可自适应膨胀防砂筛管防砂机理及其技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气井出砂已成为疏松砂岩油藏开采中遇到的普遍问题,严重影响着油气藏的正常开发。如何开发新型的防砂装备,改进现有防砂工艺,有效防止与控制油气井出砂,降低作业成本,已成为相关科研机构竞相研究的重要课题。
     在分析油层出砂影响因素和出砂机理基础上,进行了出砂模拟实验。研究表明:驱替压力的变化对出砂的影响不大;出砂量随含水量增加的幅度不大,出砂主要发生在见水初期;当临界环压为2MPa和临界流速为7ml/min时,出砂均出现明显增加;产砂量和油井产能随流速的增大而增加。
     提出了膨固结合、刚柔相济的防砂筛管设计新理念,完成可自适应膨胀防砂筛管这一新型防砂设备的结构设计,该设备由防护外壳、可膨胀防砂筛网、砾石充填膨胀层和内支撑复合割缝筛管四部分构成。基于开发的SFEM分析软件,对内支撑管的壁厚、缝长、缝宽、布缝形式、割缝密度等参数进行了优化,分析了这些要素对应力的影响规律。对筛管防砂筛网的层间组合结构形式进行了分析,给出了合理的筛网网孔设计尺寸。
     用高压液携带砾石充填挤压扩张实现砾石层的软膨胀,使膨胀与砾石充填一次完成,实现膨胀段的“零环空”和膨胀压力均一。研究了筛管充填膨胀机理,利用锥形流模型导出了新压降计算公式,并对膨胀层压降进行了分析计算。通过实验,优选可自适应膨胀防砂筛管充填工艺参数,研究表明,当膨胀层充填压力在15~20MPa、充填厚度为25~30mm、砾砂中值比在7左右时,可达到最佳充填效果。
     采用可膨胀防砂筛网、砾石充填层和内支撑割缝筛管构成复合防砂体系,防砂效果明显。利用自主研制的多功能防砂检测实验装置和实验流程,进行渗流实验、参数优选实验、防砂效果实验等相关模拟实验与分析,研究防砂规律。建立了用于防砂方法优选的BP神经网络模型,并通过具体算例进行防砂方法优选计算,从防砂作用、增产作用、有效期、井底流动条件改善、防砂效益五个方面对防砂效果进行了综合评价分析。
     利用自制的实验装置和流程,对割缝管进行冲蚀和腐蚀实验,分析冲蚀和腐蚀机理。研究表明:当含砂流体流速和冲蚀角增大时,冲蚀磨损增大;砂粒粒径和浓度增大时,冲蚀量先增加后减小;温度在30℃~80℃之间升高时,腐蚀加快,在80℃时达到最高点回落;随着氯离子浓度增加,腐蚀呈下降趋势,割缝在含氯离子溶液中易发生点蚀;钙离子对割缝腐蚀起抑制作用;pH值在3~6范围内增加时,腐蚀速率呈下降趋势。
Sand production becomes a generally problem encountered in oil and gas wells. It has affected the normal development of oil and gas reservoirs. How to develop the new equipment to prevent sand production, how to prevent and control sand production effectively, and how to lower operating costs, have become a race-related issue for scientific research institutions.
     The sand-production simulation experiments are finished based on the analysis of sand production mechanism and influencing factors. The result shows that the drive pressure variety gave little affection to sand production. The capacity of sand production have little increase with the addition of water content, and sand production is occurred at the beginning of water appeared. When the critical pressure is 2MPa and critical fluid velocity is 7ml/min, sand production is increased largely. The yield of wells and sand production are all increased with the accretion of fluid velocity.
     The structure of self-adapted expanding screen is designed based on the concept of particle expansion and the combination of hardness and softness. The new type of screen is made up of protective outer shell, expandable mesh, gravel pack layer and the slotted screen as the base pipe. The parameters of the base pipe like tube wall thickness, slot length, slot width, slot distribution form, slots distribution density and other parameters are considered for the design of the base pipe based on the self-developed software (SFEM). Also, the relationship of the above parameters and the stress of the base pipe is analyzed and summarized. Meanwhile, mesh combination structure between the layers were analyzed, a reasonable design of screen mesh size is proposed.
