高产海藻糖菌种选育及生产工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖是由二个葡萄糖分子组成的非还原性双糖。由于它具有对生物大分子非特异性的保护作用,从而在食品、医药、生物化学等领域得到了广泛的应用。面包酵母(Saccharomyces cerevisiae)是生产海藻糖的重要菌种。在酵母生长后期或在不良环境的条件下可积累大量海藻糖,但由于是胞内产物,积累量有限,大大影响了产量的提高。本文利用诱变方法筛选出一株高产海藻糖的酵母菌株,并利用加热处理法使酵母海藻糖合成酶系固定化,生产胞外海藻糖,以达到提高产量的目的。研究内容主要包括海藻糖测定方法的研究、高产海藻糖菌株的选育、培养基与培养条件的优化、胞外海藻糖的合成以及海藻糖的提取与精制等。
     本文对海藻糖的测定方法进行了系统的研究。提出了“纸层析-分离洗脱法”、“酶-DNS比色法”定量测定海藻糖的方法,该方法简便、成本低、准确度高。
     通过对酵母菌耐性的研究表明,乙酸耐性和渗透压耐性与海藻糖含量之间有一定的正相关性,具有较高海藻糖含量的菌株可以在高乙酸和高渗透压的生长环境中更好地生存。综合耐性实验和海藻糖积累实验的结果,确定了海藻糖含量高,渗透压和乙酸耐性最强的Y7菌株为本研究出发菌株。实验对出发菌株Y7进行了EMS诱变处理,通过初筛、复筛,从中选育出一株能高产海藻糖同时具有较低海藻糖分解酶活性的菌株L61。与原菌株Y7相比较,对数期比生长速率提高22.7%,酸性海藻糖分解酶活性下降19.2%,中性海藻糖分解酶活性下降26.7%,胞内海藻糖含量提高了57.2%。
     培养条件对海藻糖合成影响较大,本文对影响海藻糖合成的各种因素进行了优化。应用正交设计、Plackett-Burman实验设计和响应曲面分析法确定了最佳的培养基配方,并对反应条件进行了优化研究。在优化条件下,菌株L61摇瓶反应3h,产海藻糖0.82g/L,比初始条件下海藻糖积累量(0.56 g/L)提高了46.4%。
     以摇瓶培养最优条件为基础,进行了摇瓶补料实验。在初糖浓度20g/L的条件下,反应过程中补加底物葡萄糖有利于海藻糖的合成。在糖总量不变的情况下,补料培养的海藻糖合成量比非补料培养增加了50.4%。
     本文首次研究了利用酵母海藻糖合成酶系合成胞外海藻糖的可行性。研究表明,50℃高温处理不仅有利于海藻糖合成酶系活性的发挥,还可使细胞壁受到一定的破坏,从而使海藻糖自由透过胞壁进入反应液,打破了胞壁对海藻糖
    
    接二一激二二一人二.~一~…回.一二~… ~-+。一、上_一二二人二、-.一。二~~.一二二回一二一二一.二~二:一二….二一比二j王立二二二竺
     摘要
     合成的空间限制。研究还发现,选用5%接种量,3%初糖浓度,反应过程中底
     物浓度 1%左右,pH6刀,50’C条件下震荡反应 6h,海藻糖合成量可达不94g/L。
     以摇瓶补料为基础,深入进行了SL罐胞外海藻糖流加合成实验。确定了流
     加合成胞外海藻糖的最适条件,在底物浓度1%,pH6.0,温度50C条件下,发
     酵 6h,可使海藻糖的合成总量达 14.sg/L,比摇瓶反应的海藻糖合成量增加了
     62.2%。同时研究还发现,虽然在反应过程中不断产生海藻糖,但在反应结束时,
     菌体胞内的海藻糖几乎为零,说明菌体的胞壁对海藻糖的出人已无任何障碍,
     菌体只是成为海藻糖合成酶的载体,通过不断地补加底物使海藻糖得以不断合
     成。
     提取是反应过程的最后一道工序,本文对酵母胞内外的海藻糖提取方法进
     行了初步研究。通过超滤、离于交换等步骤提取出高纯度结晶体(纯度为98%人
     经红外吸收光谱和TLC鉴定,证明结晶体为海藻糖。
     利用酵母海藻糖合成酶系合成胞外海藻糖是海藻糖生产方法的一个创新,
     它结合了酶法和酵母提取法的优点,是利用酵母大量生产海藻糖的又一新的尝
     试。
Trehalose is a nonreducing disaccharide with two glucose residues. Because trehalose exhibit protective action against damage of high molecular substances , it achieve widespread application in a variety of fields including foods, pharmaceutics and biochemistry etc . Baker's yeast (Saccharomyces cerevisiae) is a major strain of trehalose production. Trehalose is accumulated at the end of the reproductive stages and under extreme environmental conditions. Because the trehalose is intracellular product, its productivity is limited. This paper examines the breeding of the mutant with high-yielding trehalose and the production of extracellular trehalose via the immobilized trehalose synthase. The main research contents include the methods for trehalose determination, the breeding of trehalose high-producing strain, the optimization of medium and culture conditions, the production of extracellular trehalose and the purification of the intra- and extracellular trehalose.
