甘氨酸咪唑型离子液体的耦合机制及相关性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,室温离子液体(RTIL)的研究已经激起人们很大的兴趣,离子液体的设计和应用已经发展成为化学中的一个很重要的分支。离子液体具有许多独特的性质,包括低蒸汽压、高热稳定性和高离子传导性等,在作为反应溶剂、萃取溶剂和电解热材料方面引起人们极大的关注,被认为是一种新型的、绿色的溶剂。而且,为了某些特定的用途,可以通过调制阳离子或阴离子的结构来设计其物理性质,因此,离子液体又被称为“可设计的溶剂”。现已广泛应用于有机合成、催化反应、电化学、生物化学和材料设计等许多领域。
     本文我们讨论了一种新型的离子液体,即由1-乙基-3-甲基咪唑阳离子和甘氨酸阴离子构成的离子液体([emim][Gly]),该离子液体区别于传统离子液体的是,阴离子为与生命过程密切相关的甘氨酸阴离子。在离子液体的理论研究方面,对该体系的研究尚属首次。作为一类完全由离子构成的介质,离子液体具有与传统分子介质不同的内部环境。微观结构决定性质,对离子液体这种离子介质中各物质的相互作用和性质的研究有助于获得一些有别于分子介质的规律与知识。本论文从研究离子液体的内部相互作用出发,利用密度泛函理论B3LYP/6-31+G~*和B3LYP/6-311++G~**方法对甘氨酸离子液体的构型和性质进行了一系列的讨论,并取得了一些非常有意义的结论:
     首先,我们对由甘氨酸阴离子和1-乙基-3-甲基咪唑阳离子组成的离子液体体系的结构进行了研究。结果表明,甘氨酸阴离子的羰基氧与咪唑环的C2-H和咪唑阳离子的甲基侧链的C-H相互作用时,相互作用模式是最为有利的。所有的稳定构型均以分子间氢键为特征,通过双氢键或单氢键相互作用,通过红外光谱分析也可以进一步证实。与相互作用能的顺序一致,得到了所有构型中最稳定的构型。通过对离子液体稳定构型的红外光谱分析,不同区域出现的吸收强度可以为不同复合物的鉴定提供帮助。而且,离子对的形成主要影响了咪唑阳离子的C-H部分和甘氨酸阴离子的C=O部分的振动,其它振动模式变化不大,本质上没有相互混淆。
     其次,通过NBO(Natural Bond orbital)和AIM(Atom in Molecule)分析,我们对阴阳离子间氢键作用的化学本质进行了研究。结果表明,在氢键形成的过程中,[Gly]~-的氧原子的孤对电子向[emim]~+的C-H反键轨道上的转移导致了[emim]~+的C-H键的伸长和振动频率的红移。而且,C-H键的伸长与相应的反键轨道σ~*_(C-H)的电子密度分布几乎为线性相关。阴离子的孤对电子和C-H反键轨道之间的n→σ~*_(C-H)作用能够提供较大的稳定化能,它对整个体系的稳定性起到了非常关键的作用。实验上观察到的氨基酸离子液体的高稳定性应该与不存在质子转移产物(中性分子)和气相中离子液体的解离需要很大能量是相关的。
     最后,我们讨论了H~+、Li~+、Na~+和K~+的引入对所研究离子液体体系的影响。上述阳离子与甘氨酸阴离子的O22位能形成更稳定的复合物。引入阳离子后,离子液体内起主要作用的分子间氢键的强度均减弱,相应的C-H键发生蓝移,强度增强。四种阳离子与离子液体相互作用的顺序为H~+>Li~+>Na~+>K~+。其中H~+与[emim][Gly]的耦合更多的倾向为共价键特征,其相互作用最强,而Li~+、Na~+、K~+与[emim][Gly]的耦合倾向为静电作用。引入四种阳离子后,离子液体仍不能发生质子转移,仍保持原来的作用模式。H~+、Li~+、Na~+和K~+阳离子与[emim][Gly]复合物的红外光谱以C=O和咪唑环上的C-H键的振动为特征,而且阳离子的引入在一定程度上也影响了离子对的其它键的振动。
In recent years, there have been a great enthusiasm for room temperature ionic liquids (RTIL) and their design and use have evolved into a blossoming branch of chemistry. Ionic liquids (ILs) are perceived to be a novel and "green" solvents because they are nonvolatile and their quite remarkable properties, including a negligibly small vapor pressure, high thermal stability, and high ionic conductivity. As a result, ILs are attracting considerable attention as reaction solvents, extraction solvents, and electrolyte materials. Moreover, ILs are now expected to be "designed solvents" because their physical properties could be tailored by adjusting the structures and species of cations and/or anions for a given end use. Therefore, much of ILs has been used in wide fields, for example, organic synthesis and catalytic reaction, electrochemistry, biochemistry, and material engineering.
     In this study, novel ionic liquids formed by 1-ethyl-3-methyl-imidazolium cation [emim]~+ and glycine anion [Gly]~- have been investigated theoretically. The difference of these ionic liquids from the others is that the anion is [Gly]~- which is the basic component of protein and indispensable in the natural living body. This is the first time for the investigation of this question theoretically. As a kind of new ionic solvents, the ionic liquids (ILs) have different interal environments compared with the traditional molecular solvents. A systematic study of the interaction in the ILs can get a better understanding of their structure-activity relationship. In the present work, theoretical investigations of the coupling interactions in the ILs have been carried out employing B3LYP/6-31+G~* and B3LYP/6-311++G~(**) level of theory. The primary innovations are related as follows.
