离子液体的结构及其相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类完全由离子构成的介质,离子液体具有与传统分子介质不同的内部环境。微观结构决定性质,对离子液体这种离子介质中各物质的相互作用和运动规律的细致研究有助于获得一些有别于分子介质的规律与知识。本论文从研究离子液体的内部相互作用出发,进一步扩展到离子液体和各种环境分子间的相互作用,采用量子化学计算、分子动力学模拟和实验相结合的方法,从多方位、多角度来研究离子液体中的各种相互作用。
     论文首先采用密度泛函理论对离子液体中阴阳离子之间的相互作用进行了研究。我们将咪唑阳离子的周围划分为多个区域,对这些区域中阴阳离子间的相互作用分别进行了研究。研究表明,在咪唑环的周围存在着多个活性区域,在这些区域里,阴阳离子间能形成稳定的离子对结构。咪唑阳离子能同时和1个、2个或者3个卤素阴离子形成离子氢键作用,但是不能同时和3个以上的卤素阴离子形成离子氢键作用。
     为加深对离子液体中阴阳离子之间相互作用关系的理解,我们进一步采用NBO(Natural Bond Orbital)和AIM(Atom in Molecule)的方法,以1-乙基-3-甲基咪唑氯盐([emim][Cl])和1-乙基-3-甲基咪唑溴盐([emim][Br])离子液体为例,对阴阳离子间形成的离子氢键进行了更深入的分析。研究发现,轨道重叠和电子转移对离子对的稳定性有较大的贡献。NBO分析表明阴离子的孤对电子和C_2-H反键轨道之间的n→σ~*作用能提供较大的稳定化能,它对整个离子对的稳定性起到了非常关键的作用。
     微量水的存在对离子液体的物理化学性质及其催化性能有显著的影响。我们采用量子化学计算的方法研究了离子液体中阳离子、阴离子及离子对和水分子之间的相互作用。发现阴阳离子以及离子对均能够和水分子形成强的氢键作用。基于计算的结论我们提出了阴离子(X~-=Cl~-、Br~-或BF_4~-)和水分子(W)之间相互作用的四种模式:X~-…W、2X~-…W(X=Cl、Br)、BF_4~-…W及W…BF_4~-…W。计算发现疏水性的阴离子PF_6~-不能和水分子形成稳定的构型,这很好地体现了PF_6~-阴离子的疏水性。咪唑阳离子也能够和水分子之间形成强氢键作用,其氢键键能范围在50~100 kJ/mol之间。这可能是疏水性的PF_6~-盐离子液体表现出一定亲水性的原因之一。
     相关研究表明,离子液体能显著地提高许多化学反应的反应速率和选择性,但是离子液体在反应中的催化机理十分复杂,要建立一套完整的理论模型来研究离子液体催化反应的机理非常困难。因此,有必要对体系进行适当地简化,从不同的角度来探讨离子液体对反应可能存在的影响。我们以Diels-Alder反应为例,通过研究离子液体和丙烯酸甲酯之间的相互作用来探讨离子液体对Diels-Alder反应的催化机理。研究发现离子液体能够有效地降低丙烯酸甲酯的LUMO轨道的能量,从而降低环戊二烯和丙烯酸甲酯HOMO和LUMO轨道间的能差,进而有效地促进Diels-Alder反应。更深入地研究发现,阳离子的静电荷能够显著地降低丙烯酸甲酯的LUMO轨道能量,这很好地解释了文献报道所发现的实验现象,能为以后设计新型离子液体催化Diels-Alder反应提供理论指导。
     具有温室效应的CO_2气体和能产生酸雨的SO_2气体浓度的增加是21世纪人类面临的最重要的环境问题之一。离子液体是一种潜在的吸收CO_2和SO_2的载体,从分子层面上研究离子液体与CO_2和SO_2之间的作用模式,能为设计开发对CO_2和SO_2具有高吸收率的新型离子液体提供理论指导。因此,我们开发了对CO_2及SO_2有特殊吸收性能的胍类离子液体的力场,并对CO_2及SO_2和离子液体体系进行了模拟研究,发现阴离子是造成CO_2和SO_2在胍类离子液体中溶解差异的主要原因。通过对径向分布函数的统计和分析,发现离子液体的阴阳离子中所含的活泼基团(如-NH2、-OH等)对CO_2及SO_2的吸收有重要的帮助。这个结论启发我们设计合成了两种含-NH_2基团的离子液体,测定了CO_2气体在两种离子液体中的溶解性能,发现二乙烯三胺醋酸盐离子液体是吸收CO_2气体的良好溶剂。
     通过以上研究,本论文建立了用实验、理论和计算机模拟研究离子液体体系中各种相互作用关系的初步框架,总结了离子介质中各种相互作用和微观结构之间的一些内在联系,为进一步研究离子液体中的相互作用关系以及离子液体的分子设计打下了坚实的基础。
As a kind of new ionic solvents, the ionic liquids (ILs) have different internal environment compared with the tranditional molecular solvents. A systematic study of the interaction in the ILs might lead to a better understanding of their structure-activity relationship. In the present work, quantum chemical calculations, molecular dynamics are combined to investigate the interactions in the ILs.
    The interaction between the anion and the cation in the ILs was firstly focused on using the density functional theory (DFT). Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Anions have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four active regions in the vicinity of the imidazolium cations, in these regions, the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can interact with one, two or three but no more than three nearest halide anions by forming hydrogen bond. The halide ions are situated in hydrogen bond positions rather than at random.
