基于GPS/GLONASS集成的CORS网络大气建模与RTK算法实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着GLONASS卫星星座的逐步恢复,GLONASS卫星系统有望在2010年年底之前再次实现满星座运行状态,同时第一颗加载了码分多址(CDMA)信号的GLONASS-K型卫星也有望在2010年12月发射。众多证据显示,GLONASS系统将再次成为能够与GPS系统相抗衡的全球卫星定位系统。而对于民用的终端用户而言,如果能够充分的利用GPS和GLONASS卫星,可视卫星数量的增加,将意味着其导航定位结果的准确性和可靠性的增强。
     本文以GPS/GLONASS集成的网络RTK算法实现为主线,系统研究网络RTK在实现过程中的理论和技术,具体内容有:
     1. GPS/GLONASS集成双差方程的建立
     本文GPS/GLONASS集成的函数模型和随机模型是建立在最小二乘模型的基础上的。首先研究了GPS/GLONAS系统的观测值,双频信号的线性组合和时空基准的统一方法。然后对GNSS测量中的各误差项进行逐一分析,针对各误差站间差分后的特性与模型改正后的残差量级,分别用四种方法来进行分类处理,分别为:不做模型改正并将残差并入随机模型中,模型改正后残差并入随机模型中,利用先验信息预处理和作为待估参数进行估计。同时还讨论了GPS/GLONASS实时系统中,参考卫星的选取方法。最后介绍基线解算的三种基本模型,几何无关模型,几何固定模型和几何相关模型,其中几何无关模型主要用于长基线宽巷整周模糊度解算,几何固定模型适用以CORS站间的基线解算,几何相关模型是RTK相对定位最常用的模型。
     2. GPS/GLONASS伪距观测值的预处理
     在GNSS数据处理中,伪距观测值的精度往往是决定整周模糊度能否正确解算的关键。本文首先对GNSS观测值的预处理方法进行研究,其中主要包括利用恒星日滤波对伪距多路径进行降噪方法和考虑电离层变化的载波相位平滑伪距方法。实际测试数据表明,通过载波相位平滑和恒星日滤波处理,可以将伪距观测值的精度提高到厘米级,从而保证宽巷整周模糊度快速固定。
     3. GPS/GLONASS集成的整周模糊度解算
     对于GPS/GLONASS集成的双差整周模糊度解算,本文将Leick等人1995年提出的GLONASS数据处理方法应用到网络RTK的CORS基线解算中。首先用伪距估计参考卫星的站间单差整周模糊度,可以证明用伪距求得的参考卫星的站间单差整周模糊度的误差不会影响最终GLONASS双差整周模糊度的固定。在GPS/GLONASS集成的整周模糊度解算中,依照传统的“三步法”实现先固定宽巷,后固定L1,L2整周模糊度的解算,本文推导了用卡尔曼滤波方法实现上述“三步法”整周模糊度解算的方法,最后对CORS基线的周跳探测与修复方法进行了分析。
     4.大气延迟的网络插值模型的分析比较
     在网络RTK的插值算法比较过程中,本文研究比较了几种常用的网络插值方法,其中包括基于基线长度的线性插值DIM(Distance-Based Linear Interpolation Model)模型,基于平面二维坐标线性组合的LCM(Linear Combination Model)模型,基于平面二维坐标线性插值的LIM(Linear Interpolation Model)模型,基于低阶地表LSM(Low-Order Surface Model)模型和基于最小二乘配置的LSC(Least Squares Collocation)模型和Kriging模型。基于实测数据的分析比较表明,尽管各种插值模型的插值精度量级相当,但就电离层的插值而言,Kriging模型的精度相对较好,而考虑了高程因素LSM3模型在对流层插值效果上相对较好。
     5.VRS虚拟观测值的生成算法
     为了保证VRS虚拟观测值的精度,本文不仅提出进一步对各双差大气延迟项进行分解,构建单差大气延迟项,同时在轨道和伪距多路径延迟上做进一步处理。从而保证VRS虚拟观测值的精度。
     6. GPS/GLONASS集成的RTK实现
     与GPS/GLONASS集成的CORS基线解算类似,在GPS/GLONASS集成的RTK需要首先借助伪距求得GLONASS参考卫星的站间单差整周模糊度,然后才能保证GLONASS观测值双差整周模糊度的整数特性。而在实现过程中,RTK的观测值与待定坐标参数之间的关系为非线性模型,因此本文使用扩展卡尔曼滤波方法实现RTK的动态基线解算。
As the recovery of the GLONASS constellation, it's possible for GLONASS system to get Full Operational Capability (FOC) before the end of 2010, and also the first GLONASS-K satellite which can broadcast CDMA signal will be launched on December 2010. All these evidences show that the GLONASS system will come back to compete with GPS system again. For the civilian users, it could be good news as there will be more visible satellites, which mean the improvement of the precision and reliability for the positioning.
