固定床反应器中甲醇制丙烯过程的实验和模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇制丙烯(Methanol to Propylene,MTP)技术相当于煤或天然气制丙烯,是最有希望以煤(或天然气)替代石油的能源化工新工艺。本论文围绕基于ZSM-5催化剂的固定床MTP工艺的条件优选和过程强化展开了深入研究。鉴于目前MTP固定床工艺大多采用烯烃循环的方法增加丙烯收率,论文研究了甲醇与烯烃的耦合反应,并首次对带有烯烃循环和甲醇分段进料的多段MTP过程进行了实验研究,针对工业粒度催化剂中的内扩散影响,提出了适合于MTP过程的整体式催化剂和反应器。
     论文主要研究内容如下:
     首先进行了甲醇单独反应的实验研究。考察了反应温度、甲醇空时、甲醇分压、醇水比等反应条件对MTP反应的影响。结果表明,升高温度、增大空时或增大甲醇分压,甲醇转化率和丙烯选择性明显增加,但副产物烷烃和芳烃的选择性也随之增加;水含量增加有利于丙烯的生成,但降低甲醇的转化率。
     其次,进行了甲醇与烯烃共反应的实验研究。甲醇和丁烯或戊烯的耦合反应规律相似,温度的升高有利于提高甲醇转化率和C2-C4烯烃选择性,并减少C5-C7烯烃和副产物烷烃和芳烃的生成。较低的甲醇空时可有效减少副产物烷烃和芳烃的生成并提高丙烯/乙烯比。与甲醇单独反应相比,丁烯或戊烯的加入可以明显减少副产物烷烃和芳烃的生成。
     第三,进行了三段甲醇制丙烯过程的实验研究。甲醇制丙烯催化剂使用满650小时后,甲醇转化率仍然保持98%以上,催化剂再生周期达到600小时,三段模拟反应的丙烯选择性均超过75%,说明所设计的工艺条件和选配的催化剂满足工业MTP过程要求。
     第四,建立了单颗粒催化剂上的MTP反应-扩散模型。采用工业粒度ZSM-5催化剂在内循环无梯度反应器中进行了宏观反应速率实验,内扩散效率因子的模型计算值与实验值吻合良好,所建立的反应-扩散模型适用于后续MTP反应器设计和工业计算。
     第五,对多段绝热固定床反应器进行了模拟研究,采用一维非均相反应器模型计算了反应器进口温度、甲醇空速、进料组成等主要操作条件对反应器性能的影响,揭示了反应器内甲醇转化率、床层温度和烃类产物分布的规律,为MTP反应器的工业放大、操作调优和设计优化提供了理论依据。
     第六、对蜂窝状规整结构催化剂及反应器进行了模拟研究,建立的二维反应器模型包括气相流体的质量传递和热量传递、催化剂内部的扩散和反应和气固两相界面的传递。计算了催化剂结构对甲醇转化率、丙烯选择性、热点温度和副产物生成的影响,提出规整结构反应器的设计方法,与催化剂散堆的传统固定床反应器相比,规整结构反应器在MTP过程中具有明显优越性。同样甲醇转化率下,催化剂可节省80%,丙烯选择性可提高7%。
Methanol to propylene (MTP) technology, which enables thetransformation of coal or natural gas to propylene via methanolsynthesis, is an alternative route to produce petrochemicals and gasolinefrom coal other than crude oil with great potential. The operatingcondition and process intensification of MTP process in a fixed bedreactor over ZSM-5catalysts have been investigated in this work. In atypical MTP process, several olefin-containing streams are sent back tothe main synthesis loop as the additional propylene sources. Therefore,the coupled reaction of C4/C5olefin with methanol, and the multi-stageMTP process with olefins co-feeding were studied in a fixed bed reactor.Considering the intra-particle mass transfer restriction in industrialcatalyst pellets, a monolith catalyst and reactor has been proposed andmodelled for the MTP process.
     The main contents and results in this work are as follows:
     First of all, effects of operational conditions on methanol conversionto propylene were investigated in an isothermal fixed bed reactor, suchas reaction temperature, space time, methanol partial pressure andwater/methanol molar ratio. The results indicated that methanolconversion and propylene selectivity increased with increase in reactiontemperature, the methanol space time or methanol partial pressure andso did selectivities of alkanes and aromatics. Increasing water content inthe feed mixture is conducive to forming propylene, but harmful to themethanol conversion.
     Secondly, the coupled reaction of butene and pentene with methanolhave been investigated, respectively. Both two co-reaction systemsobtained similar results that increasing reaction temperature increasesmethanol conversion and light olefins selectivity, but decreases the formation of C5-C7olefins,alkans and aromatics. The formation ofalkanes and aromatics is inhibited and propylene/ethylene ratioenhanced by lower methanol space time. Compared with the reaction ofmethanol alone, co-feeding butene or pentene with methanol resulted inmuch less alkanes and aromatics. The selectivity of propylene increaseswith increasing methanol/olefin molar ratio.
     Thirdly, the three-stage methanol to propylene reaction process hasbeen simulated experimentally based on a high silicon ZSM-5catalyst.The catalyst life time was long up to650hours, and the selectivity ofpropylene was above75%in all three stages.