     Firstly, the structural characteristics of the ionic liquids formed by 1-ethyl-3-methyl-imidazolium cation [emim]~+ and glycine anion [Gly]~- have been investigated. The interaction modes are most favorable when the carbonyl O atom of [Gly]~- interacts with the C2-H of the imidazolium ring and the C-H of the methyl group of [emim]~+ through the formation of double intermolecular H-bonds. All of the stable geometries are characterized by the intermolecular H-bonds, which is further supported by the IR absorption peaks. Consistent with the relative order of interaction energies, the most stable complexes have been determined. In the IR spectra, the different intensities occurring in different regions can provide some help in the identification of various complexes. The formation of the ion pairs mainly influences the vibrations of the imidazolium C-H groups and the C=O of [Gly]~-, and other modes of the ions retain their individuality and practically do not mix.
     Secondly, the nature of the intermolecular H-bond in the ionic liquids has been investigated employing the natural bond orbital (NBO) and atom in molecular (AIM) methods. The NBO analysis demonstrated that the stabilization energy is due to the n→σ_(C-H)~* orbital interaction. In the formed intermolecular H-bonds, electron transfers occur mainly from the lone pairs of 0 atom of [Gly]~- to the C-H antibonding orbital of [emim]~+, resulting in the elongation and red-shift of the C-H stretching frequency. Moreover, an almost linear correlation between the elongation of the C-H bond and the change of the electron population in the correspondingσ~*(C-H) orbital has also been observed. The origin of the high stability of the amino acid ionic liquids observed experimentally may be relevant to the nonexistence of the proton-transferred products (neutral pairs) together with the larger energy needed for separation of the ionic pairs in the gas phase.
     Finally, the effects of the H~+, Li~+, Na~+ and K~+ cations on the ionic liquids have been investigated. The complexes are more stable when the H~+, Li~+, Na~+ and K~+ cations interact with the 022 of the [Gly]~-. The intermolecular H-bonds in the ionic liquids have been weakened, resulting in the blue-shifts of the C-H stretching frequency. The order of the interaction is H~+>Li~+>Na~+>K~+. The interaction between H~+ and [emim][Gly] is mainly covalent, and the other interactions between Li~+, Na~+ and K~+ and [emim][Gly] are mainly electrostatic. The proton transfer could not occur among those complexes. The formation of the ion pairs mainly influences the vibrations of the imidazolium C-H groups and the C=O of [Gly]~-, and other modes of the ions have also been influenced in some extent.
引文
[1] Wasserscheid, P.; Eichmann, M. Selective dimersation of 1-utene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor [J]. Catal. Today., 2001,66: 309.
    