     The high pressure liquid carrying gravel fills the space between base pipe and expandable mesh and the soft expansion is completed. The "zero annulus" for irregular borehole section of the well and uniform expansion pressure is achieved by one expansion process. The screen expansion mechanism is researched and the new pressure drop formulation is deduced and used to calculate the pressure drop of the expansion layer base on the conical flow model. The filling pressure, fill thickness and filling gravel size are optimally chosen base on the calculation results. The research show when the gravel packing pressure is about 15-20MPa, the thickness of gravel packing zone is about 25-30mm, the gravel-to-sand median diameter ratio is about 7,the screen can attain the best pccking effect.
     The compound sand control system is new type of screen is made up of expandable mesh, gravel pack layer and the slotted screen, and it made a good sand control effect. The flow experiments, optimal parameters chosen experiments and sand prevention effects experiment are carried out using the self-developed sand control simulation equipment. The BP neural network model for the sand control method chosen is established and the specific examples are used to carry out calculation for the optimally chosen. The sand control effect is comprehensive evaluated from five aspects of sand control function, yield increase, availability time, flow condition improve of well bottom, benefit of sand control.
     The erosion mechanism and corrosion mechanism of base slotted pipe are analyzed on the erosion experiment and corrosion experiment using the self-developed test simulation equipment. The research shows that the erosion is serious with the increase of fluid velocity and impact angle. When the sand particle size and sand concentration are increased, the erosion quantum is increase at the beginning, and then decreased. The surface corrosion rate is expedited with the temperature increase during 30 oC~80 oC, it reach the highest spot at 80 oC and then declined. The screen surface occur dot-corrosion easily in solution which contain chlorine ion, corrosion rate decline with the concentration increase of chlorine ion. The calcium ion can restrain the screen surface corrosion rate. Corrosion rate is decline with the pH value increase during the pH value of 3~6.
引文
[1] N.Morita and P.A.Boyd. Typical Sand Production Problem Case Studies and Strategies for Sand Control[C]. SPE22739, 1991
    [2] N.Morita and D.L.Whitfill. Realistic Sand Production Prediction Numerical Approach[C]. SPE16989, 1987.
    [3] N.Morita and D.L.Whitfill. Parametric Study of Sand Production prediction[J]. Analytical Approach[C]. SPE16990, 1987.
    [4] Hall,C.D,Jr. and Harrisberger, W.H. Stability of Sand Arches: a Key to Sand Control SPE Paper 2399, J. of Petroleum technology[C], 1970(7): 820-829.
    [5]单华生,姚光庆,周锋德.储层水洗后结构变化规律研究[J].海洋石油, 2004, 24(1): 62-66.
    [6] C.D.Hall, W.H.Harrisberger. Stability of sand arches: a key to sand control[J]. Journal of Petroleum Technology, 1997(7): 821-829.
    [7] B.Lewis, Ledlow Jr., Derry D. Sparlin. Downhole Protection of Sand Control Screens[C]. SPE 8803: 97-113.
    [8] X.Yi, P.P.Valko, J.E.Russell. Predicting Critical Drawdown for the Onset of Sand Production[C]. SPE86555:1-12.
    [9] Liangwen Zhang. Sand Production Simulation in Heavy Oil Reservoir[C]. SPE 64747.
    [10] G.Han, and M.B.Dusseault. Quantitative Analysis of Mechanisms for Water-Related Sand Production[C].
    [11]王艳辉,刘希圣,王鸿勋.油井出砂预测技术的发展与应用综述[J].石油钻采工艺, 1994, 16: 79-82.
    [12] Ghalambor A., Hayatdavoudi A, Alcocer C.F., and Koliba R.J.: Predicting Sand Production in U.S. Gulf Coast Gas Wells Producing Free Water, JPT, Dec. 1989 PI 336-1343.
    [13] Selby R. J. and Faroug Ali S. M.: Mechanics of Sand Production and the Flow of Fines in Porous Media, JPT, May-June 1988, P55-63.
    [14]汪伟英,王尤富,王孝忠,等.流体性质对出砂的影响及控制[J].特种油气藏, 2003, 10(5): 79-80.