    In order to obtain deeper insight on the interaction between the cation and the anion, the natural bond orbital (NBO) and atom in molecular (AIM) were used to study the ion hydrogens in the ion pairs. Based on the calculation results, a better understanding of the origin of the interaction between the imidazolium cations and the anions. The nature of the ion hydrogens are mainly electrostatic, however, the charge transfer and orbital interaction can contribute significantly, thereby making the interaction partly covalent. In addition, the NBO analysis demonstrated that the stabilization energy is
    due to the n→σ~* C-H orbital interaction.
    The presence of water could affect the activity of the ILs dramatically and it is often presented as a contaminant in hydrophilic as well as in hydrophobic ILs, significantly affecting their physical properties. Quantum chemical calculations have been used to investigate the interaction between the water molecules and ILs based on the imidazolium cation with different anions: [Cl~-], [Br~-], [BF_4~-], and [PF_6~-]. The predicted geometries, interaction energies implied that the water molecules interact with the Cl~-, Br~-, BF_4~- anions to form X~-…W (X=Cl or Br, W=H_2O), 2X~-…2W, BF_4~-…W and W…BF_4~-…W complexes. The hydrophobic PF_6~- anion could not form stable complex with the water molecules at the DFT level. Further studies indicate that the cation could also form strong interaction with water molecules. The l-Ethyl-3-methylimidazolium cation (Emim~+) has been used as a model cation to investigate the interaction between the water molecule and the cation. In addition, the interaction between the ion pairs and water were studied using the 1-ethyl-3-methylimidazolium chloride ([emim][Cl]) as a model ionic liquid. The strengths of the interactions in these categories follow the trend anion-W > cation-W > ion pair-W.
    The mechanism of how the ILs affect the Diels-Alder is an active area of ongoing research. A microscopic insight in the mechanism of the reaction via quantum chemical calculations was given, evidencing how the ILs affect the energy barrier and promot the reaction. The ILs can lower the dienophile LUMO and HOMO energies, bringing dienophile LUMO energy closer to the diene HOMO. The effect of the positive charge of the imidazolium cation was then estimated. It was surprised to find that the positive charge could decrease the LUMO_(dienophile)-HOMO_(diene) energy gap significantly. Based on these results, it could be predicted that the positive charge center of cation could affect the reaction significantly. These results provide opportunities in the design of future ILs catalytic systems for the organic reactions.
    The consuming of the CO_2 and the SO_2 has become a world-wide problem. The emerging of the ILs provides a new way for the absorption of the CO_2 and SO_2 gases. An all-atom force field is developed using a combination of density functional theory calculations and OPLS force field parameter values for the 1,1,3,3-Tetramethyl -guanidium Lactate (TMG) lactic acid (LAC) ionic liquid (TMGL). Molecular dynamics simulations are then conducted to investigate the solubility of the SO_2 and CO_2 gases in the TMGL. The simulations show strong organization of SO_2 about the cation and the anion of the TMGL, but relatively weak organization of CO_2 about the cation and the anion of the TMGL, which well explained the selectivity of the TMGL toward the SO_2 and CO_2. Based on the calculations, it was found that the active groups such as the -NH2 and -OH has great effect on the absorbing of the SO_2 and CO_2, this inspired us to design two simple amine ILs which include the -NH_2 group. The experiment result demonstrates that the TECAc ionic liquid is a good solvent for CO_2.
    All in all, the chemical theory, computer simulations and experiment are combined to investigate the interaction relationship in the ILs. The frame of studing on interaction in ionic liquid is established to successfully reveal the structures and interactions in the systems. It could be expected that these methods are applicable to investigate more important phenomena in the ILs.
引文
1.邓友全.离子液体—性质、制备与应用.中国石化出版社.第一版,2004.
    2.李汝雄.绿色溶剂—离子液体的合成与应用.化学工业出版社.第一版,2004.
    3.张锁江,吕兴梅.离子液体—从基础研究到工业应用.科学出版社.第一版,2006.
    4. Wasserscheid P, Eichmann M, Selective dimersation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor. Catal. Today. 2001, 66, 309.
    5. Freemantle M. Chem. Eng. News. 1998, 76, 32.
    6. Freemantle M. Chem. Eng. News. 2004, 82, 326.
    7. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071.
    8. Dupont J, Souza R, Suarez P. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002, 102, 3667.
    9. Wasserscheid P, Keim W. Ionic liquids-New "solutions" for transition metal catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772.
    10.顾彦龙,彭家建,乔琨,杨宏洲,石峰,邓友全.室温离子液体及其在催化和有机合成中的应用.化学进展.2003,15,241.
    11. Sun H. Ionic liquids: Progress and prospective. Chinese J. Chem. Engin. 2005, 13, 830.
    12.寇元.离子液体—研究热点的冷静分析.科学观察.2006,1,42.
    13. Weng J, Li H, Wang C, Wang Y. Novel quatemary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction. Green Chem. 2006, 8, 96.
    14. Sugden S, Wilkins H. The preacher and chemical constitution part VII: fused metals and salts. J. Chem. Soc. 1929, 7, 1291.
    15. Hurley F H. U.S. Patent 2,446,331. 1948.
    16. Robinson J, Osteryoun R A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride -n-butylpyridinium chloride. J. Am. Chem. Soc. 1979, 101, 323.
    17. Gale R J, Gilbert B, Osteryoung R A. Raman spectra of molten aluminum chloride: 1-Butylpyridinium chloride systems at ambient temperatures. Inorg. Chem. 1978, 17,2728.