     This paper mainly focused on the implementation of GPS/GLONASS integrated Network RTK system and the contribution of this work can be list as following:
     1. The Construction of GPS/GLONASS Integrated Double Difference Equations
     In this paper, we use the least square method to construct the function model and stochastic model. The paper firstly has a brief description for the GPS/GLONASS integrated measurements, the linear combination of the dual frequencies and also the datum difference between the two systems. The paper also analysis the physical influences of the GNSS measurements, and use four different method to deal with the different physical influences. For the double difference equation construction, we also discuss the method for the reference satellite selection. Finally, three different models including geometry free model, geometry fixed model and geometry based model are introduced for GNSS resolution models, and all of these three models will be use in the following implementation of the Network-RTK system.
     2. Data Pre-processing for GPS/GLONASS Pseudo-range Measurements
     For GNSS data processing, the quality for the pseudo-range is very important for the carrier phase ambiguity resolutions. In this paper, the data pre-processing including the sidereal day filter to reduce the pseudo-range multi-path effect and also the carrier phase smoothing pseudo-range. The test data shows that with the sidereal day filter, the precision for the pseudo-range can be improved to several centimeters level, and this can faster the wide-lane ambiguity resolution.
     3. GPS/GLONASS Integrated Ambiguity Resolution
     For the GPS/GLONASS integrated ambiguity resolution, we use the method Leick proposed in 1995 (Leick 1995):firstly, the reference satellite's single difference ambiguities are estimate with the pseudo-range and carrier-phase measurements. It can be proved that, the precision of the estimated single different ambiguities will not influence the integer property of the double difference ambiguities. After the GLONASS reference satellite single difference ambiguities are fixed to a approximate value, the traditional "three step" (bootstrap) method are implemented with Kalman filter. And finally, the cycle-slip detection and recovery for CORS baseline are discussed.
     4. The Comparison of the Network Interpolation Method for Atmosphere Delays
     In this paper, we compared several interpolation method which are commonly used for the Network-RTK, including DIM(Distance-Based Linear Interpolation Model) model, LCM(Linear Combination Model) model, LIM (Linear Interpolation Model) model, LSM (Low-Order Surface Model) model, LSC(Least Squares Collocation) model and Kriging model. The tested data show that, although most interpolation method are quite similar, for the SYDNET data, the Kriging method's perform best for ionospheric delay interpolation and LSM3 model performs best for tropospheric delay interpolation.
     5. The Generation of the VRS Measurements
     To guarantee the precision of the VRS observation, the paper proposes to decompose the double difference atmospheric delay to single difference delay between two stations. In the meantime, the difference between precise orbit and broadcast orbit are added to the VRS observation. And also the sidereal day filter is proposed to be added to the VRS observation pseudo-range measurements.
     6. The Implementation of GPS/GLONASS Integrated RTK
     The same as CORS baseline resolution, the GPS/GLONASS integrated RTK need firstly solved the GLONASS reference satellite's single difference ambiguities, and then the double difference ambiguity can be fixed to be integer for the GLONASS satellites. As the relationship between the measurements and the rover station's coordinate is not linearism, the extended Kalman filter is proposed for the implementation work of the GPS/GLONASS integrated RTK algorithm.