    [15]徐守余,王宁.油层出砂机理研究综述[J].新疆地质, 2007, 25(3): 283-285.
    [16]王小鲁,杨万萍,等.疏松砂岩出砂机理与出砂临界压差计算方法[J].天然气工业, 2009, 29(7):72-75.
    [17]周林然,卢渊,伊向艺,等.中国油井出砂预测技术现状[J].油气地质与采收率, 2006, 13(2): 100-102.
    [18]练章华,刘永刚,张元泽,等.油气井出砂预测研究[J].钻采工艺, 2003, 26(5): 30-31.
    [19]王勤田,赵彦超,杨晶,等.油井出砂临界井底流压计算模型及应用[J].江汉石油学院学报, 2002, 24(2): 75-76.
    [20]范兴沃,李相方等.利用人工神经网络实现对油气井防砂方法优选[J], 2003, 26(6): 53-54.
    [21] Yalamas T., Nauroy J.F., Bemer et.al.. Sand Erosion in Cold Heavy~oil Production[C]. SPE86949: 1-7.
    [22]曾庆辉,任闽燕,李资收,等.稠油水平井金属毡滤砂管防砂技术[J].石油天然气学报, 2005, 27(3): 386-387.
    [23]柳文国,张建军,吴智勇.整体烧结金属纤维筛管-Ⅲ型防砂技术研究及其在超稠油油藏开采中的应用[J].特种油气藏, 2002, 9(2): 53-55.
    [24] J.R. Tague, G.F. Hollman, G. Chaffin. Downhole Video Optimizes Scale-Removal Progra[C]. SPE 54600: 1-5.
    [25]刘大红,宋秀英.刘艳红,等.割缝筛管防砂设计及应用[J].石油机械, 2004, 32(8): 13-16.
    [26]李天降,张建军.激光割缝筛管-压裂砾石充填防砂工艺技术[J].海洋石油, 2004, 24(1): 51-53.
    [27]高成元,张家营,徐强等.一次砾石充填防砂工具的研制[J].石油机械, 2003, 31(10): 37-38.
    [28]董长银,张琪,李志芬等.筛管砾石充填井筒附近压降计算方法[J].西安石油学院学报, 2002, 17(2): 33-36.
    [29]欧阳勇,夏宏南,王小建. 20世纪90年代以来机械防砂技术的新进展[J].探矿工程, 2004. (3): 53-54.
    [30]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2006: 185-253.
    [31]张珊,张桂华.割缝筛管梯形缝的激光切割[J],中国激光, 2000, 27(10): 958-960.
    [32]贺昌玉,廖炳华,邓前松.石油割缝筛管激光加工设备及工艺[J].石油机械, 2003, 31(增刊): 36-37.
    [33]曹凤国.电火花加工技术[M].北京:化学工业出版社, 2005.
    [34]刘晋春,赵家齐.特种加工[M].北京:机械工业出版社, 1994.
    [35]李志宏,邵德厚,等.我国超硬材料的发展及在机械加工中的应用[J].工具技术, 1999, 33: 3-6.
    [36] Y.S.Tarng. Determination of Optimal Cutting Parameters in Wire Electrical Discharge Machinind.Int.J.Mach[J]. Tools Manufact. 1995, 35(12): 34-37.
    [37]金顺南等.线切割加工间隙状态预测系统的计算机仿真研究[J].电加工, 1992 (5).
    [38]张建乔,刘永红,吕广忠.复合缝腔割缝防砂筛管的设计及应用[J].石油机械, 2005, 9(33): 31-33.
    [39]严进荣,朱天高,陈应淋等.预充填双层割缝筛管防砂工艺研究及应用[J].油气田地面工程, 2003, 22(3): 56-57.
    [40] N. Morita and D.L. Whitfill. Realistic Sand Production Prediction Numerical Approach[C]. SPE16989: 1-9.
    [41]温玉焕,李黔,伍贤柱.膨胀防砂筛管技术及应用[J].钻采工艺, 2005, 28(6): 74-76.
    [42]李天降,张建军等.膨胀筛管防砂——机械防砂新思路[J].海洋石油, 2004, 24(2): 78-80.