     Fourthly, a reaction-diffusion model for MTP reaction system hasbeen proposed and validated by comparing with the experimental resultsobtained in a berty type reactor. The calculated intraparticle diffusionefficiency factors are in good agreement with the experimental results,which indicates that the proposed model is appropriated for MTPreaction system and qualified for further reactor design and industrialsimulation.
     Fifthly, a multi-stage adiabatic fixed-bed reactor has been simulatedby a one-dimensional heterogeneous reactor model. The effects ofreactor inlet temperature, methanol space velocity and feed compositionon methanol conversion, reactor temperature and product distributionwere calculated and analyzed, to provide a theoretical basis for furtherscale-up, optimization and intensification of MTP process.
     Finally, a monolith reactor has been proposed for MTP reaction andcalculated based on a two-dimensional adiabatic heterogeneous reactormodel including the interactions of mass and heat transfer and chemicalreactions between the gas and catalyst phases and inside the catalystphase. Concentration and temperature profiles in both radial and axialdirection were calculated with special focus to influence of monolithchannel geometries on methanol conversion, propylene and by-productselectivity. Hints for monolithic catalyst design were derived. Thecalculation results showed that the monolith catalyst intensifies thereactor efficiency significantly. Compared with the randomly packed catalyst, for a complete methanol conversion, the monolithic catalystamount is80%less than the randomly packed reactor, and propyleneselectivity is increased by7%.
引文
[1] C. Week,世界石化市场发展趋势,中外能源,2010,15:112.
    [2] T. Wurzel, MTP-The on-purpose propylene technology for a changing feedstockenvironment,19th World Petroleum Congress, Spain,2008.
    [3]周颖霏,钱伯章,中国石化产品市场现状和预测,化工科技市场,2010,33(5):1-6.
    [4]陈乐怡,世界丙烯工业进展与展望,中外能源,2009,14(3):66-71.
    [5] J. M. Houdek and J. Andersen, ON-PURPOSE Propylene--Technology Developments,the ARTC8th Annual Meeting,2005.
    [6] F. L. Bleken, S. Chavan, U. Olsbye et al., Conversion of methanol into light olefins overZSM-5zeolite: Strategy to enhance propene selectivity, Applied Catalysis A: General,(in press).
    [7] D. Chen, K. Moljord and A. Holmen, A methanol to olefins review: Diffusion, cokeformation and deactivation on SAPO type catalysts, Microporous and MesoporousMaterials,2012,164(0):239-250.
    [8] C. D. Chang, MTG Revisited, Studies in Surface Science and Catalysis,1991,393-404.
    [9] C. D. Chang, Methanol Conversion to Light Olefins, Catalysis Reviews,1984,26(3-4):323-345.
    [10] M. St cker, Methanol-to-Hydrocarbons: Catalytic Materials and Their Behavior,Microporous Mesoporous Mater.,1999,29(1-2):3-48.
    [11] H.-G. Jang, H.-K. Min, J. K. Lee et al., SAPO-34and ZSM-5nanocrystals’ size effectson their catalysis of methanol-to-olefin reactions, Applied Catalysis A: General,2012,437–438(1):120-130.
    [12]曾昭槐,择形催化,烃加工出版社,北京,1994.
    [13]吴恩源,李全芝, FTIR研究不同硅铝比HZSM-5沸石的酸性质,高等学校化学学报,1991,12(4):436-440.
    [14]王志彦,李金来,不同硅铝比HZSM-5分子筛催化剂上甲醇制丙烯反应催化性能,化学反应工程与工艺,2008,24(5):440-444.
    [15] J. Liu, C. Zhang, Z. Shen et al., Methanol to propylene: Effect of phosphorus on a highsilica HZSM-5catalyst, Catalysis Communications,2009,10(11):1506-1509.
    [16]温鹏宇,梅长松,刘红星等, ZSM-5硅铝比对甲醇制丙烯反应产物的影响,化学反应工程与工艺,2007,23(5):385-390.
    [17] W. J. H. Dehertog and G. F. Froment, Production of light alkenes from methanol onZSM-5catalysts, Applied Catalysis,1991,71(1):153-165.
    [18]张飞,姜健准,张明森等,甲醇制低碳烯烃催化剂的制备与改性,石油化工,2006,35(10):919-923.
    [19]崔飞,张璐璐,李建青等,改性HZSM-5催化剂用于MTP反应的研究,天然气化工,2008,3313-16.
    [20]张建军,周钰明,杨抗震等, W-ZSM-5催化剂C4烯烃裂解制丙烯催化性能研究,分子催化,2008,22(3):236-241.
    [21] B. Valle, A. Alonso, A. Atutxa et al., Effect of nickel incorporation on the acidity andstability of HZSM-5zeolite in the MTO process, Catalysis Today,2005,106(1–4):118-122.
    [22] T. S. Zhao, T. Takemoto and N. Tsubaki, Direct synthesis of propylene and light olefinsfrom dimethyl ether catalyzed by modified H-ZSM-5, Catalysis Communications,2006,7(9):647-650.