    [2] Freemantle, M. [J]. Chem. Eng. News., 1998,76: 32.
    
    [3] Freemantle, M. [J]. Chem. Eng. News., 2004, 82: 326.
    
    [4]邓友全.离子液体-性质、制备与应用[M].中国石化出版社,第一版,2004.
    
    [5]李汝雄.绿色溶剂-离子液体的合成与应用[M].化学工业出版社,第一版,2004.
    
    [6] Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. [J]. Chem.Rev., 1999,99:2071.
    
    [7] Dupont, J.; Souza, R.; Suarcz, P. Ionic liquid (molten salt) phase organometallic catalysis [J].Chem. Rev., 2002,102:3667.
    
    [8] Wasserscheid, P.; Keim, W. Ionic liquids-New "solutions" for transition metal catalysis [J].Angew. Chem. Int. Ed., 2000,39: 3772.
    
    [9]顾彦龙,彭家建,乔馄,杨宏洲,石峰,邓友全.室温离子液体及其在催化和有机合 成中的应用[J].化学进展,2003,15:241.
    
    [10] Sun, H. Ionic liquids: Progress and prospective [J]. Chinese J. Chem. Engin., 2005,13: 830.
    
    [11]寇元.离子液体-研究热点的冷静分析[J].科学观察,2006,1:42.
    
    [12] Weng, J.; Li, H.; Wang, C; Wang, Y. Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction [J]. Green Chem., 2006,8: 96.
    
    [13]张锁江,吕兴梅.离子液体-从基础研究到工业应用[M].科学出版社,第一版,2006.
    
    [14] Sugden, S.; Wilkins, H. The preacher and chemical constitution part VII: fused metals andsalts [J]. J. Chem. Soc, 1929,7:1291.
    
    [15] Hurley, F. H. [P]. U. S. Patent 2: 446331,1948.
    
    [16] Robinson, J.; Osteryoun, R. A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride [J]. J. Am. Chem. Soc, 1979,101: 323.
    
    [17] Gale, R. J.; Gilbert, B.; Osteryoung, R. A. Raman spectra of molten aluminum chloride: 1-Butylpyridinium chloride systems at ambient temperatures [J]. Inorg. Chem., 1978, 17: 2728.
    
    [18] Tait, S.; Osteryoung, R. A. Infrared study of ambient-temperature chloroaluminates as afunction of melt acidity [J]. Inorg. Chem., 1984,23: 4360.
    
    [19] Scheffier, T. B.; Hussery, C. L.; Seddon, K. R.; Kear, C. M; Armitage, P. D. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stailaztion of hexachlroromolydate (2) and hexachloromolydate (3) [J]. Inorg. Chem., 1983, 22: 2099.
    [20] Wilkes, J. S.; Levisky, L .A.; Wilson, R. A. Dialkyimidazolium chloroaluminate melts: a
    new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis [J]. Inorg. Che., 1982,21: 1263.
    
    [21] Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. Friedel-Crafts reactions in ambient-temperature molten salts [J]. J. Org. Chem., 1986, 51:480.
    [22] Chauvin, Y.; Gilbert, B.; Guibard, I. Catalytic dimerization of alkenes by nickel-complexes
    in organochloroaluminate moleten-salts [J]. J. Chem. Soc. Chem. Commun., 1990,1715.
    [23] Fry, S. E.; Pienta, N. J. Effects of molten salts on reactions. Nucleophilic aromatic
    substitution by halide ions in molten dodecyltributylphosphonium salts [J]. J. Am. Chem.
    Soc, 1985,107: 6399.
    [24] Wilkes, J. S.; Zaworotko, M. Air and water stablel 1-ethyl-3-methylimidazolium based ionic
    liquids [J]. J. Chem. Soc. Chem. Commun., 1992,965.
    [25] Ye, C.; Shreeve, J. M. Syntheses of very dense halogenated liquids [J]. J. Org. Chem., 2004,
    69:6511.
    [26] Christopher, H.; John, D. H.; McMath, S. E. J. A highly efficient synthetic procedure for deuteriating imidazoles and imidazoium salts [J]. Chem. Commmun., 2001, 367.
    [27] Bao, W.; Wang, Z.; Li, Y. Synthesis of chiral ionic liquids from natural amino acids [J]. J. Org. Chem., 2003,68: 591.
    [28] Fukumoto, K.; Yoshizwa, M.; Ohno, H. Room temperature ionic liquids from 20 natural amino acids [J]. J. Am. Chem. Soc, 2005,127: 2398.
    [29] Cole, A. C; Jensen, J. L.; Ntai, L.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C; Davis, J. H. Jr. Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts [J]. J. A. Chem. Soc, 2002,124: 5962.
    [30] Du, Z.; Li, Z.; Guo, S.; Zhang, J.; Zhu, L.; Deng, Y. Investigation of physicochemical properties of lactam-based bronsted acidic ionic liquids [J]. J. Phys. Chem. B, 2005, 109: 19542.
    [31] Gathergood, N.; Garcia, M. T.; Scammnells, P. J. Biodegradable ionioc liquids: Parti. Concept, preliminary targets and evaluation [J]. Green Chem., 2004, 6: 166.
    [32] Huang, J.;, Baker, G A.; Luo, H.; Hong, K.; Li, Q.; Bjerrum, N. J.; Dai, S. Bronsted acidic room temperature ionic liquids derived from N , N-dimethylformamide and similar proto-philic amides [J]. Green Chem., 2006, 8: 599.
    [33] Kuhlmann, E.; Hirnlnler, S.; Giebelhaus, H.; Wasserscheid, P. Imidazolium dialkylphosph-ates -a calss of versatile, halogen-free and hydrolyticall stable ionic liquids [J]. Green Chem., 2007, 9: 233.
    [34] Blancheard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. [J]. Nature, 1999, 399: 28.
    [35] Amlstrong, D. W.; He, L.; Liu,Y. Examination of ionic liquids and their int(?)raction with molecules, when used as stationary phases in gas chromatography [J]. Anal. Chem., 1999, 71:3873.
    [36] Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormaid, P.; Morris, R. E. [J]. Nature, 2004,430: 1012.
    [37] Lu, W.; Fadeev, A. G; Qi, B. Use of ionic liquids for π-conjugated polymer electrochemical devices [J]. Science, 2002,297: 983.
    [38] Fei, Z.; Geldbach, T. J.; Zhao, D.; Dyson, P. J. From dysfunction to Bis-function: on the design and applications of fuctionalised ionic liquids [J]. Chem. Eur. J., 2006,12: 2123.
    [39] Freemantle, M. [J]. Chem. Eng. News., 2000,15: 37.
    