引文
[1]Brunner, F. K., Gu M. (1991). An Improved Model for the Dual Frequency Ionospheric Correction of GPS Observations. Manuscripta Geodaetica.18(16):205-214.
    [2]Budden K.G. (1985). The Propagation of Radio Waves. The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere. Cambridge University Press, Cambridge, 1985.
    [3]China Satellite Navigation Office. (2010). BeiDou (COMPASS) Navigation Satellite System Development[R]. Report. Munich Satellite Navigation Summit 2010, March 9-11,2010, Munich, Germany.
    [4]Colombo O. L., Hernandez-Pajares M, Juan J. M., Sanz J., Talaya J. (1999). Resolving carrier phase ambiguities on the fly, at more than 100 km from nearest reference site, with the help of ionospheric tomography. Proceeedings of ION GPS 1999. Nashville, TN: 1635-1642.
    [5]Colombo, O. L. (2008). Real-Time, Wide-Area, Precise Kinematic Positioning Using Data from Internet NTRIP Streams. Proceedings of ION GNSS 2008. Savannah, GA:327-337.
    [6]Dach R., Hugentobler U., Fridez P., Meindl M. (2007). User manual of the Bernese GPS Software Version 5.0. Bern, Astronomical Institute, University of Bern.
    [7]Dai L., Han S., Wang J., Rizos C. (2001). A Study on GPS/GLONASS Multiple Reference Station Techniques for Precise Real-Time Carrier Phase-Based Positioning. Proceeding of ION GPS 2001. Salt Lake City, UT:392-403.
    [8]Dai L., Wang J, Rizos C., Han S. (2003). Predicting atmospheric biases for real-time ambiguity resolution in GPS/GLONASS reference station networks. Journal of Geodesy 76(11-12):617-628.
    [9]Dai L., Han S., Wang J., Rizos C. (2004). Comparison of Interpolation Algorithms in Network-Based GPS Techniques. Journal of the Insititute of Navigation(4):277-294.
    [10]Davis J. L., Herring T. A., Shapiro I. I., Rogers A. E. E., Elgered G. (1985). Geodesy by Radio Interferometry:Effects of Atmospheric Modelling Errors on Estimates of Baseline Length, Radio Science,20(6):1593-1607.
    [11]Diggelen, V. F. (1997). GPS and GPS+GLONASS RTK. Proceedings of ION-GPS 1997. Kansas City, MO:139-144.
    [12]Estey L. H., Meertens C. M. (1999). TEQC:The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solutions.3(1):42-49.
    [13]Edwards S. J., Cross P. A., Barnes J. B., Betaille D. (1999). Amethodology for Benchmarking real-time kinematic GPS. Suryer Review.35(273):163-174.
    [14]Europe Union. (2010). European GNSS(Galileo) Open Service Signal In Space Interface Control Document.
    [15]Felhauer T. (1997). On the Impact of RF Front-end Group Delay Variations on GLONASS pseudorange accuracy. Proceedings of ION GPS 1997. Kansas, MO:1527-1532.
    [16]Gao Y., Li. Z., McLellan J.F. (1997). Carrier Phase Based Regional Area Differential GPS for Decimeter-Level Positioning and Navigation. Proceedings of ION GPS 1997. Kansas, MO:1305-1313.
    [17]Geng J., Teferle F. N., Shi C., Meng X., Dodson A. H., Liu J. (2009). Ambiguity Resolution in Precise Point Positioning with Hourly Data. GPS Solutions,13(4):263-270.
    [18]Goad, C. C., Goodman L. (1974). A modified Hopfield tropospheric refraction correction model. Paper presented at the Fall Annual Meeting of the American Geophysical Union, San Francisco, California, December 12-17,1974.
    [19]Guo J., Langley R. B. (2003). A New Tropospheric Propagation Delay Mapping Function for Elevation Angles Down to 2°. Proceedings of ION GPS/GNSS 2003, Portland, OR:368-376.
    [20]Han S.& Rizos C. (1996), GPS network design and error mitigation for real-time continuous array monitoring systems. Proceedings of ION GPS 1996, Kansas City, MO:1827-1836.