    [23] M. Kaarsholm, F. Joensen, J. Nerlov et al., Phosphorous modified ZSM-5: Deactivationand product distribution for MTO, Chemical Engineering Science,2007,62(18–20):5527-5532.
    [24] S. M. Abubakar, D. M. Marcus, J. C. Lee et al., Structural and Mechanistic Investigationof a Phosphate-Modified HZSM-5Catalyst for Methanol Conversion, Langmuir,2006,22(10):4846-4852.
    [25] B. Valle, A. G. Gayubo, A. Alonso et al., Hydrothermally stable HZSM-5zeolitecatalysts for the transformation of crude bio-oil into hydrocarbons, Applied Catalysis, B:Environmental,2010,100(1-2):318-327.
    [26]王清遐,蔡光宇,周春丽,甲醇制丙烯催化剂的水热稳定性,天然气化工,1989,5:15-18.
    [27] O. D. Mante, F. A. Agblevor, S. T. Oyama et al., The effect of hydrothermal treatment ofFCC catalysts and ZSM-5additives in catalytic conversion of biomass, AppliedCatalysis A: General,2012,(0).
    [28]梅长松,谢在库,温鹏宇等,甲醇转化制丙烯的高稳定性分子筛催化剂及其制备方法[P].中国专利:10127928lA,2008-10-8.
    [29]解红娟,王军威,冯月兰等,水热处理Zn/HZSM-5催化剂对丙烷芳构化反应的影响,分子催化,2000,14(4):289-293.
    [30] C. S. Triantafillidis, A. G. Vlessidis, L. Nalbandian et al., Effect of the degree and typeof the dealumination method on the structural, compositional and acidic characteristicsof H-ZSM-5zeolites, Microporous and Mesoporous Materials,2001,47(2–3):369-388.
    [31]杨抗震,周饪明,张一卫等,水蒸气处理对P-ZSM-5催化性能的影响,分子催化,2007,21(3):220-223.
    [32]吴文章,郭文瑶,肖文德等,甲醇制丙烯反应的热力学研究,石油化工,2011,40(5):499-505.
    [33]齐国祯,谢在库,钟思青等,甲醇制烯烃(MTO)反应热力学研究,石油与天然气化工,2005,34(5):349-353.
    [34] S. M. Alwahabi and G. F. Froment, Conceptual Reactor Design for theMethanol-to-Olefins Process on SAPO-34, Industrial&Engineering Chemistry Research,2004,43(17):5112-5122.
    [35] C. Mei, P. Wen, Z. Liu et al., Selective Production of Propylene from Methanol:Mesoporosity Development in High Silica HZSM-5, Jounal of Catalysis,2008,258(1):243-249.
    [36] O. Dewaele, V. L. Geers, G. F. Froment et al., The conversion of methanol to olefins: atransient kinetic study, Chemical Engineering Science,1999,54(20):4385-4395.
    [37] F. J. Keil, Methanol-to-hydrocarbons: process technology, Microporous and MesoporousMaterials,1999,29(1-2):49-66.
    [38]蔡光宇,王清遐,杨永和等,甲醇在高硅沸石上转化为低碳烯烃的研究:反应工艺参数及放大因素影响的考察,催化学报,1988,9(2):145-151.
    [39] H. Schoenfelder, J. Hinderer, J. Werther et al., Methanol to olefins-prediction of theperformance of a circulating fluidized-bed reactor on the basis of kinetic experiments ina fixed-bed reactor, Chemical Engineering Science,1994,49(24B):5377-5390.
    [40]宋宝梅,张久顺,吴治国等,甲醇转化制烯烃反应规律的研究,石油炼制与化工,2006,37(11):15-19.
    [41]梅.温鹏宇,刘红星等,甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响,化学反应工程与工艺,2007,23(6):481-486.
    [42] K. P. Moller, W. Bohringer, A. E. Schnitzler et al., The use of a jet loop reactor to studythe effect of crystal size and the co-feeding of olefins and water on the conversion ofmethanol over HZSM-5, Microporous and Mesoporous Materials,1999,29(1-2):127-144.
    [43] C.D.Chang, Hydrocarbons from methanol. chemical industries. New Jersey: DEKKER,1983.
    [44] A. s. T. Aguayo, P. Casta o, D. Mier et al., Effect of Cofeeding Butane with Methanolon the Deactivation by Coke of a HZSM-5Zeolite Catalyst, Industrial&EngineeringChemistry Research,2011,50(17):9980-9988.
    [45] A. G. Gayubo, A. T. Aguayo, M. Olazar et al., Kinetics of the irreversible deactivation ofthe HZSM-5catalyst in the MTO process, Chemical Engineering Science,2003,58(23-24):5239-5249.
    [46] C. D. Chang and A. J. Silvestri, The conversion of methanol and other O-compounds tohydrocarbons over zeolite catalysts, Journal of Catalysis,1977,47(2):249-259.
    [47] T. R. Forester and R. F. Howe, In situ FTIR studies of methanol and dimethyl ether inZSM-5, Journal of the American Chemical Society,1987,109(17):5076-5082.