    [40] Roger. R. D.; Seddon, K. R. Ionic liquids-solvents of the future [J]. Science. 2003,302: 792.
    [41] Mehnert, C. P. Supported ionic liquid catalysis [J]. Chem. Eur. J., 2005, 11: 50.
    [42] Adams, C. J.; Earle, M. J.; Roberts, G; Seddon, K. R. Friedel-Crafts reactions in room temperature ionic liquids [J]. Chem. Commun., 1998,19: 2097.
    [43] Ross, J.; Xiao, J. Friedel-Crafts acylation reactions using metal triflates in ionic liquid [J].Green Chem., 2002,4:129.
    [44] Gmouth, S.; Yang, H.; Vaultier, M. Activation of bismuth (III) derivatives in ionic liquids: Novel and recyclable catalytic systems for Friedel-Crafts acylation of aromatic compounds [J]. 2003,5:2219.
    [45] Wasserscheid, P.; Resing, M.; Worth, W. Hydrogensulfate and tetrakis (hydrogensulfato) borate ionic liquids: synthesis and catalytic application in highly bronsted-acidic systems for Friedel-Crafts alkylation [J]. Green Chem., 2002,4: 134.
    
    [46] Du, H.; Zhao, D.; Ding, K. Enantioselective catalysis of the hetero-diels-alder reaction between brassard's5 diene and aldehydes by hydrogen-bonding activation: a one-step synthesis of dihydrokawain [J]. Chem. Eur. J,. 2004,10: 5964.
    [47] Khuong, K. S.; Beaudry, C. M.; Trauner, D.; Houk, K. N. Dienophile twisting and subst- ituent effects influence reaction rates of intramolecular diels-alder cycloadditions: A DFT study [J]. J. Am. Chem. Soc, 2005,127: 3688.
    [48] Jaeger, D.A.; Tucker, C. E. Diels-Alder reactions in ethyl ammonium nitrate, a low-melting fused salt [J]. Tetrahedron Lett., 1999,40: 2461.
    [49] Earle, M. J.; McCormac, P. B.; Seddon, K. R. Diels-Alder reactions in ionic liquids [J]. Green Chem., 1999,23.
    [50] Muzart, J. Ionic liquids as solvents for catalyzed oxidations of organic compounds [J]. Adv. Synth. Catal., 2006, 348: 275.
    [51] Qiao, C.; Zhang, Y.; Zhang, J.; Li, C. Activity and stability investigation of [BMIM] [ AlCl4] ionic liquid as catalyst for alkylation of benzene With 1-dodecene [J]. Applied Catal. A: General, 2004,276: 61.
    
    [52] Sun, H.; Harms, K.; Sundermeyer J. Aerobic oxidation of 2,3,6-Trimethylphenol to trimet-hyl-1,4-benzoquinone with copper(II) chloride as catalyst in ionic liquid and structure of the active species [J]. J. Am. Chem. Soc, 2004,126: 9550.
    
    [53] Sun, H.; Li, X.; Sundermeyer, J. Aerobic oxidation of phenol to quinine with copper chloride as catalyst in ionic liquid [J]. J. Molecular Catal. A: Chemical, 2005, 240:119.
    
    [54] Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids [J]. Chem. Eur. J., 2006,12: 4021.
    
    [55] Huddleston, J. G; Willaner, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room temperature ionic liquids as novel media for "clean" liquid-liquid extraction [J]. Chem. Commun., 1998,1765.
    