    [21]Han S. (1997). Carrier phase-based long-range GPS kinematic positioning. PhD dissertation, rep UNISURV S-49, School of Geomatic Engineering, The University of New South Wales, Sydney.
    [22]Han S.& Rizos C. (1998), Instantaneous ambiguity resolution for medium-range GPS kinematic positioning using multiple reference stations, International Association of Geodesy Symposia, vol.118, Advances in Positioning and Reference Frames, ISBN 3-540-64604-3,283-288.
    [23]Han S., Dai L., Rizos C. (1999). A New Data Processing Strategy for Combined GPS/GLONASS Carrier Phase-Based Positioning. Proceedings of ION GPS 1999. Nashville, TN:1619-1627.
    [24]Hatch, R. R. (1982). The synergism of GPS code and carrier measurements. Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning, New Mexico, Ⅱ,1213-1232.
    [25]Hopfield, H. S. (1997). Tropospheric effect on electromagnetically measured range: Prediction from surface weather data. Radio Science,6(3):357-367.
    [26]Hu G., Khoo V. H. S., Goh P. C., Law C. L..(2002). Performance of Singapore Integrated Multiple Reference Station Network (SIMRSN) for RTK Positioning. GPS Solution 6:65-71.
    [27]Hu G., Abbey D. A., Castleden N., Featherstone W. E., Earls C., Ovstedal O., Weihing D. (2005). An approach for instantaneous ambiguity resolution for medium-to long-range multiple reference station networks. GPS Solution,9:1-11.
    [28]Ifadis, I. (1990). Modeling of the Atmospheric Refraction for Radiowaves. Survey Review, 30(236):259-269.
    [29]Boehm J., Neill A., Tregoning P., Schuh H. (2006). Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data. Geophysical Research Letters 33:L07304.
    [30]Julier S. J., Uhlmann J. K. (1997). A New Extension of the Kalman Filter to Nonlinear Systems Symp. Aerospace/Defense Sensing, Simul. and Controls. Orlando, FL 3068: 182-193.
    [31]Kalman R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(D):35-45.
    [32]Kashani I., Grejner-Brzezinska D. A., Wielgosz P. (2005). Toward instantaneous network-based real-time kinematic GPS over 100 km distance. Jounal of The institude of Navigation.52(4):239-245.
    [33]Keefe K. O. (2001) Compararion of Troposphere Mapping Functions. Report from University of Calgary. ENGO 633 Major Project Presentation. From:http://www.ucalgary.ca/kpgokeef.
    [34]Kozlov D., Tkachenko M., Tochilin A. (2000). Statistical characterization of hardware biases in GPS+GLONASS receivers. Proceedings of ION GPS 2000, Salt Lake City, UT:817-826.
    [35]Krige, D.G.(1951). A statistical approach to some mine valuations and allied problems at the Witwatersrand, Master's thesis of the University of Witwatersrand,1951.
    [361 Landau. H., Vollath U. (1996). Carrier phase ambiguity resolution using GPS and GLONASS signals. Proceedings of ION GPS 1996. Kansas City, MO.917-923.
    [37]Landau, H. (1998). Use of GLONASS data. TerraSat Report, Hohenkirchen, Germany.
    [38]Landau, H., Vollath U., Chen X. (2002). Virtual Reference Station Systems. Journal of Global Positioning Systems 1(2):137-143.
    [391 Leick, A., Li, J., Beser, Q.,& Mader, G. (1995). Processing GLONASS carrier phase observations-theory and first experience. Proceeding of GPS ION'95, Palm Springs, California,12-15 September,1041-1047.
    [40]Marel H. van der (1998), Virtual GPS reference stations in The Netherlands,11th Int. Tech. Meeting of the Satellite Div.of the U.S. Institute of Navigation, Nashville, Tennessee,15-18 September,49-58.
    [41]Marini J. W. (1972). Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science,7(2):223-231.
    [42]Maurizio B., Nicola C., Stefano G., Luciano R., Antonio Z. (2009) Technical and Scientific Aspect Derived by the Processing of GNSS Networks Using Different Approaches and Software. Proceedings of ION GNSS 2009. Savannah, GA,22-25 September,2677-2688, 2009.