    The methods for trehalose determination were studied in this paper. The methods of paper chromatography-mottle elution cnromometry and enzyme-DNS colorimetric were defined. These methods were simple, cheap and accuate .
    The results showed that the positive correlation was obtained between trehalose concentration and acetic acid or osmotic tolerant. Through the test, the strain of Y7, which had the highest content of trehalose and strong tolerance to sodium chloride and acetic acid, was defined as a parental strain. In order to enhance the trehalose production, Y7 was used for mutation with EMS. Through primary screening and compound screening, strain L61 with high-yielding trehalose and deep neutral trehalase activity was screened. Comparing with the Y7, the specific growth rate of mutant increased by 22.7%, the activities of neutral and acid trehalase droped by 19.2%and 6.7%, respectively. Under the non-optimized condition, the production of trehalose increased by 57.2% compared with that of parental strain Y7.
    The factors affecting the trehalose production were studied in this paper. The Placket-Burman design method and Respond Surface analysis method were used to optimize the medium and the reaction conditions were optimized too. Under the optimized condition strain L61 could produce 0.82g/L trehalose after reaction for 3 hours by flask- shaking batch culture. The production of trehalose increased by 46.4% compared with that of the initial condition (0.56g/L). An investigation has been carried out of fed batch culture according to the optimum condition of batch culture. The intermittent feeding glucose was helpful to the trehalose production in the condition of 20g/L initial glucose concentration. The trehalose production of the fed batch culture
    
    
    
    
    
    increased by 50.4% compared with that of flask- shaking batch culture.
    In the yeast, the heat shock of 50 癈 can be helpful to the increase of the activity of trehalose synthase, on the other hand it can destroy yeast's cell wall. The intracellular trehalose produced could excreted to the culture medium. Keeping the pH at 6.0, 3% of the initial glucose concentration , 5% of seed volume, 1% of glucose concentration, heat shock at 50 癈 for 6 hours resulted in 8.94g/L trehalose.
    Based on the flask-shaking fed-batch culture, the test of the fed-batch reaction which synthesized the extracellular trehalose was performed with strain L61 in 5-liter bioreactor. The optimized factors were defined. Keeping the pH of the culture broth at 6.0,the initial glucose concentration of l%,the strain could produce 14.5g/L trehalose after reaction at 50 for 6 hours, the production of trehalose increased by 62.2% than that of flask-shaking culture. Meanwhile, the results showed that althougt the trehalose was produced successively , the intracellular trehalose concentration was 0 at the end of the reaction. Trehalose was excreted to culture medium completely. Yeast's cell was only as a carrier of the trehalose synthase. Trehalose could be synthesized successively with the feeding of glucose.
    Extraction
引文
1 戴秀玉,程苹,周坚等.海藻糖的生理功能、分子生物学研究及应用前景[J].微生物学通报,1995,22(2):102~104.
    2 程池.天然生物保存物质——海藻糖的特性和应用[J].食品与发酵工业,1996,1:59—64.
    3 Hottiger, Thomas Boller, Andres Wiemken. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifis[J].FEBS Letters,1987,220(1): 113~115.
    4 聂凌鸿,宁正祥.海藻糖的生物保护作用[J].生命的化学,2001,21(3):206~209.
    5 李滢冰,冯梦醒,徐继祖.海藻糖在灰树花深层发酵中的积累及多糖的提取[J].食品与发酵工业,26(2);11~15.