    [56] Visser, A. E.; Swatloski, R. P.; Rogers, R. D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions [J]. Chem. Commun., 2001,135.
    
    [57] Arce, A.; Rodriguez, O.; Soto, A. Experimental determination of liquid-liquid equilibrium using ionic liquids: Tert-amyl ethyl ether + ethanol + l-octyl-3-methylimidazolium chloride system at 298.15 K [J]. J. Chem. Eng. Data, 2004,49: 852.
    
    [58] 周震寰,王涛,邢华斌,骆广生.超临界CO2/离子液体体系[J].化学通报,2005,68: 262.
    [59] Heinze, T.; Schwikal, K.; Barthel, S. Ionic liquids as reaction medium in cellulose functio-nalization [J]. Macromol. Blosci., 2005,5: 520.
    
    [60] Crespo, J. G; Branco, L. C.; Afonso, C. A. M. Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids [J]. Angew. Chem. Int. Edit, 2002,41: 2771.
    
    [61] Anderson, J. L.; Ding, J.; Welton, T.; Annstrong, D. W. Characterizing Ionic liquids on the basis of multiple salvation interactions [J]. J. Am. Chem. Soc, 2002,124: 14247.
    
    [62] Camper, D.; Scovazzo, P. C.; Koval, C; Noble, R. Gas solubilities in room temperature ionic liquids [J]. Ind. Eng. Chem. Res., 2004,43: 3049.
    
    [63] Kanakubo, M.; Umecky, T.; Hiejima, Y.; Aizawa, T.; Nanjo, H.; Kameda, Y. Solution structures of 1-butyl-3-methylimidazolium hexanuorophosphate ionic liquid saturated with CO2: Experimental evidence of specific anion-CO2 interaction [J]. J. Phys. Chem, B, 2005, 109: 13847.
    
    [64] Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. Jr. CO2 capture by a task-specific ionic liquid [J]. J. Am. Chem. So., 2002,124: 926.
    
    [65] Shah, J. K.; Brennecke, J. F.; Maginn, E. J. Thermodynamic properties of the ionic liquid -n-butyl-3-methylimidazolium hexafluorophosphate from monte carlo simulations [J]. Green Chem., 2002,4:112 .
    [66] Cadena, C; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. Why is CO2 so soluble in imidazoliurn based ionic liquids? [J]. J. Am. Chem. Soc, 2004, 126: 5300.
    [67] Scovazzo, P.; Ferguson, L. Solubility, diffusivity, and permeability of gases in phosphonium -based room temperature ionic lqiuds: data and correlations [J]. Ind. Eng. Chem. Res., 2007, 46: 1369.
    [68] Shiflett, M. B.; Yokozeki, A. Solubility of CO2 in room temperature ionic liquid [hmim] [Tf2N ] [J]. J. Phys. Chem. B, 2007, 111: 2070.
    [69] Zhang, S.; Yuan, X.; Chen, Y; Zhang, X. Solubilityies of CO2 in 1-butyl-3-mehtylimidazo-lium hexafluorophosphate and 1,1, 3, 3-tetramethylguanidium lactate at elevated pressures [J]. J. Chem. Eng. Data., 2005, 50:1582.
    [70] Zhang, S.; Chen, Y; Ren, X.; Zhang, Y; Zhang, J.; Zhang, X. Solubility of CO2 in sulfonate ionic liquids at high pressure [J]. J. Chem. Eng. Data., 2005,50: 230.
    [71] Yu, G; Zhang, S.; Yao, X.; Zhang, J.; Dong, K.; Dai, W.; Mori, R. Design of task-specific ionic liquids for capturing CO2: A molecular orbital study [J]. Ind. Eng. Chem. Res., 2006, 45: 2875.
    
    [72] Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang, J. Desulfurization of flue gas: SO2 absorption by an ionic liquid [J]. Angew. Chem. Int. Ed., 2004,43: 2415.
    [73] Anderson, J. L.; Dixon, J. K.; Maginn, E. J. Brennecke J F. Measurement of SO2 soblubility in ionic liquids [J]. J. Phys. Chem. B, 2006,110: 15059.
    [74] Fung, Y S.; Zhou, R. Room temperature molten salt as medium for lithium battery [J]. J. Power Sources, 1999,81: 891.
    [75] Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Exnar I. Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells [J]. Chem. Commun., 2004,73.
    [76] Kubo, W.; Kambe, S.; Nakade, S. Photocurrent-determining processes in quasi-solid-state dye -sensitized solar cells using ionic gel electrolytes [J]. J. Phys. Chem. B, 2003, 107: 4374.
    [77] Fockenberg, C; Hall, G. E.; Press, J. M.; Sears, T. J.; Mucherman, J. T. [J]. J. Phys. Chem. A, 1999,103: 5722.
    