    18. Tait S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg. Chem. 1984, 23, 4360.
    19. Scheffler T B, Hussery C L, Seddon K R, Kear C M, Armitage P D. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stailaztion of hexachlroromolybdate(2)and hexachloromolybdate(3). Inorg. Chem. 1983, 22, 2099.
    20. Wilkes J S, Levisky L A, Wilson R A, Dialkyimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 1982, 21,1263.
    21. Boon J A, Levisky J A, Pflug J L, Wilkes J S. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem. 1986, 51, 480.
    22. Chauvin Y, Gilbert B, Guibard I. Catalytic dimerization of alkenes by nickel-complexes in organochloroaluminate moleten-salts. J. Chem. Soc, Chem. Commun. 1990, 1715.
    23. Fry S E, Pienta N J, Effects of molten salts on reactions. Nucleophilic aromatic substitution by halide ions in molten dodecyltributylphosphonium salts. J. Am.
    Chem. Soc. 1985, 107, 6399.
    24. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc, Chem. Commun. 1992, 965.
    25. Ye C, Shreeve J M. Syntheses of very dense halogenated liquids. J. Org. Chem. 2004,69,6511.
    26. Christopher H, John D H, McMath S E J. A highly efficient synthetic procedure for deuteriating imidazoles and imidazoium salts. Chem. Commun. 2001,367.
    27. Bao W, Wang Z, Li Y. Synthesis of chiral ionic liquids from natural amino acids. J. Org. Chem. 2003, 68, 591.
    28. Fukumoto K, Yoshizwa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 2005, 127, 2398.
    29. Cole A C, Jensen J L, Ntai L, Tran K L T, Weaver K J, Forbes D C, Davis J H, Jr. Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc. 2002, 124, 5962.
    30. Du Z, Li Z, Guo S, Zhang J, Zhu L, Deng Y. Investigation of physicochemical properties of lactam-based bronsted acidic ionic liquids. J. Phys. Chem. B, 2005, 109,19542.
    31. Gathergood N, Garcia M T, Scammells P J. Biodegradable ionioc liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 2004, 6,166.
    32. Huang J, Baker G A, Luo H, hong K, Li Q, Bjerrum N J, Dai S. Bronsted acidic room temperature ionic liquids derived from N,N-dimethylformamide and similar protophilic amides. Green Chem. 2006, 8, 599.
    33. Kuhlmann E, Himmler S, Giebelhaus H, Wasserscheid P. Imidazolium dialkylphosphates-a calss of versatile, halogen-free and hydrolyticall stable ionic liquids. Green Chem. 2007, 9, 233.
    34. Blancheard L A, Hancu D, Beckman E J, Brennecke J F. Nature. 1999, 399, 28.
    35. Armstrong D W, He L, Liu Y. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal. Chem. 1999, 71, 3873.
    36. Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormaid P, Morris R E. Nature. 2004, 430,1012.
    37. Lu W, Fadeev A G, Qi B. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science. 2002, 297, 983.
    38. Fei Z, Geldbach T J, Zhao D, Dyson P J. From dysfunction to Bis-function: on the design and applications of fuctionalised ionic liquids, Chem. Eur. J. 2006, 12, 2123.
    39. Freemantle M. Chem. Eng. News. 2000, 15, 37.
    40. Roger R D, Seddon K R, Ionic liquids-solvents of the future? Science. 2003, 302, 792.
    41. Mehnert C P. Supported ionic liquid catalysis. Chem. Eur. J. 2005, 11, 50.
    42. Adams C J, Earle M J, Roberts G, Seddon K R, Friedel-Crafts reactions in room temperature ionic liquids. Chem. Commun. 1998, 19, 2097.
    43. Ross J, Xiao, J. Friedel-Crafts acylation reactions using metal triflates in ionic liquid. Green Chem. 2002, 4, 129.
    44. Gmouth S, Yang H, Vaultier M. Activation of bismuth(III) derivatives in ionic liquids: Novel and recyclable catalytic systems for Friedel-Crafts acylation of aromatic compounds. 2003, 5, 2219.
    45. Wasserscheid P, Resing M, Worth W. Hydrogensulfate and tetrakis (hydrogensulfato) borate ionic liquids: synthesis and catalytic application in highly bronsted-acidic systems for Friedel-Crafts alkylation. Green Chem. 2002, 4, 134.
    46. Du, H, Zhao D, Ding K. Enantioselective catalysis of the hetero-diels-alder reaction between brassard's diene and aldehydes by hydrogen-bonding activation: a one-step synthesis of dihydrokawain. Chem. Eur. J. 2004,10, 5964.
    47. Khuong K S, Beaudry C M, Trauner D, Houk K N. Dienophile twisting and substituent effects influence reaction rates of intramolecular diels-alder cycloadditions: ADFT study. J. Am. Chem. Soc. 2005,127, 3688.
    48. Jaeger D A, Tucker C E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett. 1999,40, 2461.
    49. Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. Green Chem. 1999,23.
    50. Muzart J. Ionic liquids as solvents for catalyzed oxidations of organic compounds. Adv. Synth. Catal. 2006, 348, 275.
    51. Qiao C, Zhang Y, Zhang J, Li C, Activity and stability investigation of [BMIM][AlCl4] ionic liquid as catalyst for alkylation of benzene with 1-dodecene. Applied Catal. A: General. 2004, 276, 61.