    [43]余金陵,周延军.膨胀管技术的应用研究初探[J].石油钻探技术. 2002, 30(5): 60-63.
    [44]何辽勤,安文忠,陈建兵.膨胀筛管防砂技术及其在渤海湾油田的应用[J].石油钻探技术, 2003, 31(6): 39~41.
    [45] Mehmood, A.; Mazzoni, R.; et al. Slimhole drilling with expandable sand screens for low-cost, high-deliverability wells at Bhit gas field in Pakistan. Proceedings-SPE Annual Technical Conference and Exhibition, ATCE 2005, 1861-1875.
    [46] Bybee, Karen. The role of the annular gap in expandable-sand-screen completions[J]. Journal of Petroleum Technology, 2004, 56(5): 44-46.
    [47] Kabir, Mir Rezaul; Wai, Foo Kok; et al. The use of expandable sand screens (ESS) to control sand in unconsolidated multi-zone completions in the Baram and Alab FieldsOffshore Malaysia - A Case Study. SPE-Asia Pacific Oil and Gas Conference, Creating Value: People, Processes and Technology, 2003, 94-103.
    [48]张建乔,刘永红,吕广忠.复合缝腔割缝防砂筛管的设计及应用[J].石油机械, 2005, 9(33): 31-33.
    [49]周思宏,王辉,任厚毅.膨胀式筛管防砂工艺的应用[J].石油矿场机械, 2004, 33(4): 58-61.
    [50] G. McKay, P.W. Bixenman, G. Watson. Advanced Sand Control Completion With Permanent Monitoring[C]. SPE 62954:1-9.
    [51] Alvaro Vilela, Chad Hightower , Rodrigo Farias. Different Pressure Valve Incorporated with the Single~trip Horizontal Gravel Pack and Selective Stimulation System Improves Sand Control for Extended Reach Wells. SPE 86513: 1-9.
    [52] L F Neumann, C A Pedroso, L Moreira, et al. Lessons Learned From a Hundred Frac Packs in the Campos Basin[C]. SPE73722: 1-8.
    [53] Majid Al Shandoodi. Expandable Tubular Technology in PDO:An Expandable Sand Screen Case History[C]. SPE72287: 1-5.
    [54] Alex Weekse, Steve Grant, Rob Urselmann. Expandable Sand Control Screen: Three New World Records in the Brigantine Field[C]. SPE74549: 1-10.
    [55] C.Munro, R. Allam, M. M. Erbil et al. Stimulation Depleted HP/HT Sand Screen Completions Using Coiled Tubing[C]. SPE74807: 1-12.
    [56] Mike Gilmer, Brent Emerson. World’s First Completion Set Inside Expandable Screen [C]. SPE87201: 1~7.
    [57] S.M.Willson, Z.A. Moschovidis, J.R.Cameron. New Model for Predicting the Rate of Sand Production[C]. SPE78168: 1-9.
    [58]李天降,张建军.激光割缝筛管-压裂砾石填充防砂工艺技术[J].海洋石油, 2004, 24(1): 51-53.
    [59]梁国杰,王栋,刁俊西,宋汝强.砾石充填防砂一次充填工具研制及应用[J].特种油气藏, 2004, 11(1): 57-59.
    [60] L.Lspas. R.A. Bray, L. D. Palmer et al. Prediction and Evaluation of Sanding and Casing Deformation in Shelf Well[C]. SPE 78236: 1-10.
    [61]吴伟.低压挤压砾石充填防砂工艺技术的先导性实验[J].油气地质与采收率, 2002,9 (1): 74-75.
    [62]乔仁春.封隔高压一次充填防砂技术[J].石油钻探技术, 2002, 30(8): 70-71.
    [63]王志刚,李爱芬,张红玲,等.砾石充填防砂井砾石层堵塞机理实验研究[J].石油大学学报(自然科学版), 2000, 24(5): 49-51.
    [64]李爱芬,杨柳.水平井砾石充填数值模拟研究[J].石油学报, 2002, 23(1): 102-106.
    [65]薄启炜,董长银,张琪等.砾石充填层孔喉结构可视化模拟[J].石油勘探与开发, 2003, 30(4): 108-110.
    [66]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报, 2003, 21(2): 307-312.