    [78] 刘靖疆.[M].基础量子化学与应用(高等教育出版社),2004,7.
    [79] Foresman, J. B.; Frisch, A. Exploring Chemistry with Electrinic Structure Methods Gaussian. [J]. Pittsburgh, 1996.
    
    
    [80]廖沐真.[M].量子化学从头计算方法(清华大学出版社),1984.
    
    [81] Sergei, S.; Ralph, A. W. [J]. J. Phys. Chem. A, 104: 6314,2000.
    
    [82]陈凯先,蒋华良,嵇汝运.[M].计算机辅助药物设计-原理、方法及应用(上海科学技 术出版社),2000.
    
    [83]张瑞勤,步宇翔,李述汤.[J].中国科学,2000,30:5.
    
    [84] Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Seuseria, G. E.; et. al. Gaussian, Inc.,Pittsbergh PA, 1995.
    
    [85] Pople, A.; Head-Gordon; Fox, D. J.; Raghavachari; Curtiss, A. [J]. J. Chem. Phys.,1989, 90:5622.
    
    [86] Hanke, C. G; Johansson, A.; Harper, J. B.; Lynden-Bell, R. M. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? Asimulation study [J]. Chem. Phys. Lett., 2003, 374: 85.
    
    [87] Urahata, S. M.; Ribeiro, C. C .M. Structure of ionic liquids of 1-alkyl-3-methylimidazoliumcations: A systematic computer simulation study [J]. J. Chem. Phys., 2003,120: 1855.
    
    [88] Urahata, S. M; Ribeiro, C. C. M. Single particle dynamics in ionic liquids of 1-alkyl-3-met-hylimidazolium cations [J]. J. Chem. Phys., 2005,122: 024511.
    
    [89] Andrade, J. De.; Boes, E. S.; Stassen, H. A force field for liquid state simulations on roomtemperature molten salts:1-Ethyl-3-methylimidazolium tetrachloro aluminate [J]. J. Phys.Chem. B, 2002,106:3546.
    
    [90] Shim ,Y.; Choi, M. Y.; Kim, H. J. A molecular dynamics computer simulation study ofroom-temperature ionic liquids. I. Equilibrium salvation structure and free energetics [J]. J.Chem. Phys., 2005,122:44510.
    
    [91] Shim, Y.; Choi, M. Y; Kim, H. J. A molecular dynamics computer simulation study ofroom-temperature ionic liquids. II. Equilibrium and nonequilibrium salvation dynamics [J].J. Chem. Phys., 2005,122: 44511.
    
    [92] Dymek, C. J.; Stewart, J. P. Calculation of hydrogen-bonding interactions between ions inroom-temperature molten salts [J]. Inorg. Chem., 1989,28: 1472.
    
    [93] Dieter, K. M.; Dymek, C. J.; Heimer, J. N. E.; Rovang, J. W.; Wilkes, J. S. Ionic structureand interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts[J]. J. Am. Chem. Soc, 1988, 110: 2722.
    
    [94] Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-cthyl-3-methylimidazolium basedionic liquids [J]. Chem. Commun., 1992, 965.
    
    [95] Takahashi, S.; Curtiss, L. A. Molecular orbital calculations and Raman measurements forl-ethyl-3-methylimidazolium chlroaluminates [J]. Inorg. Chem., 1995, 34: 2990.
    
    [96] Meng, Z.; Dolle, A.; Carper, W. R. Gas phase model of an ionic liquids: semi-empirical and??ab initio bonding and molecular structure [J]. J. Molecular Stucture (Theochem), 2002, 585:119.
    
    [97] Turner, E. A.; Pye, C. C; Singer, R. D. Use of ab initio calculations toward the rational design of room temperature ionic liquids [J]. J. Phys. Chem. A, 2003,107: 2277.
    
    [98] Wang, Y.; Li, H.; Wu, T.; Wang, C; Han, S. Reaction mechanism study for the synthesis ofalkylimidazolium based halide ionic liquids [J]. Acta Phys. Chim. Sin., 2005,21:517.
    
    [99] Wang, Y; Li, H.; Han, S. Structure and conformation properties of 1-alkyl-3-methylimidazolium halide ionic liquids: A density-functional theory study [J]. J. Chem. Phys., 2005, 123:174501.
    