    52. Sun H, Harms K, Sundermeyer J. Aerobic oxidation of 2,3,6-Trimethylphenol to trimethyl-1,4-benzoquinone with copper(II) chloride as catalyst in ionic liquid and structure of the active species. J. Am. Chem. Soc. 2004,126, 9550.
    53. Sun H, Li X, Sundermeyer J. Aerobic oxidation of phenol to quinine with copper chloride as catalyst in ionic liquid. J. Molecular Catal. A: Chemical, 2005, 240, 119.
    54. Zhang J, Zhang S, Dong K, Zhang Y, Shen Y, Lv X. Supported absorption of CO_2 by tetrabutylphosphonium amino acid ionic liquids. Chem. Eur. J. 2006,12,4021.
    55. Huddleston J G, Willauer H D, Swatloski R P, Visser A E, Rogers R D. Room temperature ionic liquids as novel media for "clean" liquid-liquid extraction. Chem. Commmun. 1998, 1765.
    56. Visser A E, Swatloski R P, Rogers R D, Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun. 2001, 135.
    57. Arce A, Rodriguez O, Soto A. Experimental determination of liquid-liquid equilibrium using ionic liquids: Tert-amyl ethyl ether + ethanol + 1-octyl-3-methylimidazolium chloride system at 298.15 K. J. Chem. Eng. Data, 2004, 49, 852.
    58. 周震寰,王涛,邢华斌,骆广生.起临界CO_2/离子液体体系。化学通报.2005, 68, 262.
    59. Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization, Macromol. Biosci. 2005, 5, 520.
    60. Crespo J G, Branco L C, Afonso C A M. Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew. Chem. Int. Edit. 2002, 41, 2771.
    61. Anderson J L, Ding J, Welton T, Armstrong D W. Characterizing Ionic liquids on the basis of multiple salvation interactions. J. Am. Chem. Soc. 2002, 124, 14247.
    62. Camper D, Scovazzo P C, Koval C, Noble R. Gas solubilities in room temperature ionic liquids. Ind. Eng. Chem. Res. 2004, 43, 3049.
    63. Kanakubo M, Umecky T, Hiejima Y, Aizawa T, Nanjo H, Kameda Y. Solution structures of 1-butyl-3-methylimidazolium hexanuorophosphate ionic liquid saturated with CO_2: Experimental evidence of specific anion-CO_2 interaction. J. Phys. Chem. B, 2005,109,13847.
    64. Bates E D, Mayton R D, Ntai I, Davis J H, Jr. CO_2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 2002, 124, 926.
    65. Shah J K, Brennecke J F, Maginn E J. Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from monte carlo simulations. Green Chem. 2002, 4, 112.
    66. Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. Why is CO_2 so soluble in imidazolium based ionic liquids? J. Am. Chem. Soc. 2004, 126, 5300.
    67. Scovazzo P, Ferguson L. Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic lqiuds: data and correlations. Ind. Eng. Chem. Res. 2007, 46, 1369.
    68. Shiflett M B, Yokozeki A. Solubility of CO_2 in room temperature ionic liquid [hmim][Tf_2N]. J. Phys. Chem. B, 2007, 111, 2070.
    69. Zhang S, Yuan X, Chen Y, Zhang X. Solubilityies of CO_2 in 1-butyl-3-mehtylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures. J. Chem. Eng. Data. 2005, 50,1582.
    70. Zhang S, Chen Y, Ren X, Zhang Y, Zhang J, Zhang X. Solubility of CO_2 in sulfonate ionic liquids at high pressure. J. Chem. Eng. Data. 2005, 50, 230.
    71. Yu G, Zhang S, Yao X, Zhang J, Dong K, Dai W, Mori R. Design of task-specific ionic liquids for capturing CO_2: A molecular orbital study. Ind. Eng. Chem. Res. 2006, 45, 2875.
    72. Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Desulfurization of flue gas: SO_2 absorption by an ionic liquid. Angew. Chem. Int. Ed. 2004, 43, 2415.
    73. Anderson J L, Dixon J K, Maginn E J, Brennecke J F. Measurement of SO_2 soblubility in ionic liquids. J. Phys. Chem. B, 2006,110,15059.
    74. Fung Y S, Zhou R. Room temperature molten salt as medium for lithium battery. J. Power Sources. 1999, 81, 891.
    75. Wang P, Zakeeruddin S M, Gratzel M, Exnar I. Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells. Chem. Commun. 2004, 73.
    76. Kubo W, Kambe S, Nakade S. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J. Phys. Chem. B, 2003, 107,4374.
    77. Chen P, Hussey C. Electrochemistry of ionophore-coordinated Cs and Sr ions in the ionic liquids. J. Electrochemical Society. 2004, 49, 5125.
    78. Yang M, Sun I. Electrodepositoin of animony in a water-stable 1-ethyl-3-methyl imidazolium chloride tetrafluoroborate room temperature ionic liquid. J. Applied Electrochemistry. 2003, 33, 1077.
    79. Yang H, Cheng Y, Zhou Z. Ionic liquids based electrolyte with mesoporous silica SBA-15 as framework for quasi-solid-state dye-sensitized solar cells. Chinese J. Chem. 2006, 24,1737.
    80. Comminges C, Barhdadi R, Laurent M. Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: Ionic liquids plus molecular solvents. J. Chem. Engin. Data. 2006, 51, 680.
    81. Rivera-Rubero S, Baldelli S. Surface characterization of 1-butyl-3-methylimidazolium Br~-, I~-, PF_6~-, BF_4~-, (CF_3SO_2)_2N~-, SCN-, CH_3SO_3~-, CH_3SO_4~-, and (CN)_2N ionic liquids by sum frequency generation. J. Phys. Chem. B,2006,110, 15499.