    6 张树珍.海藻糖的研究进展极其应用前景[J].华南热带农业大学学报,2000,6(3):22~29
    7 Y.M.Newman, S.G.Ring, C.Colaco. The role of trehalose and other carbohydrates in biopreservation[J].Biotechnology and Genetic Engineering Reviews, 1993,11:263~294.
    8 Taga, T.,Senma, M. The crystal and molecular structure of trehalose dihydrate[J].Acta Crystalographica, B28:3258~3260.
    9 Jeffery, G.A.,Nanni,R. The crystal structure of anhydrous trehalose at -150℃ [J].Carbohydrate Research, 1985,137:21~30.
    10 任小青,庄桂,廖劲松.海藻糖的生产与应用研究现状极其开发前景[J] 郑州工程学院学报,2001,22(1):82~85.
    11 李浩明,高蓝.海藻糖在生物制品干燥与保存中的应用研究[J].食品与发酵工业,1994,4:49~51.
    12 于春燕,郎刚华,刘万顺.海藻糖研究进展[J].青岛大学学报,2000,13(2):55~58.
    13 Johan M.Thevelein, Stefan Hohmann. Trehalose synthase: guard to the gate of glycolysis in yeast[J] ? TIBS 20,1995,3~10.
    14 Roser B. Trehalose drying-a novel replacement for freeze drying [J]. Biopharm. , 1991,4(8):47~53.
    15 Colaco C. Food packing and preservation [M]. London: Applied science publishers LED, 1994, 123~139.
    
    
    16 Pierre Gelinas,Gisele Fiset,Anh Leduy etal. Effect of growth conditions and trehalose content on cryotolerance of baber's yeast in frozen doughs[J],Applied and environmental microbiology, 1989,55(10):2435~2459.
    17 Lie T. The natural preserver [J]. Food Manufacture, 1990, 4:23~24.
    18 李群,袁勤生.海藻糖的性质及应用[J].中国生化药物杂志,1995,16(6):231~233.
    19 傅琳林,傅开科.海藻糖的研究现状极其应用前景[J].江西科学,2000,18 (3):182~184.
    20 黄成垠,安国瑞,王庆敏等.海藻糖对医用诊断工具酶活性保护研究[J].微生物学通报,1997,24(6):341~343.
    21 戴秀玉,沈义国,周坚.海藻糖对乳酸菌的抗逆保护研究[J].微生物学通报,2001,28(2).
    22 李浩明,高兰.海藻糖在生物制品干燥与保存中的应用研究[J].食品与发酵工业,1994,4:49~52.
    23 唐传核.海藻糖的开发现状及应用前景[J].中国食品用化学品,1997,3:1~31.
    24 G.M.Gadd, K.Chalmers, R.H.Reed. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae[J]. FEMS Microbiology Letters, 1987,48:249~254.
    25 陈炜,何秉旺.酶法合成海藻糖研究的新进展[J].微生物学通报,1998,25(3):164~166.
    26 Charlemagne-Gilles Hounsa, E.Vincent Brandt, Johan Thevelein. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress[J]. Microbiology, 1998,144:671~680.
    27 Bell,W, Klassen,P., Ohnacker, M. Characterization of the 56-kDa subunit of the yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation[J]. Eur. J Biochem, 1992,209:951~959.
    28 De Virgilio, C., Burchert, N.,Bell,W. Disruption of TPS2,the gene encoding the 100kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity[J]. Eur. J Biochem, 1993,212:315~323.
    29 Vuorio,O.E., Kalkkinen, N., Londesborough,J. Clonong of two related genes encoding the 56-kDa subunits of trehalose synthase from the yeast Saccharornyces cerevisiae. Eur J Biochem , 1993,216:849~861.
    
    
    30 杨波,戴秀玉,周坚.酿酒酵母海藻糖合成酶基因的克隆和在大肠杆菌中的表达[J].遗传学报,2001,28(4):372~378.
    31 陈红漫,祝令香,董志扬.酿酒酵母海藻糖-6-磷酸合成酶基因克隆及植物表达载体的构建[J].微生物学报,2001,41(1):54~58.
    32 Vandercammen, Jean Francois,Henri-Gery Hers. Caracterization of trehalose-6-phosphate synthase trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae[J]. Eur. J. Biochem, 1989,182:613~620.