    [43]Mitrikas V. V., Revnivykh S. G., Bykhanov E. V. (1998). WGS84/PZ90 Transformation Parameters Determination Based On Laser And Ephmeris Long-Term GLONASS Orbital Data Processing. Proceedings of ION GPS 1998. Nashville, TN:1625-1635
    [44]Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research 101(B2):3227-3246.
    [45]Odijk D., Marel H. van der, Song I. (2000), Precise GPS positioning by applying ionospheric corrections from an active control network, GPS Solutions,3(3),49-57.
    [46]Odijk D. (2002). Fast Precise GPS Positioning in The Presence of Ionospheric Delay. Ph.D Thesis, Delft University of Technology, Delft, Netherlands.
    [47]Parkinson, B. W. and Axelrad P. (1988). Autonomous GPS Integrity Monitoring Using the Pseudorange Residual. Navigation 35(2):255-274.
    [48]Parkinson, B. W., Spilker Jr. J. J., et al., Eds. (1996). The Global Positioning System:Theory and Applications; Volume Ⅰ&Ⅱ. Progress in Astronautics and Astronautics. Washington, American Institute of Aeronautics and Astronautics, Inc.
    [49]Petovello, M. G. (2006). Narrowlane:is it worth it? GPS Solutions 10(3):187-195.
    [50]Radio Technical Commission For Maritime Services(RTCM). (2007). RTCM Standard 10403.1 for Differential GNSS Service-Version 3 with Amendments 1 and 2, RTCM Paper 177-2006-sc104-STD, Developed by the RTCM Special Committee No.104, Amended August 31,2007.
    [51]Raquet J. (1998). Development of a method for kinematic GPS carrier phase ambiguity resolution using multiple reference receivers. rep UCGE 20116, University of Calgary, Canada.
    [52]Rossbach, U., Hein G. (1996) Treatment of integer ambiguities in DGPS/DGLONASS double difference carrier phase solutions. Proceedings of ION GPS 1996. Kansas City, MO, pp.909-916.
    [53]Russian Institute of Space Device Engineering. (2008). Interface Control Document V5.1. MOSCOW.
    [54]Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In:The use artificial satellites for geodesy. Edited by S. W. Henricksen, A. Mancini, B. H. Chovitz, Geophysical Monograph 15, American Geophysical Union, Washington D. C.,247-251.
    [55]Saastamoinen, J. (1973). Contributions to the theory of atmospheric refraction. Bulletin Geodesique,107:13-34.
    [56]Schaer S., Beutler G., Rothacher M., Brockmann E., Wiget A. Wild U. (1999), The impact of the atmosphere and other systematic errors on permanent GPS networks, Presented at IAG Symposium on Positioning, Birmingham, UK,21 July.
    [57]Schwartz K.P. (1978), On the application of least-squares collocation models to physical geodesy, in Approximation Methods in Geodesy, edited by H. Moritz and H. Sunkel, H. Wichmann-Verlag, Karlsruhe, Germany,89-116.
    [58]Springer, T.A. (2000), Modeling and Validating Orbits and Clocks Using the Global Positioning System, Geodatisch-geophysikalischeArbeiten in der Schweiz, Band 60, SchweizerischeGeodatische Kommission, Institut fur Geodasie und Photogrammetrie, Eidg. Technische Hochschule Zurich, Zurich.
    [59]Takac F., Zelzer O. (2008). The Relationship Between Network RTK Solutions MAC, VRSTM, PRS, FKP and i-MAX. Proceeding of ION GNSS 2008. Savannah, GA:348-355.
    [60]Teunissen, P.J.G. (1993):Least-squares estimation of the integer GPS ambiguities. Invited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China, August 1993.
    [61]Teunissen, P. J. G. (1997a). A canonical theory for short GPS baselines. Part I:The baseline precision. Journal of Geodesy 71(6):320-336.
    [62]Teunissen, P. J. G. (1997b). A canonical theory for short GPS baselines. Part II:the ambiguity precision and correlation. Journal of Geodesy 71(7):389-401.