    82. Su B M, Zhang S G, Zhang Z. Structural elucidation of thiophene interaction with ionic liquids by multinuclear NMR spectroscopy. J. Phys. Chem. B, 2004, 108, 19510.
    83. Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper A K. Structure of ionic liquids-Benzene mixtures. J. Phys. Chem. B, 2005, 109, 1593.
    84. Hardacre C, Holbrey J D, McMath S E J, Bowron D T, Soper A K. Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. J. Chem. Phys. 2002,118,273.
    85. Katayanagi H, Hayashi S, Hamaguchi H, Nishikawa K. Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem. Phys. Lett. 392, 2004, 460.
    86. Katsyuba S A, Zvereva E E, Vidis A, Dyson P J. Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J. Phys. Chem. A, 2007,111, 352.
    87. Hu Z H, Margulis C J. Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. PNAS. 2006, 103, 831.
    88. Hunt P A, Gould I R. Structural characterization of the 1-Butyl-3-methylimidazolium chloride ion pair using ab initio methods. J. Phys. Chem. A, 2006,110,2269.
    89. Raymo F M, Bartberger M D, Houk K N, Stoddart J F. The magnitude of [C-H…O] hydrogen bonding in molecular and supramolecular assemblies. J. Am. Chem. Soc. 2001, 123, 9264.
    90. Hanke C G, Johansson A, Harper J B, Lynden-Bell R M. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study. Chem. Phys. Lett. 2003, 374, 85.
    91. Urahata S M, Ribeiro C C M. Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study. J. Chem. Phys. 2003, 120,1855.
    92. Urahata S M, Ribeiro C C M. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J. Chem. Phys. 2005,122, 024511.
    93. Andrade J De, Boes E S, Stassen H. A force field for liquid state simulations on room temperature molten salts: 1-Ethyl-3-methylimidazolium tetrachloro aluminate. J. Phys. Chem. B, 2002,106, 3546.
    94. Shim Y, Choi M Y, Kim H J. A molecular dynamics computer simulation study of room-temperature ionic liquids. 1. Equilibrium salvation structure and free energetics. J. Chem. Phys. 2005, 122, 044510.
    95. Shim Y, Choi M Y, Kim H J. A molecular dynamics computer simulation study of room-temperature ionic liquids. II. Equilibrium and nonequilibrium salvation dynamics. J. Chem. Phys. 2005, 122, 044511.
    96. Cook D B. Handbook of computational quantum chemistry oxford. Oxford. 1998.
    97. Bent H A. An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem. Rev. 1961, 61, 275.
    98. Atkins P W, Friedman R S. Molecular quantum mechanics Oxford. Oxford. 1997.
    99. Cooper D L, Gerratt J, Raimondi M. Applications of spin-coupled valence bond theory. Chem. Rev. 1991, 91, 929.
    100.Hehre W J, Radom L, Schleyer P R, Pople J A. Ab initio molecular orbital theory. John Wiley & Sons. New York. 1986.
    101.Hehre W J. Practical strategies for electronic structure calculations wavefunction. Irvine. 1995.
    102.Sabo-Etienne, Chaudret B, Quantum mechanical exchange coupling in polyhydride and dihydrogen complexes. Chem. Rev. 1998, 98, 2077.
    103.Pople J A. Applications of electronic structure theory Schaefer H F, III Ed. 1, Plenum. New York. 1977.
    104.Foresman J B, Frisch A. Exploring chemistry with electronic structure methods Gaussian. Pittsburgh. 1996.
    105.Foster J P, Weinhold F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211.
    106.House J E. Fundamentals of quantum mechanics academic press. San Diego. 1998.
    107.Gerratt J, Cooper D L, Karadakov P B, Raimondi M. Modern valence bond theory. Chemical Society Reviews. 1997, 26, 87.
    108.Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev. 1991,91, 651.
    109.Kohn W, Becke A D, Parr R G Density functional theory of electronic structure. J. Phys. Chem. 1996,100,12974.
    110.Curtiss L A, Redfem P C, Raghavachari K, Pople J A. Assessment of Gaussian-2 and density function al theories for the computation of ionization potentials and electron affinities. J. Chem. Phys. 1998, 109, 42.
    111. Dymek C J, Stewart J. P. Calculation of hydrogen-bonding interactions between ions in room-temperature molten salts. Inorg. Chem. 1989, 28, 1472.
    112.Dieter K M, Dymek C J, Heimer J N E, Rovang J W, Wilkes J S. Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts. J. Am .Chem. Soc. 1988,110,2722.
    113.Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3 -methylimidazolium based ionic liquids. Chem. Commun. 1992, 965.
    114.Takahashi S, Curtiss L A. Molecular orbital calculations and Raman measurements for 1-ethyl-3-methylimidazolium chlroaluminates. Inorg. Chem. 1995, 34,2990.
    
    115.Meng Z, Dolle A, Carper W R. Gas phase model of an ionic liquids:semi- empirical and ab initio bonding and molecular structure. J. Molecular Stucture (Theochem) 2002, 585,119.
    116.Turner E A, Pye C C, Singer R D. Use of ab initio calculations toward the rational design of room temperature ionic liquids. J. Phys. Chem. A, 2003, 107, 2277.