    33 John Londesborough,Outi Vuorio. Trehalose-6-phosphate synthasedphosphatase complex from baker's yeast: purification of a proteolytically activated form[J]. Journal of General Microbiology, 1991,137:323~330.
    34 John Londesborough, Outi E.Vuorio. Purification of trehalose synthase from baker's yeast [J].Eur. J. Biochem. 1993,216:841~848.
    35 Meinrad Kopp,Hanne Muller, Helmut Holzer. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae[J].The journal of biological chemistry, 1993,268(7):4766~4774.
    36 John Londesborough, Kaija Varimo. Characterization of two trehalases in baker's yeast[J]. Biochem. J., 1984,219:511~518.
    37 John Kim, Parvaneh Alizadeh, Tanya Harding et al. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock:potential commercial applications[J].Applied and Environmental Microbiology, 1996,62(5): 1536~1569.
    38 Fabiana M. de Almeida, Agda K.B. Lucio. Function and regulation of the acid and neutral trehalases of Mucor rouxii[J]. FEMS Microbilolgy Letters, 1997, 155:73~77.
    39 Felix Keller, Maja Schellenberg, Andres Wiemken. Localization of trehalose in vacuoles and of trehalose in the cytosal of yeast (Saccharomyces cerevisiae)[J]. Arch Microbiol, 1982,131:298~301.
    40 John H.Crowe,Anita D.Panek,Lois M.Croew et al.Trehalose transport in yeast cells[J] .Biochemistry international, 1991,24(4):721~730.
    41 Pedro Soares de Araujo, Ana C.Panek, John H.Crowe et al. Trehalose-transporting membrane vesicles from yeasts [J]. Biochemistry international, 1991,24(4):731~737.
    42 Elis C.A.Eleutherio,Pedro S. de Araujo,Anita D.Panek. Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisia[J].Biochimica et Biophysica Acta, 1993,1156:263~266.
    
    
    43 Solomon Nwaka, Bernd Mechler, Helmut Holzer. Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose[J]. FEBS Litters, 1996,386:235~238.
    44 Solomon Nwaka, Bernd Mechler, Monika Destruelle. Phenotypic features of trehalase mutants in Saccharomyces cerevisiae[J]. FEBS Letters, 1995,360:286~290.
    45 Margaret Wemer-washbume, Edward Braun,Gerald C. Johnston. Stationary phase in the yeast Saccharomyces cerevisiae[J]. Microbiological Reviews, 1993,57(2):383~401.
    46 J.C.Slaughter, T.Nomura. Intracellular glycogen and trehalose contents as predictors of yeast viability[J]. Enzyme Microb. Technol., 1992,14:64~67.
    47 Johan M.Thevelein. Regulation of trehalose mobilization in fungi[J]. Microbiological reviews, 1984,48(3):42~59.
    48 Karl Winkler, Iris Kienle,Markus Burgert et al. Metabolic regulation of the trehalose content of vegetative yeast[J]. FEBS LETTERS, 1991,291(2):269~272.
    49 Elisa M. Miguelez, Monica Fernandez. Nitrogen starvation-induced glycogen synthesis depends on the developmental stage of Streptomyces antibioticus mycelium[J]. FEMS Microbiology Letters, 1997,153:57~62.
    50 Anita D.Panek, James R.Mattoon. Regulation of energy metabolism in Saccharomyces cerevisiae[J]. Archives of Biochemistry and Biophysics, 1977,183:306~316.
    51 Akihiro Hino,Kohji Mihara, Kohtaro Nakashima. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts[J]. Applied and Environmental Microbiology, 1990,56(5): 1386~1391.
    52 Sue H.Lillie,John R.Pringle. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation[J]. Journal of Bacteriology, 1980,143 (3): 1384~394.
    53 束强民,陈孝民,颜方贵.面包酵母菌种改良的研究进展[J].食品与发酵工业,1995,1:65~69.
    54 Thomas Hottiger, Thomas Boiler, Andres Wiemken. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts[J]. FEBS Letters, 1987,220(1): 113~115.
    55 Hottiger, Claudio de Virgilio, Michael N.Hall. The role oftrehalose synthesis for the acquisition of thermotolerance in Yeast[J]. Eur. d. Biochem., 1994,219: 187~193.