    [48] D. K. Murray, J. W. Chang and J. F. Haw, Conversion of methyl halides to hydrocarbonson basic zeolites: a discovery by in situ NMR, Journal of the American Chemical Society,1993,115(11):4732-4741.
    [49] W. Wang, A. Buchholz, M. Seiler et al., Evidence for an Initiation of theMethanol-to-Olefin Process by Reactive Surface Methoxy Groups on Acidic ZeoliteCatalysts, Journal of the American Chemical Society,2003,125(49):15260-15267.
    [50] W. Wang, Y. Jiang and M. Hunger, Mechanistic investigations of the methanol-to-olefin(MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy,Catalysis Today,2006,113(1–2):102-114.
    [51] Y. Jiang, M. Hunger and W. Wang, On the Reactivity of Surface Methoxy Species inAcidic Zeolites, Journal of the American Chemical Society,2006,128(35):11679-11692.
    [52] M. Seiler, W. Wang and M. Hunger, Local Structure of Framework Aluminum in ZeoliteH ZSM-5during Conversion of Methanol Investigated by In Situ NMR Spectroscopy,The Journal of Physical Chemistry B,2001,105(34):8143-8148.
    [53] J. Nováková, L. Kubelková and Z. Dolej ek, Primary reaction steps in themethanol-to-olefin transformation on zeolites, Journal of Catalysis,1987,108(1):208-213.
    [54] L. Kubelková, J. Nováková and K. Nedomová, Reactivity of surface species on zeolitesin methanol conversion, Journal of Catalysis,1990,124(2):441-450.
    [55] G. J. Hutchings and R. Hunter, Hydrocarbon formation from methanol and dimethyl ether:a review of the experimental observations concerning the mechanism of formation of the primary products, Catalysis Today,1990,6(3):279-306.
    [56]D. Chen, A. Gr(?)nvold, K. Moljord et al., Methanol Conversion to Light Olefins over SAPO-34:Reaction Network and Deactivation Kinetics, Industrial&Engineering Chemistry Research,2006,46(12):4116-4123.
    [57]T.-Y. Park and G. F. Froment, Analysis of Fundamental Reaction Rates in the Methanol-to-Olefins Process on ZSM-5as a Basis for Reactor Design and Operation, Industrial&Engineering Chemistry Research,2004,43(3):682-689.
    [58]C. D. Chang and C. T. W. Chu, Carbene intermediates in methanol conversion to hydrocarbons reply to van Hooff, Journal of Catalysis,1983,79(1):244-245.
    [59]C. D. Chang, A kinetic model for methanol conversion to hydrocarbons, Chemical Engineering Science,1980,35(3):619-622.
    [60]E. G. Derouane, J. B. Nagy, P. Dejaifve et al., Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite, Journal of Catalysis,1978,53(1):40-55.
    [61]C. D. Chang, S. D. Hellring and J. A. Pearson, On the existence and role of free radicals in methanol conversion to hydrocarbons over HZSM-5:I. Inhibition by NO, Journal of Catalysis,1989,115(1):282-285.
    [62]D. Lesthaeghe, V. Van Speybroeck, G. B. Marin et al., The Rise and Fall of Direct Mechanisms in Methanol-to-Olefin Catalysis:An Overview of Theoretical Contributions, Industrial&Engineering Chemistry Research,2007,46(26):8832-8838.
    [63]I. M. Dahl and S. Kolboe, On the reaction mechanism for propene formation in the MTO reaction over SAPO-34, Catalysis Letters,1993,20(3-4):329-336.
    [64]I. M. Dahl and S. Kolboe, On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34:I. Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol, Journal of Catalysis,1994,149(2):458-464.
    [65]I. M. Dahl and S. Kolboe, On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34:2. Isotopic Labeling Studies of the Co-reaction of Propene and Methanol, Journal of Catalysis,1996,161(1):304-309.
    [66]W. Song, J. F. Haw, J. B. Nicholas et al., Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34, Journal of the American Chemical Society,2000,122(43):10726-10727.
    [67]W. Song, J. B. Nicholas and J. F. Haw, A Persistent Carbenium Ion on the Methanol-to-Olefin Catalyst HSAPO-34:Acetone Shows the Way, The Journal of Physical Chemistry B,2001,105(19):4317-4323.
    [68]W. Song, H. Fu and J. F. Haw, Journal of the American Chemical Society,2001,1234749.
    [69]W. Song, J. B. Nicholas, A. Sassi et al., Synthesis of the Heptamethylbenzenium Cation in Zeolite-[3:NMR and Theory, Catalysis Letters,2002,81(1):49-53.
    [70]M. Bj(?)rgen, F. Bonino, S. Kolboe et al., Spectroscopic Evidence for a Persistent Benzenium Cation in Zeolite H-Beta, Journal of the American Chemical Society,2003,125(51):15863-15868.
    [71]M. Bj(?)rgen, U. Olsbye, D. Petersen et al., The methanol-to-hydrocarbons reaction:insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactionsover zeolite H-beta, Journal of Catalysis,2004,221(1):1-10.