    117.Wang Y, Li H, Wu T, Wang C, Han S. Reaction mechanism study for the synthesis of alkylimidazolium based halide ionic liquids. Acta Phys.-Chim. Sin. 2005,21,517.
    118. Wang Y, Li H, Han S. Structure and conformation properties of 1-alkyl-3-methylimidazolium halide ionic liquids: A density-functional theory study. J. Chem. Phys. 2005, 123, 174501.
    119. Wang Y, Li H, Han S. The chemical nature of the ~(?)C-H...X-(X=C1 or Br) interaction in imidazolium halide ionic liquids. J. Chem. Phys. 2006, 124, 044504.
    120. Hunt P A, Kirchner B, Welton T. Characterising the electronic structure of ionic liquids: An examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem. Eur. J. 2006, 12, 6762.
    121. Berg R W, Deetlefs M, Seddon K R, Shim I, Thompson J M. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids. J. Phys. Chem. B, 2005, 109, 19018.
    122. Umebayashi Y, Fujimori T, Sukizaki T, Asada M, Fujii K, Kanzaki R, Ishiguro, S. Evidence of conformational equilibrium of 1-Ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J. Phys. Chem. A, 2005, 109, 8976.
    123. Zom D D, Boatz J A, Gordon M S. Electronic structures of tetrazolium-based ionic liquids. J. Phys. Chem. B, 2006, 110, 11110.
    124. Dong K, Zhang S, Wang D, Yao X. Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A, 2006, 110, 9775.
    125.李鸿雁,王大喜,窦荣坦,高金森.烷基吡啶及氯化铝正负离子结构的密度泛函研究.分子科学学报:中英文版.2006,22,306.
    126.蒲敏,刘坤辉,李会英,陈标华.DFT法研究离子液中Emim~+催化丁烯双键异构反应机理.物理化学学报.2004,20,826.
    127.刘坤辉,蒲敏,李会英,陈标华.1-乙基-3-甲基咪唑四氟硼酸盐离子液体的量子化学研究.化学物理学报.2005,18,331.
    128.Wang Y, Li H, Han S. A theoretical investigation of the interaction between water molecules and ionic liquids. J. Phys. Chem. B, 2006, 110,24626.
    129.Palomar J, Ferro V R, Gilarranz M A, Rodriguez J J. Computational approach to nuclear magnetic resonance in 1-alkyl-3-methylimidazolium ionic liquids. J. Phys. Chem. B, 2007, 111, 168.
    130.Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciliano T. Development of cation/anion "interaction" scales for ionic liquids through ESI-MS. J. Phys. Chem. B 2007, 111, 598.
    131.Laudau D P, Binder K. In Monte Carlo Simulations in Statistical Physics. Cambridge University Press: Cambridge. 2000.
    132.Allen M P, Tildesley D J. Computer Simulation of Liquid. Clarendon Press, Oxford. 1987
    133.Metropolis N, Rosenbluth M N, Rosenbluth A W, Teller A H, Teller E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087.
    134.Lynden-Bell R M, Atamas N A, Vasilyuk A, Hanke C. G. Chemical potentials of water and organic solutes in imidazolium ionic liquids: a simulation study. Mol. Phys. 2002, 100, 3225.
    135.Hanke C G, Atamas N A, Lynden-Bell R M. Solvation of small molecules in imidazolium ionic liquids: a simulation study. Green Chem. 2002,4,107.
    136.Andrade J De, Boes E S, Stassen H. Computational study of room temperature molten salts composed by 1-alky-3-methylimidazolium cations-force-field proposal and validation. J. Phys. Chem. B, 2002, 106,13344-13351.
    137.Morrow T I, Maginn E J. Molecular Dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B, 2002, 106,12807.
    138.Popolo M G Del, Voth G A. On the structure and dynamics of ionic liquids. J. Phys. Chem. B, 2004, 108, 174.
    139. Padua A A H. Torsion energy profiles and force fields derived from ab ignition calculations for simulations of hydrocarbon-fluorocarbon diblocks and perfluoroalkylbromides. J. Phys. Chem. A, 2002, 106, 10116.
    140. Lopes J N C, Deschamps J, Padua A A H. Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B, 2004, 108, 2038.
    141. Buhl M, Chaumont A, Schurhammer R, Wipff G. Ab initio molecular dynamics of liquid 1, 3-dimethylimidazolium chloride. J. Phys. Chem. B, 2005, 109, 18591.
    142. Del Popolo M G., Lynden-Bell R M, Kohanoff J. Ab initio molecular dynamics simulation of a room temperature ionic liquid. J. Phys. Chem. B, 2005, 109, 5895.
    143. Del Popolo M G., Kohanoff J, Lynden-Bell R M. Solvation structure and transport of acidic protons in ionic liquids: A first-principles simulation study. J. Phys. Chem. B, 2006, 110, 8798.
    144. Liu Z, Huang S, Wang W. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B, 2004, 108, 12978.
    145. Wu X, Liu Z, Huang S, Wang W, Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys. 2005, 7, 2771.
    146.吴晓萍,刘志平,汪文川.分子模拟研究气体在室温离子液体中的溶解度.物理化学学报.2005,21,1138.
    147. Wang W, Liu Z. Force fields and simulation on imidazolium based ionic liquids. Abstracts of papers of the American chemical society. 2006, 231.
    148. Liu X. Wu X, Wang W. A novel united-atom force field for imidazoium-based ionic liquids Phsy. Chem. Chem. Phys. 2006, 8, 1096.