    
    
    56 Joseph A.Odumeru, Tony D.Amore. Alterations in fatty acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock[J]. Journal of Industrial Microbiology, 1993,11:113~119.
    57 Juan Carlos Arguelles. Heat-shock response in a yeast tpsl mutant deficient in trehalise synthesis[J]. FEBS Letters, 1994,350:266~270.
    58 Thomas Hottiger, Paul Schmutz,Andres Wiemken. Heat-induced accumulation and futile cycling terhalose in Saccharomyces cerevisiae[J].Journal of Bacteriology. 1987,169:5518~5522.
    59 Paul V. Attfield.Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response[J]. FEBS LETTERS, 1987,225(1):259~263.
    60 Beth Elliott, Robert S.Haltiwanger, Bruce Futcher. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae[J]. Genetics, 1996,144:923~933.
    61 Jose J.C.Mansure,Anita D.Panek,Lois M.Crowe. Trehalose inhibits ethanol effects on intact yeast cells and liposomes[J]. Biochimica et Biophysica Acta, 1994,1191:309~316.
    62 Juan Carlos Arguelles. Heat-shock response in a yeast tps 1 mutant deficient in trehalose synthesis[J]. FEBS LETTERS, 1994,350:266~270.
    63 Avigad,G. Accumulation of trehalose and sucrose in relation to the metabolism of α-glucosides in yeasts of defined genotype[J]. Biochim. Biophys. Acta, 1960,40:124~134.
    64 Grba, S.,E.Oura, H.Suomalainen. Formation of trehalose and glycogen in growing baker's yeast[J]. Finn. Chem. Lett. ,1979,61~64.
    65 Jun-ichi Miyazaki,Ken-ichiro Miyagawa. Trehalose accumulation by a Basidiomycotinousyeast, Filobasidium floriforme[J], J. Ferment. Bioeng., 1996,81 (4):315~319.
    66 Amazile B.R.A.Maia. Protection of the intracellular trehalose content by corn and soy flours in alcohol fermentation[J]. Biotechnology Letters, 1993,15(7):715~720.
    67 Kuniho Nakata, Jtmko Hasegawa, Kazuhiko Okamura. Accumulation and role of trehalose in Torulaspora delbrueckii No.3110[J].Biosci. Biotech. Biochem., 1995,59(6):986~989.
    68 J.G.Lewis,R.P. Learmonthh,K.Watson. Induction of heat,freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae[J]. Microbiology, 1995,141:685~694.
    
    
    69 John M.,Ann Hefner Gravink. Trehalose metabolism and leavening ability of baker's yeast grown in the presence of sodium chloride[J]. Journal of Fermentation and Bioeigineering, 1998,86(5):457~460.
    70 J.J.Mansure,R.C.Souza, A.D.Panek. Trehalose metabolism in Saccharomyces cerevisiae during alcoholic fermentation[J]. Biotechnology Letters, 1997,19(12):1201~1203.
    71 Solomon Nwaka, Meinrad Kopp,Markus Burgert. Is thermotolerance of yeast dependent on trehalose accumulation? [J] FEBS LETTERS, 1994,344:225~228.
    72 葛文光,于晓雨,唐传核.海藻糖提取工艺的研究[J].食品科学,1998,19(5):21~24.
    73 Tomoyuki Nishimoto, Masayuki Nakano, Shoji Ikegami et al. Existence of a novel enzyme coverting Maltose into Trehalose [J]. Biosci. Biotech. Biochem., 1995,59(11):2189~2190.
    74 Masaru Kato,Yutaka Miura, Masako Kettoku, Kazutoshi Shindo. Purification and characterization of new trehalose-producing enzymes isolated from the Hyperthermophilic archae,Sulfolobus solfataricus KM1 [J]. Biosci. Biotech. Biochem., 1996,60(3): 546~550.
    75 Masaru Kato,Yutaka Miura, Masako Kettoku, Kazutoshi Shindo. Reaction mechanism of a new glycosyltrehalose-producing enzyme isolated from the hyperthermophilic archaeum, Sulfolobus solfataricus KM1 [J]. Biosci. Biotech. Biochem., 1996,60(5):921~924.
    76 Tetsuya Nakada, Kazuhiko Maruta, Keiji Tsusaki et al.Purification and properties of a novel enzyme, Maltooligosyl trehalose synthase,form Arthrobacter sp. Q36 [J]. Biosci. Biotech. Biochem., 1995,59(12):2210~2214.