    [100] Wang, Y; Li, H.; Han, S. The chemical nature of the C-H…X~- (X = Cl or Br) interaction inimidazolium halide ionic liquids [J]. J. Chem. Phys., 2006,124: 44504.
    
    [111] Hunt, P. A.; Kirchner, B.; Welton, T. Characterising the electronic structure of ionic liquids:An examination of the 1-butyl-3-methylimidazolium chloride ion pair [J]. Chem. Eur. J.,2006,12: 6762.
    
    [112] Berg, R. W.; Deetlefs, M.; Seddon, K. R.; Shim, I.; Thompson, J. M. Raman and ab initiostudies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids [J]. J. Phys. Chem.B, 2005,109: 19018.
    
    [113] Umebayashi,Y; Fujimori, T.; Sukizaki, T.; Asada, M.; Fujii, K.; Kanzaki, R.; Ishiguro, S.Evidence of conformational equilibrium of 1-Ethyl-3-methylimidazolium in its ionic liquidsalts:Raman spectroscopic study and quantum chemical calculations [J]. J. Phys. Chem. A,2005,109: 8976.
    
    [114] Zom, D. D.; Boatz, J. A.; Gordon, M. S. Electronic structures of tetrazolium-based ionic liquids [J]. J. Phys. Chem. B, 2006,110: 11110.
    
    [115] Dong, K.; Zhang, S.; Wang, D.; Yao, X. Hydrogen bonds in imidazolium ionic liquids [J]. J.Phys. Chem. A, 2006,110:9775.
    
    [116]李鸿雁,王大喜,窦荣坦,高金森.烷基毗咙及氯化铝正负离子结构的密度泛函研 究[J].分子科学学报,2006,22:306.
    
    [117]蒲敏,刘坤辉,李会英,陈标华.DFT法研究离子液中Emim~+催化丁烯双键异构反 应机理[J].物理化学学报,2004,20:826.
    
    [118]刘坤辉,蒲敏,李会英,陈标华.1-乙基-3-甲基咪哇四氟硼酸盐离子液体的量子化 学研究[J].化学物理学报,2005,18:331.
    
    [119] Wang, Y; Li, H.; Han, S. A theoretical investigation of the interaction between water molecules and ionic liquids [J]. J. Phys. Chem. B, 2006,110: 24626.
    
    [120] Palomar, J.; Ferro, V. R.; Gilarranz, M. A.; Rodriguez, J. J. Computational approach to nuclear magnetic resonance in 1-alkyl-3-methylimidazolium ionic liquids [J]. J. Phys. Chem. B, 2007, 111:168.
    
    [121] Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T. Development of cation/an-ion "interaction" scales for ionic liquids through ESI-MS [J]. J. Phys. Chem. B, 2007, 111:598.
    
    [122] Becke, A.D. [J]. J. Chem. Phys., 1993, 98: 5648.
    
    [123] Lee, C; Yang, W.; Parr, R.G [J]. Phys. Rev. B, 1988, 37: 785.
    
    [124] Miehlich, B.; Savin, A.; Stall, H.; Preuss, H. [J]. Chem. Phys. Lett., 1989,157: 200.
    
    [125] Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, M.; Fukuda, R.; Hasegawa, J.; Ishida ,M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R,; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, 0.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C; and Pople, J. A. Gaussian 03, Gaussian, Inc., Pittsburgh PA, 2003.
    
    [126] Csaszar, A. G. [J]. J. Am. Chem. Soc, 1992,114: 9568-9575.
    
    [127] Bondi, A. [J]. J. Phys. Chem., 1964,68: 441-451.
    
    [128] Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. [J]. J. Am. Chem. Soc, 2002, 124:4974-4975.
    
    [129] Forsyth, S. A.; MacFarlane, D. R.; Thomson, R. J.; Von-Itzstein, M. [J]. Chem. Commun., 2002, 714-715.
    
    [130] Katsyuba, S. A.; Zvereva, E. E.; Vidis, A.; Dyson, P. J. [J]. J. Phys. Chem. A , 2007, 111: 352-370.
    
    [131] Mele, A.; Tran, C. D.; Laceula, S. H. D. The structure of a room-temperature ionic liquid with and without trace amounts of water: The role of C-H O and C-H…F interactions in 1-n-butyl -3-methylimidazolium tetrafluoroborate [J]. Angew. Chem. Edition, 2003, 42: 4364.
    