    149. Liu X, Zhang S, Zhou G, Wu G, Yuan X, Yao X. New force field for molecular simulation of guanidinium-based ionic liquids. J. Phys. Chem. B, 2006, 110, 12062.
    150.Crowhurst L C, Mawdsley P R, Perez-Arlandis J M, Salter P A, Welton T. Solvent-solute interactions in ionic liquids. Phys. Chem. Chem. Phys. 2003, 5, 2790.
    151.Seddon K R, Stark A, Torres M. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275.
    152.Saha S, Hamaguchi H. Effect of water on the molecular structure and arrangement of Nitrile-Functionalized ionic liquids. J. Phys. Chem. B, 2006, 110, 2777.
    153.Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156.
    154.Berson J A, Hamlet Z, Mueller W A. The correlation of solvent effects on the stereoselectivities of Diels-Alder reactions by means of linear free energy relationships. A new empirical measure of solvent polarity. J. Am. Chem. Soc. 1962,84,297.
    155.Minoux H, Chipot C. Cation-π interactions in proteins: Can simple models provide an accurate description? J. Am. Chem. Soc. 1999,121,10366.
    156.Bachrach S M, Jiang S. Theoretical study of the Diels-Alder reaction of selenoaldehydes and selenoketones. J. Org. Chem. 1999, 64, 8248.
    157.Kong S, Evanseck J D. Density functional theory study of aqueous-phase rate acceleration and endo/exo selectivity of the butadiene and acrolein Diels-Alder reaction. J. Am. Chem. Soc. 2000,122,10418.
    158. Varma R S, Namboodiri V V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun. 2001, 643.
    159. Deetlefs M, Seddon K R. Improved preparations of ionic liquids using microwave irradiation. Green Chem. 2003, 5, 181.
    160. Banks H D, White W E. A computational study of the reactions of thiiranes with ammonia and amines. J. Org. Chem. 2001, 66, 5981.
    161. Halls M D, Schlegel B. Chemistry inside carbon nanobtubes: the Menshutkin SN2 reaction. J. Phys. Chem. B, 2002, 106, 1921.
    162.刑其毅,裴伟伟,徐瑞秋,裴坚.基础有机化学.高等教育出版社.第3版,上册.
    163. Frisch M J, Trucks G. W, Schlegel H B, Scuseria G. E, Robb M A, Cheeseman J. R, Zakrzewski V G, Montgomery J A, Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G. A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G; Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, A1-Laham M. A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian. Inc., Pittsburgh PA, 1998.
    164. Hasan M, Kozhevnikov I V. N, N'-Dialkylimidazolium chloroplatinate (Ⅱ), Chloroplatinate (Ⅳ), and chloroiridate (Ⅳ) salts and an N-heterocyclic carbine complex of platinum (Ⅱ): synthesis in ionic liquids and crystal structures. Inorg. Chem. 2001, 40, 795.
    165. Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans. 1999, 2133.
    166.Holbrey J D, Reichert W M, Nieuwenhuyzen M, Johnston S, Seddon K R, Rogers R D. Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallization. Chem. Commun. 2003,1636.
    167.Gutowski K E, Holbrey J D, Rogers R D, Dixon D A. Prediction of the formation and stabilities of energetic salts and ionic liquids based on ab initio electronic structure calculations. 2005, 109, 23196.
    168.KoPmann S, Thar J, Kirchner B, Hunt P A, Welton T. Cooperativity in ionic liquids. J. Chem. Phys. 2006,124,174506.
    169.Mele A, Tran C D, Lacerda S H D. The structure of a room-temperature ionic liquid with and without trace amounts of water: The role of C-H … O and C-H… F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate, Angew. Chem. Edition. 2003, 42, 4364.
    170.Gozzo F C, Santos L S, Augusti R, Consorti C S, Dupont J, Eberlin M N. Gaseous supramolecules of imidazolium ionic liquids: "Magic" numbers and intrinsic strengths of hydrogen bonds. Chem. Eur. J. 2004,10, 6187.
    171.Rozas I, Alkorta I, Elguero J, Behavior of yelides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 2000, 122,11154.
    172.Gu J, Wang J, Leszczynski J. H-bonding patterns in the platinated guanine-cytosine base pair and guanine-cytosine-guanine-cytosine base tetrad: an electron density deformation analysis and AIM study. J. Am. Chem. Soc. 2004, 126,12651.
    173.Alabugin I V, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc. 2003,125, 5973.
    174.Iwaoka Michio, Komatsu H, Katsuda T, Tomoda S. Nature of nonbonded Se…O interaction characterized by ~(17)O NMR spectroscopy and NBO and AIM analyses. J. Am. Chem. Soc. 2004,126, 5309.
    175.Znamenskiy V S, Green M E. Topological changes of hydrogen bonding of water with acetic acid: AIM and NBO studies. J. Phys. Chem. A, 2004,108, 6543.
    176.Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, ZakrzewskiV G, Montgomery J A,Jr., Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacom be M Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M E, Replogle S, Pople J A. Gaussian. Inc., Pittsburgh PA, 2003.
    177.Wiberg K B, Ochterski J W. Comparison of different ab initio theoretical models for calculating isodesmic reaction energies for small ring and related compounds. J. Comput. Chem. 1997,18,108.
    178.Naray-Szabo, Ferency G G Molecular electrostatics. Chem. Rev. 1995, 95, 829.
    179.Bader R F W. Atoms in moleculars: A quantum theory. Oxford University Press: New York. 90.
    180.Li X S, Liu L, Schlegel H B. On the physical origin of blue-shifted hydrogen bonds. J. Am. Chem. Soc. 2002, 124, 9639.