    [72] P. W. Goguen, T. Xu, D. H. Barich et al., Pulse-Quench Catalytic Reactor StudiesReveal a Carbon-Pool Mechanism in Methanol-to-Gasoline Chemistry on ZeoliteHZSM-5, Journal of the American Chemical Society,1998,120(11):2650-2651.
    [73] T. Xu, D. H. Barich, P. W. Goguen et al., Synthesis of a Benzenium Ion in a Zeolite withUse of a Catalytic Flow Reactor, Journal of the American Chemical Society,1998,120(16):4025-4026.
    [74]. Mikkelsen and S. Kolboe, The conversion of methanol to hydrocarbons over zeoliteH-beta, Microporous and Mesoporous Materials,1999,29(1–2):173-184.
    [75] Y. T. Chua, P. C. Stair, J. B. Nicholas et al., UV Raman Spectrum of1,3-Dimethylcyclopentenyl Cation Adsorbed in Zeolite H-MFI, Journal of the AmericanChemical Society,2003,125(4):866-867.
    [76] M. Bj rgen, S. Svelle, F. Joensen et al., Conversion of methanol to hydrocarbons overzeolite H-ZSM-5: On the origin of the olefinic species, Journal of Catalysis,2007,249(2):195-207.
    [77] W. Song, D. M. Marcus, H. Fu et al., An Oft-Studied Reaction That May Never HavetBheee nS:o lDidi reAcct idCsa tHalZytSicM C-5o novre rHsiSoAn PoOf-M34e,t hJaonuornl aolr oDf imtheet hAylm Eetrhicearn t oC Hheymdriocacal rSbooncise toyn,2002,124(15):3844-3845.
    [78] J. F. Haw, W. Song, D. M. Marcus et al., The Mechanism of Methanol to HydrocarbonCatalysis, Accounts of Chemical Research,2003,36(5):317-326.
    [79] J. F. Haw, D. M. Marcus and P. W. Kletnieks, Comments on “Effect of organicimpurities on the hydrocarbon formation via the decomposition of surface methoxygroups on acidic zeolite catalysts” by Y. Jiang, W. Wang, V.R.R. Marthala, J. Huang, B.Sulikowski, M. Hunger, Journal of Catalysis,2006,244(1):130-133.
    [80] Y. Jiang, W. Wang, V. R. Reddy Marthala et al., Effect of organic impurities on thehydrocarbon formation via the decomposition of surface methoxy groups on acidiczeolite catalysts, Journal of Catalysis,2006,238(1):21-27.
    [81] N. Y. Chen and W. J. Reagan, Evidence of autocatalysis in methanol to hydrocarbonreactions over zeolite catalysts, Journal of Catalysis,1979,59(1):123-129.
    [82] C. T. W. Chu and C. D. Chang, Methanol conversion to olefins over ZSM-5: II. Olefindistribution, Journal of Catalysis,1984,86(2):297-300.
    [83] D. Mier, A. T. Aguayo, A. G. Gayubo et al., Catalyst discrimination for olefinproduction by coupled methanol/n-butane cracking, Applied Catalysis A: General,2010,383(1-2):202-210.
    [84] R. M. Dessau, On the H-ZSM-5catalyzed formation of ethylene from methanol orhigher olefins, Journal of Catalysis,1986,99(1):111-116.
    [85] M. M. Wu and W. W. Kaeding, Conversion of methanol to hydrocarbons: II. Reactionpaths for olefin formation over HZSM-5zeolite catalyst, Journal of Catalysis,1984,88(2):478-489.
    [86] T. Behrsing, T. Mole, P. Smart et al., Homologation of olefins by methanol over ZSM-5zeolite, Journal of Catalysis,1986,102(1):151-159.
    [87] W. W. Kaeding and S. A. Butter, Production of chemicals from methanol: I. Lowmolecular weight olefins, Journal of Catalysis,1980,61(1):155-164.
    [88] S. Svelle, P. O. R nning and S. Kolboe, Kinetic studies of zeolite-catalyzed methylationreactions:1. Coreaction of [12C]ethene and [13C]methanol, Journal of Catalysis,2004,224(1):115-123.
    [89] S. Svelle, P. O. R nning, U. Olsbye et al., Kinetic studies of zeolite-catalyzedmethylation reactions. Part2. Co-reaction of [12C]propene or [12C]n-butene and[13C]methanol, Journal of Catalysis,2005,234(2):385-400.
    [90] Z.-M. Cui, Q. Liu, Z. Ma et al., Direct observation of olefin homologations on zeoliteZSM-22and its implications to methanol to olefin conversion, Journal of Catalysis,2008,258(1):83-86.
    [91] W. O. Haag, R. M. Lago and P. G. Rodewald, Aromatics, light olefins and gasoline frommethanol: Mechanistic pathways with ZSM-5zeolite catalyst, Journal of MolecularCatalysis,1982,17(2–3)IMnteedrimumed-i ataensd G oLvaerrg:161-169.
    [92] S. Svelle, U. Olsbye, F. Joensen et al., Conversion of Methanol to Alkenes overnes-Pthoere E tAhecnidei/cP roZpeeonleit ePsr:o dSuctet rSice leMctaivniitpyu, laTthioen J ooufr nathl eo f RPehaycstiicoanlChemistry C,2007,111(49):17981-17984.