    [63]Teunissen, P. J. G. (1997c). A canonical theory for short GPS baselines. Part III:the geometry of the ambiguity search space. Journal of Geodesy 71(8):486-501.
    [64]Teunissen, P. J. G. (1997d). A canonical theory for short GPS baselines. Part IV:precision versus reliability. Journal of Geodesy 71(9):513-525.
    [65]Tomoji T., Akio Y. (2010). Kalman-Filter-Based Integer Ambiguity Resolution Strategy for Long-Baseline RTK with Ionosphere and Troposphere Estimation. Proceeding of ION GNSS, 2010.
    [66]Tscherning, C.C. (1974), A FORTRAN IV Program for the Determination of the Anomalous Potential Using Stepwise Least Squares Collocation. Reports of the Department of Geodetic Science No.212, The Ohio State University, Columbus, Ohio.
    [67]Tscherning, C.C. (2001), Computation of spherical harmonic coefficients and their error estimates using least-squares collocation. Journal of Geodesy,75(1):12-18.
    [68]Vollath U., Brockmann E., Chen X. (2003). Troposphere:Signal or Noise? Proceeding of ION GPS/GNSS 2003, Portland, OR,1709-1717.
    [69]Walsh, D., Daly P. (1996). GPS and GLONASS carrier-phase ambiguity resolution. Proceedings of ION GPS 1996. Kansas City, MO.:899-907.
    [70]Wang, J. (2000). An Approach to GLONASS Ambiguity Resolution. Journal of Geodesy 74(5):421-430.
    [71]Wang J., Rizos C., Stewart M. P., Leick A. (2001). GPS and GLONASS Integration: Modeling and Ambiguity Resolution Issues. GPS Solutions 5(1):55-64.
    [72]Wanninaer L. (1995) Improved ambiguity resolution by regional differential modelling of the ionosphere. Proceedings of ION GPS 1995. Palm Spring:55-62.
    [731 Wanninger, L. (1997). Real-Time Differential GPS-Error Modelling in Regional Reference Station Networks. Proceedings of the IAG Scientific Assembly. Rio de Janeiro:86-92.
    [74]Wanninger, L. (1999). The Performance of Virtual Reference Stations in Active Geodetic GPS-Networks under Solar Maximum Conditions. Proceedings of ION GPS 99. Nashville, TN:1419-1427.
    [75]Wanninger, L. (2002). Virtual Reference Stations for Centimeter-Level Kinematic Positioning. Proceedings of ION GPS 2002. Portland, OR:1400-1407,2002.
    [76]Wanninger, L. (2003). Virtual reference stations (VRS). GPS Solutions 7(2):143-144.
    [77]Wanninger L., Stephan W. F. (2007). Combined Processing of GPS, GLONASS, and SBAS Code Phase and Carrier Phase Measurements. Proceedings of ION GNSS 2007. Fort Worth, TX:866-875.
    [78]Wei E., Cai H., Liu J., AN Z. (2007). On the Generation Algorithm of VRS Virtual Observations. Geo-spatial Information Science 10(2):91-95.
    [79]Wielgosz P., Grejner-Brzezinska D. A., Kashani I. (2003). Regional Ionosphere Mapping with Kriging and Multiquadric Methods. Journal of Global Positioning Systems,2(1):48-55.
    [80]Wubbena G. (1985). Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements, in Proceedings First International Symposium on Precise Positioning with the Global Positioning System, edited by Clyde Goad,403-412, US Department of Commerce, Rockville, Maryland.
    [81]Wubbena G., Bagge A., Seeber G., Boder V., Hankemeier P. (1996). Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks. Proceedings of ION GPS 1996. Kansas City, MO:1845-1852.
    [82]Wubbena G., Bagge A., Martin Schmitz (2001). RTK Networks based on Geo++(?) GNSMART-Concepts, Implementation, Results. Proceedings of ION GPS 2001. Salt Lake City, UT:368-378.
    [83]Wubbena G., Schmitz M., Bagge A. (2005). PPP-RTK:Precise Point Positioning Using State-Space Representation in RTK Networks. Proceedings of ION GNSS 2005. Long Beach, CA:2584-2594.