    [67]陈冠国,褚秀萍.关于冲蚀磨损问题[J].河北理工学院学报, 1997, 19(4): 27-32.
    [68] Chen Duanzong, Jin Qianhuan & Xu Riyi. Research on Packing Materials for Sand Control in Steam Injection Wells[C]. SPE 64734 : 1-16.
    [69] Liangwen Zhang. Sand Production Simulation in Heavy Oil Reservoir.SPE64747: 3-12.
    [70]刘永红,张建乔,马建民,李小朋.石油防砂割缝筛管的冲蚀磨损性能研究,摩擦学学报. 2009, 03(29): 283-287.
    [71]张建乔.可膨胀预充填防砂筛管及防砂机理研究.中国石油大学(华东)博士学位论文. 2006: 30-36.
    [72] Zaid Gene H, Sanders Donald W. Binary Corrosion Inhibitors Offer Improved Corrosion Control. SPE Production and Facilities, 2005, 20(2): 133-137.
    [73]吴水林,崔振铎等.油管钢在饱和二氧化碳模拟油田液中的腐蚀研究[J].中国腐蚀与防护学报, 2003, 23(6): 340-342.
    [74]周晴.油气田开发中的腐蚀与控制[J].油气田地面工程, 2005, 24(11): 46.
    [75]赵国仙,严密林,等.对J55套管在长庆油田的耐蚀性评价[J].石油矿场机械, 1998, 27(3): 25-27.
    [76]路旭民.油气采集储运过程中腐蚀现状及典型案例[J].腐蚀与防护, 2002, (3): 105-106.
    [77]万里平.油气田开发中的二氧化碳腐蚀及其影响因素[J].全面腐蚀控制, 2003, 17(2): 14-17.
    [78] Mendez C, Duplat S, Hernandez S, et al. On the Mechanism of Corrosion Inhibition by Crude Oil[J]. Corrosion, 2001: 30.
    [79]姬鄂豫,李爱魁,等.原油对碳钢腐蚀行为影响的研究[J].材料保护, 2004, 37(5): 42-44.
    [80]赵景茂,顾明广,左禹.碳钢在二氧化碳溶液中腐蚀影响因素的研究[J].北京化工大学学报, 2005, 32(5): 71-73.
    [81]陈长风,路旭民,赵国仙等.温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响[J].金属学报, 2003, 39(8): 848-850.
    [82]张学元,邸超,雷良才.二氧化碳腐蚀与控制[M].第1版.北京:化学工业出版社, 2000: 29-30.
    [83]何冠军,杜志敏,文成杨,等.出砂影响因素的数值模拟评价[J].油气地质与采收率, 2005, 12(5): 36-38.
    [84]汪周华,郭平,孙雷,等.油气藏出砂研究现状及其发展趋势[J].特种油气藏, 2005, 12(4): 5-10.
    [85]唐洪明,孟英峰,何世明,等.柴达木盆地东部气田疏松砂岩气藏出砂与防砂机理探讨[J].天然气工业, 2002, 22(1): 52-54.
    [86]董长银,油气井防砂技术.北京:中国石化出版社, 2009: 24-27.
    [87]曾祥林,何冠军,孙福街,等. SZ3621油藏出砂对渗透率影响及出砂规律实验模拟[J].石油勘探与开发, 2005, 32(6): 105-108.
    [88]田红,邓金根,孟艳山.渤海稠油油藏出砂规律室内模拟实验研究[J].石油学报, 2005, 26(4): 85-87.
    [89]王建,吕成远,李奋,等.预测油层出砂状况室内模拟实验方法的建立与应用[J].西北地质, 2000, 33(2): 8-13.
    [90]孙辉,李兆敏,吴仕,等.疏松砂岩油藏动态出砂定量预测技术[J].油气地质与采收率, 2007, 14(4): 62-64.
    [91]郭云民,李健康,崔洁,等.高含水期油井出砂预测模型的研究与应用[J].油气地质与采收率, 2005, 12(3): 58-61.
    [92]马建民,刘永红,李夯.可自适应膨胀防砂筛管结构设计及防砂机理研究[J].石油矿场机械. 2009, 09(39): 1-4.