    [93] K. G. Wilshier, P. Smart, R. Western et al., Oligomerization of propene over H-ZSM-5zeolite, Applied Catalysis,1987,31(2):339-359.
    [94] S. A. Tabak, F. J. Krambeck and W. E. Garwood, Conversion of propylene and butyleneover ZSM-5catalyst, AIChE Journal,1986,32(9):1526-1531.
    [95] R. L. Espinoza, Oligomerization vs. methylation of propene in the conversion ofdimethyl ether (or methanol) to hydrocarbons, Industrial&Engineering ChemistryProduct Research and Development,1984,23(3):449-452.
    [96] R. L. Espinoza, C. M. Stander and W. G. B. Mandersloot, Catalytic conversion ofmethanol to hydrocarbons over amorphous or zeolitic silica-alumina, Applied Catalysis,1983,6(1):11-26.
    [97] T. Mole, Isotopic and Mechanistic Studies of Methanol Conversion, Studies in SurfaceScience and Catalysis,1988,145-156.
    [98] W. Wu, W. Guo, W. Xiao et al., Dominant Reaction Pathway for Methanol Conversionto Propene over High Silicon H-ZSM-5, Chemical Engineering Science,2011,66(20):4722-4732.
    [99] P. L. Benito, A. G. Gayubo, A. T. Aguayo et al., Deposition and Characteristics of Cokeover a H-ZSM5Zeolite-Based Catalyst in the MTG Process, Industrial&EngineeringChemistry Research,1996,35(11):3991-3998.
    [100]J. Li, G. Xiong, Z. Feng et al., Coke formation during the methanol conversion to olefinsin zeolites studied by UV Raman spectroscopy, Microporous and Mesoporous Materials,2000,39(1–2):275-280.
    [101]温鹏宇,梅长松,刘红星等,甲醇制丙烯过程中ZSM-5催化剂的失活行为,石油学报(石油加工),2008,24(4):446-450.
    [102]T. Sano, T. Murakami, K. Suzuki et al., Improvement of catalyst stability of ZSM-5zeolite containing calcium by modification with CaCO3, Applied Catalysis,1987,33(1):209-217.
    [103]S. H. Zhang, Z. X. Gao, S. Y. Liu et al., Effects of Aromatics on the Stability andProduct Distribution of the Methanol to Olefin Process, Chemical EngineeringTechnology,2011,34(10):1700-1705.
    [104]A. N. R. Bos, P. J. J. Tromp and H. N. Akse, Conversion of Methanol to Lower Olefins.Kinetic Modeling, Reactor Simulation, and Selection, Industrial&EngineeringChemistry Research,1995,34(11):3808-3816.
    [105]A. G. Gayubo, A. T. Aguayo, A. E. Sanchez del Campo et al., Kinetic Modeling ofMethanol Transformation into Olefins on a SAPO-34Catalyst, Industrial&EngineeringChemistry Research,2000,39(2):292-300.
    [106]D. Chen, A. Gronvold, K. Moljord et al., Methanol Conversion to Light Olefins overSAPO-34: Reaction Network and Deactivation Kinetics, Industrial&EngineeringChemistry Research,2007,46(12):4116-4123.
    [107]T. Y. Park and G. F. Froment, Kinetic Modeling of the Methanol to Olefins Process.1.Model Formulation, Industrial&Engineering Chemistry Research,2001,40(20):4172-4186.
    [108]T.-Y. Park and G. F. Froment, Kinetic modeling of the methanol to olefins process.2.Experimental results, model discrimination, and parameter estimation, Industrial&Engineering Chemistry Research,2001,40(20):4187-4196.
    [109]R. Mihail, S. Straja, G. Maria et al., Kinetic model for methanol conversion to olefins,Industrial&Engineering Chemistry Process Design and Development,1983,22(3):532-538.
    [110]R. Mihail, S. Straja, G. Maria et al.,"Kinetic model for methanol conversion to olefins"with respect to methane formation at low conversion. Reply to comments, Industrial&Engineering Chemistry Research,1987,26(3):637-638.
    [111]U. Sedran, A. Mahay and H. I. de Lasa, Modelling methanol conversion to hydrocarbons:Alternative kinetic models, The Chemical Engineering Journal,1990,45(1):33-42.
    [112]A. G. Gayubo, J. M. Ortega, A. T. Aguayo et al., MTG fluidized bed reactor-regeneratorunit with catalyst circulation: process simulation and operation of an experimental setup,Chemical Engineering Science,2000,55(16):3223-3235.
    [113]A. G. Gayubo, A. T. Aguayo, M. Castilla et al., Role of water in the kinetic modeling ofmethanol transformation into hydrocarbons on HZSM-5zeolite, Chemical EngineeringCommunication,2004,191(7):944-967.
    [114]D. Mier, A. G. Gayubo, A. T. Aguayo et al., Olefin production by cofeeding methanoland n-butane: Kinetic modeling considering the deactivation of HZSM-5zeolite, AIChEJournal,2011,57(10):2841-2853.