    [84]Wubbena G., Bagge A. (2006). "RTCM Message Type 59-FKP for transmission of FKP. Version 1.1." Geo++(?) White Paper Nr.2006.01. From http://www.geopp.de
    [85]Xu, G. (2007). GPS Theory, Algorithms and Applications (2nd). Springer, Springer.
    [86]Zhang J., Lachapelle G. (2001). Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. Journal of Geodesy,75(5-6): 255-266.
    [87]Zhang S., Lim S., Rizos C., Guo J. (2009). Atmosphere Decomposition for VRS-Based Network-RTK System. Proceedings of ION GNSS 2009. Savannah, GA,22-25 September, 2707-2716,2009.
    [88]Zinoviev A. E. (2005). Using GLONASS in Combined GNSS Receivers:Current Status. Proceedings of ION GNSS 2005. Long Beach, CA,13-16 September,1046-1057,2005.
    [89]葛茂荣.(1995).GPS卫星精密定轨理论及软件研制.(博士论文).大地测量学与测量工程.武汉,武汉测绘科技大学,1995.
    [90]武汉测绘科技大学测量平差教研室(1996).测量平差(第三版).测绘出版社,1996.
    [91]魏子卿,葛茂荣.(1998).GPS相对定位的数学模型.北京:测绘出版社,1998.
    [92]刘大杰,陶本藻.(2000).实用测量数据处理方法.测绘出版社,2000.
    [93]李征航,黄劲松.(2005).GPS测量与数据处理.武汉大学出版社,2005.
    [94]吴北平(2003).GPS网络RTK定位原理与数学模型研究.地球探测与信息技术.武汉,中国地质大学.工学博士:88.
    [95]伍岳(2005).第二代导航卫星系统多频数据处理理论及应用.大地测量学与测量工程.武汉,武汉大学.工学博士:131.
    [96]唐卫明(2006).大范围长距离GNSS网络RTK技术研究及软件实现.大地测量学与测量工程.武汉,武汉大学.工学博士:164.
    [97]杨元喜(2006).自适应动态导航定位.北京:测绘出版社,2006。
    [98]任玉杰(2007).数值分析及其MATLAB实现.高等教育出版社,2007.
    [99]唐卫明,刘经南,刘晖,白清波.一种GNSS网络RTK改进的综合误差内插方法.武汉大学学报:信息科学版,2007.32(12):1156-1159.
    [100]李成钢(2007).网络GPS/VRS系统高精度差分改正信息生成与发布研究.大地测量学与测量工程.成都,西南交通大学.工学博士:184.
    [101]周乐韬(2007).连续运行参考站网络实时动态定位理论、算法和系统实现.大地测量学与测量工程.成都,西南交通大学.工学博士:223.
    [102]黄丁发,李成钢,吴耀强,吕弋培,周乐韬,陈维锋,廖华,熊永良,刘经南.(2007)GPS/VRS实时网络改正数生成算法研究.测绘学报,36(3):256-261:239,2007.
    [103]邱蕾(2009)GNSS网络RTK的定位算法及应用研究.大地测量学与测量工程.武汉,武汉大学.工学博士:151.
    [104]刘西风,袁运斌,霍星亮,李白申,李薇.(2010).电离层二阶项延迟对GPS定位影响的分析模型与方法.中国科学,55(12):1162-1167.
    [105]GLONASS Current Status. http://www.glonass-ianc.rsa.ru. Access on 4th Jan,2010.
    [106]Trimble, Trimble-VRS, Jan.21,2010, http://www.trimble.com/vrs.shtml.
    [107]Leica Geosystems. (2005). "White Paper:GPS SpiderNET-Take it to the MAX." from http://www.leica-geosystems.com.
    [108]GNSS Data Center. http://igs.bkg.bund.de
    [109]Russia to launch 7 new navigation satellites in 2010:Putin. April,6th,2010. http://www.spacedaily.com
    [110]GLONASS-M Satellite Launch Highlights Ambitious Promotion of Russia's Revitalized GNSS.2 Sep.2010. http://www.insidegnss.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700