    77 Tomoyuki Nishimoto,Masayuki Nakano,Tetsuya Nakada et al. Purification and properties of a novel enzyme,Trehalose synthase,from Pimelobacter sp. R48[J]. Biosci. Biotech. Biochem.,1996,60(4):64~644.
    78 Sawao Murao,Hiroto Nagano,Sei Ogura et al.Enzymatic synthesis of trehalose from Maltose[J].Agric. Biol. Chem., 1985,49(7):2113~2118.
    79 Hirofumi Nakano,Masamitsu Moriwaki,Tsutomu Washino et al. Purification and properties of a trehalose from a Green Alga,Lobosphaera sp[J]. Biosci. Biotech. Biochem., 1994,58(8): 1430~1434.
    80 Masahiro Yoshida, Nobuyuki Nakamura, Koki Horikoshi. Production of trehalose by a dual enzyme system of immobilized maltose phosphorylase and trehalose phosphorylase[J].Enzyme and Microbial Technology, 1998,22:71~75.
    81 Kazuhiko Maruta, Tetsuya Nakada, Michio Kubota et al. Formation of trehalose
    
    from Maltooligosaccharides by a novel Enzymatic system[J]. Biosci. Biotech. Biochent, 1995,59(10): 1829~1834.
    82 Tsuchida, Takayasu. Method of producing trehalose by microorganisms which can produce trehalose with sucrose or maltose as mine carbon source[U]. United States Patent 5484714,1996.
    83 Tomoyuki Nishimoto, Tetsuya Nakada, Tetsuya Nakada et al. Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus [J]. Biosci. Biotech. Biochem. ,1996,60(5):835~839.
    84 毛忠贵,朱利丹,徐万里等.由淀粉生物合成海藻糖途径的初步验证和环境条件影响的研究[J].食品与发酵工业,1997,23(6):20~23.
    85 张红缨,刘洋,张今.海藻糖的生物合成和相关酶的特性[J].微生物学通报,1998,25(4):236~238.
    86 朱利丹,毛忠贵.由淀粉酶法生产海藻糖的研究[J].第二届全国发酵工程学术讨论会论文集,1998,269~276.
    87 Kiroaki Horitsu, Yhoshiharu Eto. A simple method for trehalose production by Saccharomyces cerevisiae[J].J. Brew. Soc. Japan.,1997,92(10): 769~772.
    88 Julio C.Ferreira, Vania M.F. Paschoalin,Anita D.Panek. Comparison of three different methods for trehalose determination in yeast extracts[J].Food Chemistry,60(2):251~254.
    89 Iris Kienle,Markus Burgert,Helmut Holzer. Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae[J]. Yeast, 1993,9:607~611.
    90 P.S.Araujo,Ana C.Panek, R. Fcrrcira. Detcrmination of trehalose in biological samples by a simple and stable trehalase preparntion[J]. Analytical Biochemistry, 1989,176:432~436.
    91 Ulrik Schulze,Michael Elleskov Larsen,John Villadsen. Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae[J]. Analytical biochemistry, 1995,228:143~149.
    92 Hideki Kizawa, Jun-ichi Miyazaki, Akira Yokota. Trehalose production by a Strain of Micrococcus varians [J].Biosci. Biotech. Biochem., 1995,59(8): 1522~1527.
    93 Jean Francois,Jean Luc Parrou. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae[J]. FEMS Micobbiology Reviews,2001,25:125~145.
    94 周坚,吴大鹏,程苹等.薄层层析法测定海藻糖[J].微生物学学报,1997,24(2):125~127.
    95 刘传斌,云战友,鲁济青等.海藻糖的分析方法[J].食品与发酵工业,1998,
    
    24(5):40~42.
    96 毛忠贵,朱利丹,邓绍荣.用薄层层析法分析海藻糖[J].无锡轻工大学学报,1997,16(4):42~44.
    97 葛宇,袁勤生.海藻糖的定量分析方法比较[J].药物生物技术,2001,8(6):348~351.
    98 杜连祥.工业微生物学实验技术[M].天津:天津科学技术出版社,1992.
    99 周德庆.微生物学教程[M].北京:高等教育出版社,1993.
    100 王福荣.工业发酵分析[M].北京:中国轻工业出版社,1980.