    [115]A. T. Aguayo, A. G. Gayubo, J. M. Arandes et al., Contribution to the design of anadiabatic fixed bed reactor for the MTG process under reaction-regeneration cycles, in:Studies in Surface Science and Catalysis,2001,319-326.
    [116]A. T. Aguayo, D. Mier, A. G. Gayubo et al., Kinetics of Methanol Transformation intoHydrocarbons on a HZSM-5Zeolite Catalyst at High Temperature (450500°C),Industrial&Engineering Chemistry Research,2010,49(24):12371-12378.
    [117]M. Kaarsholm, B. Rafii, F. Joensen et al., Kinetic Modeling of Methanol-to-OlefinReaction over ZSM-5in Fluid Bed, Industrial&Engineering Chemistry Research,2010,49(1):29-38.
    [118]P. H. Schipper and F. J. Krambeck, A reactor design simulation with reversible andirreversible catalyst deactivation, Chemical Engineering Science,1986,41(4):1013-1019.
    [119]夏清华,陈国权,王清遐等,甲醇转化制低碳烯烃过程中MgZSM-5催化剂失活动力学研究,燃料化学学报,1992,20(1):10-15.
    [120]A. G. Gayubo, P. L. Benito, A. T. Aguayo et al., Kinetic model of the MTG processtaking into account the catalyst deactivation. Reactor simulation, Chemical EngineeringScience,1996,51(11):3001-3006.
    [121]R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts.London:Oxford-Ely,1975:18-20,37-54,123.
    [122]R. Krishna, Problems and pitfalls in the use of the fick formulation for intraparticlediffusion, Chemical Engineering Science,1993,48(5):845-861.
    [123]E. A. Mason, A. P. Malinauskas and R. B. E. III, Flow and Diffusion of Gases in PorousMedia, The Journal of Chemical Physics,1967,46(8):3199-3216.
    [124]C. Feng and W. E. Stewart, Practical Models for Isothermal Diffusion and Flow ofGases in Porous Solids, Industrial&Engineering Chemistry Fundamentals,1973,12(2):143-147.
    [125]J. W. Veldsink, R. M. J. van Damme, G. F. Versteeg et al., The use of the dusty-gasmodel for the description of mass transport with chemical reaction in porous media, TheChemical Engineering Journal and the Biochemical Engineering Journal,1995,57(2):115-125.
    [126]F. J. Keil, Modelling of phenomena within catalyst particles, Chemical EngineeringScience,1996,51(10):1543-1567.
    [127]M. P. Hollewand and L. F. Gladden, Modelling of diffusion and reaction in porouscatalysts using a random three-dimensional network model, Chemical EngineeringScience,1992,47(7):1761-1770.
    [128]M. P. Hollewand and L. F. Gladden, Representation of porous catalysts using randompore networks, Chemical Engineering Science,1992,47(9–11):2757-2762.
    [129]张宝泉,多孔介质的分维极其在多相催化中的应用.天津大学博士学位论文,1994.
    [130]S. Reyes and K. F. Jensen, Estimation of effective transport coefficients in porous solidsbased on percolation concepts, Chemical Engineering Science,1985,40(9):1723-1734.
    [131]D. Prinz and L. Riekert, Formation of ethene and propene from methanol on zeoliteZSM-5: I. Investigation of Rate and Selectivity in a Batch Reactor, Applied Catalysis,1988,37(0):139-154.
    [132]U. Hammon, M. Kotter and L. Riekert, Formation of ethene and propene from methanolon zeolite ZSM-5: II. Preparation of Finished Catalysts and Operation of a Fixed-BedPilot Plant, Applied Catalysis,1988,37(0):155-174.
    [133]F. J. Keil, J. Hinderer and A. R. Garayhi, Diffusion and reaction in ZSM-5andcomposite catalysts for the methanol-to-olefins process, Catalysis Today,1999,50(3-4):637-650.
    [134]A. G. Süd Chemie and A. G. M.G., Process for preparing lower olefins,2004.
    [135]M. Rothaemel and H. D. Holtmann, Methanol to Propylene MTP-Lurgi's way. ErdolErdgas Kohle,2002,18(5),234-237.
    [136]用于从包含含氧化合物、水蒸气和一种或多种烃的物料流生产C2至C8烯烃的反应器.鲁奇责任有限公司.CN101460329A.
    [137]H. Keompel and W. Liebner, Lurgi's Methanol to Mropylene (MTP) Report on aSuccessful Commercialization, Studies in Surface Science and Catalysis,2007,167(Natural Gas Conversion VIII):261-267.
    [138]王科,李杨,陈鹏,甲醇制丙烯工艺及催化剂技术研究新进展,天然气化工:C1化学与化工,2009,5,63-68.
    [139]姚本镇,徐泽辉,甲醇制丙烯的技术进展及经济分析,石油化工技术与经济,2010,26(2):7-11.
    [140]谭亚南,韩伟,何霖等,甲醇制丙烯研究及工业应用最新进展,化学工业与工程技术,2012,33(1):28-31.
    [141]朱杰,崔宇,陈元君等,甲醇制烯烃过程研究进展,化工学报,2010,61(7):1674-1684.