    181.Popelier P. Atoms in molecules: An introduction. Pearson Education: Harlow, 2000.
    182.Gillespie R J, Popelier P L A. Chemical bonding and molecular geometry. Oxford University Press: New York. 2001.
    183. Salem L. Intermolecular orbital theory of the interaction between conjugated systems. 1. general theory. J. Am. Chem. Soc. 1968,90, 543.
    184.Herndon W C. The theory of cycloaddtion reaction. Chem. Rev. 1972, 72,157.
    185.Cammarata L C, Kazarian S G, Salter P A, Welton T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 2001, 3, 5192.
    186.Aggarwal A, Lancaster N L, Sethi A R, Welton T. The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactios in room-temperature ionic liquids. Green Chem. 2002, 4, 517.
    187.Zulfiqar F, Kitazume T. Ionic liquid catalyzed Henry reactions. Green Chem. 2000, 2,137.
    188.Nara S J, Harjani J R, Salunkhe M M, Friedel-Crafts sulfonylation in 1-Butyl-3-methylimidazolium chloroaluminate ionic liquids. J. Org. Chem. 2001, 66, 8616.
    189.Wang Z, Wang L. Preparation of dichlorophenylphosphine via Friedel-Crafts reaction in ionic liquids. Green Chem. 2003, 5, 737.
    190.Dzyuba S V, Bartsch R A. Expanding the polarity range of ionic liquids. Tetrahedron Letters. 2002,43, 4657.
    191.Lopez-Pastor M, Ayora-Canada M J, Valcarcel M, Lendl B. Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution. J. Phys. Chem. B, 2006,110, 10896.
    192.Rivera-Rubero S, Baldelli S. Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J. Am. Chem. Soc. 2004, 126, 11788.
    193.Downard A, Earle M J, Hardacre C, McMath S E J, Nieuwenhuyzen M, Teat S. Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. J. Mater. Chem. 2004,16, 43.
    194.Saha S, Hamaguchi H. Effect of water on the molecular structure and arrangement of nitrile -functionalized ionic liquids. J. Phys. Chem. B, 2006, 110, 2777.
    195.Tran C D, De Paoli Lacerda S H, Oliveira D. Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water. Appl. Spectrosc. 2003, 57,152105
    196.Koddermann T, Wertz C, Heintz A, Ludwig R. Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentaration. Chem. Phys. Chem. 2006, 7, 1944.
    197.Yoon B, Yen C H, Mekki S, Wherland S, Wai C M. Effect of water on the heck reactions catalyzed by recyclable palladium chloride in ionic liquids coupled with supercritical CO_2 extraction. Ind. Eng. Chem. Res. 2006, 45, 4433.
    198.Bieske Chaumont A, Schurhammer R, Wipff G Aqueous interfaces with hydrophobic room-temperature ionic liquids: a molecular dynamics study. J. Phys. Chem. B, 2005,109,18964.
    199. Jungwirth P, Tobias D J J. Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atomospheric chemistry. J. Phys. Chem. B, 2001, 105, 10468.
    200.Acevedo O, Jorgensen W L, Evanseck J D. Elucidation of rate variations for a Diels-Alder reaction in ionic liquids from QM/MM simulations. J. Chem. Theory Comput. 2007, 3,132.
    201.Birney D M, Houk K N. Transition structures of the lewis acid-catalyzed Diels-Alder reaction of butadiene with acrolein. The origins of selectivity. J. Am. Chem. Soc. 1990, 112,4127.
    202.Ma X, Kaneko T, Tashimo T, Yoshida T, Kato K. Use of limestone for SO_2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed. Chem. Eng. Sci. 2000, 49, 4643.
    203.Ma J, Liu Z, Liu S, Zhu Z. A regenerable Fe/AC desulfurizer for SO_2 adsorption at low temperatures. Appl. Catal. B, 2003, 45, 301.
    204.Jeong S M, Kim S D. Removal of NO_x and SO_2 by CuO/R-Al_2O_3 sorbent/catalyst in a fluidized-bed reactor. Ind. Eng. Chem. Res. 2000, 39, 1911.
    205.Kaminski G A, Friesner R A, Tirado-Rives J, Jorgensen W L. Evaluatin and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 2001, 105, 6474.
    206.Rizzo R C, Jorgensen W. L. OPLS all-atom model for amines: resolution of the amine hydration problem. J. Am. Chem. Soc. 1999, 121, 4827.
    207.Hofsass C, Lindahl E. Edholm O. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophysical J. 2003, 84, 2192.
    208.Van der Spoel D, Lindahl E, Hess B, Hess B, Groenhof G, Mark A E, Berendsen H J C. Gromacs: fast, flexible, and free. J. Comp. Chem. 2005, 26, 1701.
    209.Lindahl E, Hess B, van der Spoel D. Gromacs: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 2001, 7, 306.
    210.Lindahl E, Edholm O. Molecular dynamics simulation of NMR relaxation rates and solw dynamics in lipid bilayers. J. Chem. Phys. 2001, 115, 4938.
    211.Huang X, Margulis C J, Li Y, Berne B J. Why is the partial molar volume of CO_2 so small when dissolved in a room temperature ionic liquid? Structre and dynamics of CO_2 dissolved in [Bmim~+][PF_6~-]. J. Am. Chem. Soc. 2005, 127, 17842.
    212.Anthony J L, Anderson J L, Maginn E J, Brennecke J F. Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B, 2005,109, 6366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700