    [93] MA Jian-min, LIU Yong-hong, LI Hang. Research on Slot Laser Machining Technology of Self-adapting Sand Control Screen[J]. Journal of Harbin Institute of Technology (New Series). 2010, 01(17): 205-207.
    [94]王新峰,杨贺来.基于最大过流面积比率的石油割缝筛管优化设计[J],机械工程师. 2006, (6): 49-51.
    [95]张建乔,刘永红.新型割缝筛管有限元网格划分[J].应用基础与工程科学学报, 2004, 12(3): 285-292.
    [96]张建乔,刘永红,吕广忠.子模型法在割缝筛管精细分析和优化设计中的应用[J].应用基础与工程科学学报, 2005, 13(4): 430-437.
    [97]陆先亮.新型复合缝腔割缝筛管的强度计算及失效分析[J].石油钻采工艺, 2005, 27(2): 50-54.
    [98]庄保堂,李黔.割缝防砂筛管抗挤强度有限元计算模型[J].石油矿场机械, 2007, 36(3): 32-33.
    [99]王伯军,张士诚.非均匀载荷对割缝管抗挤强度的影响[J].钻采工艺, 2006, 29(5): 77-79.
    [100]杨晓东,尹明富,李从清.均匀载荷作用下割缝筛管的应力分析研究[J].钻采工艺, 2009, 32(1): 58-60.
    [101]王圣虹.金属微孔网布筛管防砂机理研究.中国石油大学(北京)硕士学位论文. 2008: 21-28.
    [102]刘正伟,裴柏林,魏立军.水平井防砂网合理孔径确定实验研究[J].新疆石油天然气, 2005, 1(1): 65-67.
    [103]马建民,刘永红,李夯.可自适应膨胀防砂筛管膨胀机理研究[J].石油矿场机械, 2009, 38(12): 9-11.
    [104]王治中,邓金根,孙福街,等.井筒砂粒运移规律室内模拟实验研究[J].石油学报, 2006, 27(4): 130-132.
    [105]马代鑫.高压砾石充填防砂工艺参数优化设计[J].石油钻采工艺, 2007, 29(3): 56-59.
    [106]陈宗毅,王伟章,陈阳,等.防砂方法优选模拟实验装置[J].石油机械, 2006, 34(6): 8-10.
    [107]唐玉宏,谭显忠,陈辉.优质筛管模拟实验装置的研制与应用[J].石油矿场机械, 2007, 36(5): 83-85.
    [108]景瑞林,尹强,田宝国.割缝筛管防砂技术研究[J].石油钻采工艺, 2001, 23(2): 72-75.
    [109]胡才志,李相方,王辉.疏松砂岩储层防砂方法优选实验评价[J].石油钻探技术, 2003, 31(6): 51-53.
    [110]冯胜利,尉亚民,张启汉,等.涩北气田砾石充填防砂技术参数的求取[J].天然气工业, 2009, 29(7): 89-91.
    [111]李志芬,董长银,张琪.防砂方法优选的BP神经网络模型求取[J].石油钻探技术, 2002, 30(6): 50-51.
    [112] Richard M. An evaluation method for screen-only and gravel-pack completions[J]. SPE, 2002, (2): 1-15.
    [113] Hon C L. Open hole expandable-sand-screen completions inbrunei[J]. SPE Drilling& Completion, 2004, (3): 46-51.
    [114] Metcalfe P. Expandable sand screen technology increases production[J]. World Oil 2000, 221(2): 94-95.
    [115]邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社, 1993.
    [116] BITTER J G. A study of erosion phenomena[J]. Wear, 1963 (6): 5-21.
    [117] TILLY G P. A two stage mechanism of ductile erosion[J]. Wear, 1973 (23): 87-96.
    [118] HUTCHINGS I M. A model for the erosion of metals byspherical particles at normal incidence [J]. Wear, 1981(70): 269-281.
    [119]许立铭,罗逸,董泽华,等.钙离子对碳钢在油田污水中腐蚀影响[J].油田化学, 1996, 13(2): 15-17.
    [120]李春福,邓宏达,崔世华. NT80SS钢在高含H2S/CO2环境中的腐蚀行为[J].中国腐蚀与防护学报, 2009, 29(3): 225-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700