232.
    [129]Babanin, A. V., Young, I. R., Banner, M. L. Breaking Probability for Dominant Waves. on Water of Finite Constant Depth [J]. J Geophys Res, 2001, 106: 11659-11676.
    [130]Banner, M. L., Gemmrich, J. R., Farmer, D. M. Multi-Scale Measurements of Ocean Wave Breaking Probability [J]. J Phys Oceanogr, 2002, 32: 3364-3375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700