    101 N.Arneorg,M.K.Moos,M.Jakobsen. Iduction of acetic acid tolerance and trehalose accumulation by added and produced ethanol in Saccharomyces cerevisiae[J]. Biotechnology Letters, 1997,19(9):931~937.
    102 Bernard A.Prior. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae[J]. Microbiology, 1998,144:671~680.
    103 李信,许雷,裴鑫德.蛹虫草(Cordyceps militaris)菌丝体液体培养基的优化和发酵条件的研究[J].核农学报,1998,12(1):35~40.
    104 李海耕.数理统计[M].上海:同济大学出版社,1985.
    105 石磊,王学仁,孙文爽.实验设计基础[M].重庆:重庆大学出版社,1997.
    106 O.L.戴维斯.工业实验的设计与分析[M].北京:化学工业出版社,1985.
    107 汪仁官,陈荣昭译.Douglas C.Montgomery著.实验设计与分析[M].北京:中国统计出版社,1998.
    108 张超.补料分批培养红酵母的研究[J].四川轻化工学院学报,2000,13(2):26~30.
    109 王克明.利用葡萄糖母液流加发酵提高夫法酵母产量的研究[J].烟台师范学院学报(自然科学版),1999,15(1):66~69.
    110 孙万儒,周铁锁,谢浩旭.普鲁兰的底物流加补料发酵研究[J].生物工程学报,1999,15(2):183~188.
    111 肖冬光.酿酒活性干酵母的生产及应用[M].内蒙:内蒙古人民出版社,1994.
    112 Peter W. Piper, Alan Lockheart. A temperature-sensitive mutant of Saccharomyces cerevisiae defective in specific phosphatase of trehalose biosynthesis[J]. FEMS Microbilolgy Letters, 1988,49:245~250.
    113 沈其君.SAS统计分析[M].南京:东南大学出版社,2001.
    114 陈建新,王立清,叶蓓华.谷氨酸发酵流加糖工艺的探索与实践[J].发酵科技通讯,2000,29(1):55~58.
    115 屈明波,黄和容.L—缬氨酸发酵供氧与补料过程控制的研究[J].生物工
    
    程学报,1992,8(2):184~191.
    116 王克明,杨静.采用流加培养技术提高盐藻生物量的研究[J].海洋通报,1999,18(4):64~68.
    117 胡真.补料分批发酵过程计算机控制系统的开发和应用[J].化工自动化及仪表,1999,26(5):12~15.
    118 李 ,陈坚,宋祺等.高发酵活力面包酵母的高产率流加培养策略研究[J].生物工程学报.1997,13(2):106~167.
    119 陈陶声,居乃琥,陈石根.固定化酶理论与应用[M].北京:轻工业出版社,1987.
    120 毛忠贵.生物工业下游技术[M].北京:中国轻工业出版社,1999.
    121 刘传斌,白凤武.酵母胞内海藻糖的微波破细胞提取[J].化工学报,2000,51(6).810~813.
    122 刘传斌,李宁,白凤武等.酵母胞内海藻糖微波破细胞提取与传统提取比较[J].大连理工大学学报,2001,41(2):169~172.
    123 刘传斌,李宁,鲁济青.微波能用于酵母中海藻糖高效液相色谱分析样品制备的研究[J].分析化学研究报告,1999,27(1):24~28.
    124 史戈峰,莫湘筠.酒精发酵过程中酿酒酵母海藻糖代谢的研究[J].食品与发酵工业,1999,25(3):15—18.
    125 Karl J.Kramer, Roy D.Speris,Cynthia N.Childs. A method for separation of trehalose from insect hemolymph[J]. Analytical Biochemistry, 1978,86:692~696.
    126 傅琳琳,杨一兵,熊国真.从酵母中提取新型保鲜剂——海藻糖的工艺研究[J].江西科学,2000,18(2):86~89.
    127 郭德军,赵永焕,高玉荣.从香菇中提取海藻糖极其应用前景[J].黑龙江八一农恳大学学报,1998,10(2):71~73.
    128 廖静.海藻糖的制备方法[J].烟台师范学院学报(自然科学版),2000,16(1):60~63.
    129 刘洋,张红缨,高俊芳.酵母菌中海藻糖的几种提取方法的比较[J].中国生化药物杂志,1999,20(1):15~17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700