    [132] Gozzo, F. C.; Santos, L. S.; Augusti, R.; Consorti, C. S.; Dupont, J.; Eberlin, M. N. Gaseous supramolecules of imidazolium ionic liquids: " Magic" numbers and intrinsic strengths of hydrogen bonds [J].Chem. Eur. J. 2004,10: 6187.
    [133] Koβmann, S.; Thar, J.; Kirchner, B.; Hunt, P. A.; Welton, T. Cooperativity in ionic liquids [J]. J. Chem. Phys., 2006,124: 174506.
    [134] (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. [J]. Chem. Rev., 1988, 88: 899-926.
    
    (b) Bader, R. F. W. Atoms in Molecules. A Quantum Theory, Oxford University, New York, 1990.
    
    [135] Popelier, P. Atoms in molecules: An introduction. Pearson Education: Harlow, 2000.
    [136] Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Johnston, S.; Seddon, K. R.; Rogers, R. D. [J]. Chem. Commun., 2003,1636-1637.
    [137] Crowhurst, L.; Mawdsley, P. R.; Perez-Arlandis, J. M.; Salter, P. A.; Welton, T. [J]. Phys. Chem. Chem. Phys., 2003,5: 2790-2794.
    
    [138] Saha, S.; Hayashi, S.; Kobayashi, A.; Hamaguchi, H. [J]. Chem. Lett. 2003,32: 740-741.
    [139] Avent, A. G.; Chaloner, P. A.; Day, M. P.; Seddon, K. R.; Welton, T. [J]. J. Chem. Soc. Dalton Trans., 1994,3405-3413.
    [140] Gillespie, R. J.; Popelier, P. L. A. Chemical bonding and molecular geometry. Oxford University Press: New York. 2001.
    
    [141] Pacios, L. F. [J]. J. Phys. Chem. A, 2004,108: 1177-1188.
    [142] (a) Jenkins, S.; Morrison, I. [J]. Chem. Phys. Lett., 2000, 317: 97-102.
    
    (b) Arnold, W. D.; Oldfield, E. [J]. J. Am. Chem. Soc. 2000,122: 12835-12841.
    
    (c) Rozas, I.; Alkorta, I.; Elguero, J. [J]. J. Am. Chem. Soc. 2000,122: 11154-11161.
    [143] Miller, C. E.; Francisco, J. S. [J]. J. Am. Chem. Soc. 2001,123: 10387-10388.
    
    [144] Gora, R.W.; Grabowski, S. J.; Leszczynski, J. [J]. J. Phys. Chem. A, 2005,109: 6397-6405.
    [145] (a) Torrent-Sucarrat, M.; Anglada, J. M. [J]. Chem. Phys. Chem., 2004, 5: 183-191.
    
    (b) Torrent-Sucarrat, M.; Anglada, J. M. [J]. J. Phys. Chem. A, 2006,110: 9718-9726.
    [146] Galwey, A. K.; Brown, M. E. Thermal Decomposition of Ionic Solids [J]. Elsevier: Amsterdam, 1999,415-435.
    [147] Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Binkley, J. S.; Schleyer, P. V. R. [J]. J. Am. Chem. Soc, 1983,105: 6389-6399.
    
    [148] Zhang, L.; Li, H.; Wang, Y.; Hu, X. [J]. J. Phys. Chem. B, 2007,111:11016-11020.
    [149] (a) Pimienta, I. S. O.; Elzey, S.; Boatz, J. A.; Gordon, M. S. [J]. J. Phys. Chem. A, 2007, 111:691-703.
    (b) Schmidt, M. W.; Gordon, M. S.; Boatz, J. A. [J]. J. Phys. Chem. A, 2005, 109: 7285-7295.
    
    [150] Schaefer, L.; Sellers, H. L.; Lovas, F. J.; Suenram, R. D. Theory versus experiment: the case of glycine [J]. J. Am. Chem. Soc, 1980,102: 6566.
    [151] Pei, K. M.; Liang, J.; Li, H. Y. Gas-phase chemistry of nitrogen trifluoride NF3: structure and stability of its M+-NF3 (M= H, Li, Na, K) complexes [J]. J. Molecular Structure. 2004, 690:159.
    [152] Ai, H. Q.; Bu, Y. X.; Han, K. L. Structure and property of glycine's derivatves bound by multiplicatons H+,Li+,and Na+: A theoretical study [J]. J. Chem. Phys., 2002,117: 7593-7602.
    [153] Ai, H. Q.; Bu, Y. X. Reservation energy bonds and stucture stability of series multi-hydr-ated (nH2O=1-10) glycine-H+M+(M=Li, Na or K) complexes [J]. J. Phys. Chem. B, 2004, 108(4): 1241-1254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700