    [142]H. Zhou, Y. Wang, F. Wei et al., Kinetics of the reactions of the light alkenes overSAPO-34, Applied Catalysis A: General,2008,348(1):135-141.
    [143]李立新,倪进方,李延生,甲醇制烯烃分离技术进展及评述,化工进展,2008,27(9):1332-1335.
    [144]阳永荣,虞贤波,王靖岱等,用于以含氧化合物为原料生产丙烯的卧式移动床反应器. CN101367694,2008.
    [145]阳永荣,虞贤波,王靖岱等,一种使用移动床技术将含氧化合物转化为丙烯的方法.CN101367701A,2008.
    [146]D. G. Vlachos and S. Caratzoulas, The roles of catalysis and reaction engineering inovercoming the energy and the environment crisis, Chemical Engineering Science,2010,65(1):18-29.
    [147]J. A. Moulijn, A. Stankiewicz, J. Grievink et al., Process intensification and processsystems engineering: A friendly symbiosis, Computers and Chemical Engineering,2008,32(1-2):3-11.
    [148]P. Heidebrecht, M. Pfafferodt and K. Sundmacher, Multiscale modelling strategy forstructured catalytic reactors, Chemical Engineering Science,2011,66(19):4389-4402.
    [149]M. T. Kreutzer, F. Kapteijn and J. A. Moulijn, Shouldn't catalysts shape up?: Structuredreactors in general and gas-liquid monolith reactors in particular, Catalysis Today,2006,111(1-2):111-118.
    [150]W. Wang, S. Ji, D. Pan et al., A novel particle/monolithic two-stage catalyst bed reactorand their catalytic performance for oxidative coupling of methane, Fuel ProcessingTechnology,2011,92(3):541-546.
    [151]J. E. Antia and R. Govind, Conversion of Methanol to Gasoline-Range Hydrocarbons ina ZSM-5Coated Monolithic Reactor, Industrial&Engineering Chemistry Research,1995,34(1):140-147.
    [152]H. Schulz, K. Lau and M. Claeys, Kinetic regimes of zeolite deactivation andreanimation, Applied Catalysis A: General,1995,132(1):29-40.
    [153]T. Masuda, T. Asanuma, M. Shouji et al., Methanol to olefins using ZSM-5zeolitecatalyst membrane reactor, Chemical Engineering Science,2003,58(3-6):649-656.
    [154]F. C. Patcas, The methanol-to-olefins conversion over zeolite-coated ceramic foams,Journal of Catalysis,2005,231(1):194-200.
    [155]S. Ivanova, B. Louis, B. Madani et al., ZSM-5Coatings on β-SiC Monoliths: PossibleNew Structured Catalyst for the Methanol-to-Olefins Process, The Journal of PhysicalChemistry C,2007,111(11):4368-4374.
    [156]A. Zamaniyan, Y. Mortazavi, A. A. Khodadadi et al., Tube fitted bulk monolithiccatalyst as novel structured reactor for gas–solid reactions, Applied Catalysis A: General,2010,385(1-2):214-223.
    [157]Y.-J. Lee, Y.-W. Kim, K.-W. Jun et al., Textural Properties and Catalytic Applicationsof ZSM-5Monolith Foam for Methanol Conversion, Catalysis Letters,2009,129(3-4):408-415.
    [158]吴文章,甲醇制丙烯(MTP)反应过程研究,上海:华东理工大学博士论文,2012.
    [159]朱炳辰,化学反应工程.北京:化学工业出版社,1993.
    [160]N. Wakao and J. M. Smith, Diffusion in catalyst pellets, Chemical Engineering Science,1962,17(11):825-834.
    [161]A. Wheeler, Advances in catalysis. Academic Press InC.,1950.
    [162]J. P. G. Kehoe and R. Aris, Communications on the theory of diffusion and reaction—IX. Internal pressure and forced flow for reactions with volume change, ChemicalEngineering Science,1973,28(11):2094-2098.
    [163]陈涛,张国亮,化工传递过程基础,化学工业出版社,2002.
    [164]X. You, A Theoretical Study of Normal Alkane Combustion, Dissertation, University ofSouthern California,2008.
    [165]Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the EffectiveMagnetic Permeability of Multiphase Materials, Journal of Applied Physics,1962,33(10):3125-3131.
    [166]A. Izadbakhsh and F. Khorasheh, Simulation of activity loss of fixed bed catalyticreactor of MTO conversion using percolation theory, Chemical Engineering Science,2011,66(23):6199-6208.
    [167]H. Hu, W. Ying and D. Fang, Mathematical modeling of multi-bed adiabatic reactor forthe Methanol-to-Olefin process, Reaction Kinetics, Mechanisms and Catalysis,2010,101(1):49-61.
    [168]H. Hu, W.-y. Ying and D.-y. Fang, Mathematical simulation on multi-bed adiabaticreactor with indirect heat exchange for MTO reaction, Huadong Ligong Daxue Xuebao,Ziran Kexueban,2010,36(2):180-186.
    [169]E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, Cambridge University Press,United Kingdom,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700