活性粉末混凝土高温爆裂及高温后力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土(Reactive Powder Concrete,简称RPC)具有超高的强度、高韧性、高耐久性和良好的体积稳定性,在石油、核电、市政、海洋、机械、航空、军事设施等工程领域具有广阔的应用前景。目前,RPC已成为国际工程材料领域的研究热点,但对其研究多集中于配制技术与常温力学性能方面,对其高温抗火性能的研究较少。本文在高强混凝土高温性能研究基础上,对RPC高温爆裂性能、纤维对爆裂抑制效果、高温后不同纤维种类和掺量的RPC力学性能及高温后RPC微观结构的变化进行试验研究,主要开展了以下几方面工作:
     (1)为摸清RPC的高温爆裂规律,试验研究了含水率、升温速度和试件尺寸对RPC爆裂性能的影响,对比分析了钢纤维、聚丙烯纤维和混杂纤维对RPC高温爆裂的抑制效果,基于试验结果,对RPC高温爆裂机理和爆裂抑制措施进行了探讨。试验结果表明:相对于升温速度和试件尺寸而言,含水率对RPC高温爆裂的影响最大,RPC爆裂临界含水率为0.80%~0.85%;单掺钢纤维体积率为2%或单掺聚丙烯纤维体积率为0.3%可有效防止RPC发生爆裂,钢纤维与聚丙烯纤维混掺对RPC爆裂的抑制效果更为显著;RPC高温爆裂机理可归因于蒸汽压、热应力和随机性裂纹三方面的耦合作用。
     (2)通过高温试验研究了RPC试件外观和质量损失随温度的变化情况。随经历温度的升高,钢纤维RPC、聚丙烯纤维RPC和混杂纤维RPC试件外观特征和质量损失具有相同的变化规律:试件表面颜色由青灰色→棕褐色→黑褐色→黄白色逐渐发生变化,600℃后出现明显可见长宽裂纹,且出现不同程度掉皮、缺角和疏松现象,800℃后出现大量网状长宽裂纹,掉皮疏松严重,钢纤维轻折即断,混凝土烧结;质量损失随加热温度的升高逐渐增大,200~400℃范围内质量损失最为严重,各对应温度下,聚丙烯纤维体积掺量大的RPC质量损失也相应较大。
     (3)对经历高温试验后的钢纤维RPC、聚丙烯纤维RPC和混杂纤维RPC进行强度试验,得到了高温后三种RPC对应的立方体抗压强度、抗折强度和轴心抗拉强度,考察了温度、纤维种类和纤维掺量对RPC各项强度的影响。试验结果表明:钢纤维的掺入可有效提高高温后RPC力学强度,聚丙烯纤维对RPC强度有削弱作用,相同高温作用后,RPC各项强度(抗压、抗折、抗拉)随钢纤维掺量的增加而增大,随聚丙烯纤维掺量的增加而减小;随经历温度的升高,高温后单掺钢纤维RPC与单掺聚丙烯纤维RPC的各项力学强度先增大后减小,混杂纤维RPC抗压强度先增大后减小,抗折和抗拉强度则基本呈线性规律降低;通过回归分析,拟合给出了不同纤维RPC各项强度随温度变化的计算公式,理论曲线与试验数据吻合较好。
     (4)为研究高温后钢纤维RPC与混杂纤维RPC单轴受压应力-应变关系,采用普通液压试验机附加刚性元件的方法对165个70.7mm×70.7mm×228mm的RPC试件进行单轴受压试验。实测了不同高温后钢纤维RPC与混杂纤维RPC的应力-应变关系曲线,分析了纤维掺量和经历温度对RPC轴心抗压强度、弹性模量、峰值应变和极限应变等力学指标的影响。试验结果表明:随经历温度的升高,钢纤维RPC与混杂纤维RPC应力-应变曲线渐趋扁平,峰值点明显右移和下移,轴心抗压强度和弹性模量先增大后减小,峰值应变和极限应变分别于600℃和700℃达到峰值,峰值点前二者增长迅速,峰值点后,二者基本呈线性规律降低,采用多项式回归方式,建立了轴心抗压强度、弹性模量、峰值应变和极限应变随经历温度的变化公式;相同高温作用后,RPC应力-应变曲线下的面积随钢纤维掺量增加而增大,说明钢纤维掺量大的RPC延性和韧性较好,300℃前,聚丙烯纤维掺量对应力-应变曲线的影响较小,300℃后,随聚丙烯纤维掺量的增加,应力-应变曲线下的面积逐渐增大;采用五次多项式和有理分式对钢纤维RPC与混杂纤维RPC应力-应变曲线的上升段和下降段进行拟合,并通过计算模拟确定了方程参数值,由方程确定的理论曲线与试验数据吻合较好。
     (5)利用SEM扫描电镜分析,研究了经历不同高温后的RPC微观结构变化和物相组成。结果表明:经历温度低于400℃时,水泥水化反应和火山灰反应互相促进,增加了C-S-H凝胶的含量,消耗了对强度有不利影响的Ca(OH)2,RPC的微观结构得到改善;经历400~800℃高温后,随经历温度的升高,C-S-H凝胶由连续块状形态变为尺寸较小的分散相,钢纤维与基体粘结界面处的裂纹逐渐形成并扩展,聚丙烯纤维融化后的孔道加剧了RPC的内部缺陷,RPC微观结构不断恶化。RPC微观结构的变化是其宏观力学性能发生改变的根本原因。
     本文对RPC高温爆裂性能、高温后RPC力学性能和RPC微观结构进行了系统研究,取得了阶段性的研究成果,丰富了RPC高温抗火性能方面的研究内容,为RPC构件、结构的抗火性能研究及理论分析提供了基础,对RPC的推广应用有重要意义。
Reactive Powder Concrete (RPC) is characterized by the ultra-high strength,high toughness, high durability and excellent volume stability, so it has widelyapplication prospects in the fields of oil, nuclear power, municipal works, marineengineering, mechanical engineering, aviation and military facilities. At present,RPC has become the hot research spot in international engineering materials, andthere are many studies focused on its preparation technology and mechanicalproperties at room temperature, but there are few studies on its properties afterelevated temperatures. In this paper, based on the study of high temperatureperformance of high-strength concrete, the experimental studies were performed onthe high-temperature explosive spalling of RPC, effect of fiber on RPC spallingprevention, mechanical properties and microstructure of RPC with different fibersafter elevated temperatures. The main work of this study is as follows:
     To find out the explosive spalling law, the effects of moisture content, heatingrate and specimen size on spalling of RPC were studied. The prevention of steelfiber, polypropylene fiber and hybrid fiber on spalling of RPC were comparativelyanalyzed. Then, based on the experimental results, the mechanism and suppressionmeasures for high-temperature spalling of RPC were discussed. The results showthat the impact of moisture content on RPC spalling is greater than heating rate andspecimen size, and the critical moisture content is0.80%~0.85%. Mixing with steelfiber volume dosage of2%or polypropylene fiber volume dosage of0.3%caneffectively prevent RPC spalling, especially, blending with steel fiber andpolypropylene fiber together can prevent RPC from spalling more significantly. RPChigh-temperature spalling mechanism can be attributed to the combined effects ofvapor pressure, thermal stress and random cracks.
     Through high temperature test, variation of RPC specimen appearance andmass loss with temperature was studied. With the temperature increases, theappearance characteristics and mass loss of steel fiber-reinforced RPC, RPC withpolypropylene fiber and hybrid fiber-reinforced RPC have the same vary trend. Thespecimens appear to change in color with elevated temperatures as: slate-gray→grayish brown→darkish brown→yellow-white. After exposure to600℃, smallcracks and flaking come into being on the specimen surface. After exposure to800~900℃, a number of meshy cracks appear and the flaking and porosity becomeserious. Meanwhile the steel fibers can be easily broken off and the RPC sintering.The mass loss increases gradually with the increasing temperature, and the mass lossis most serious in200~400℃. For the same heat treatment, the higher polypropylene fiber content implies the higher mass loss.
     The mechanical strength tests were carried out on steel fiber-reinforced RPC,RPC with polypropylene fiber and hybrid fiber-reinforced RPC after undergoingelevated temperatures. The cubic compressive strength, flexural strength and tensilestrength corresponding three kinds of RPC were obtained. The effects oftemperature, fiber type and fiber content on RPC mechanical strength wereinvestigated. The results indicate that steel fiber can effectively improve themechanical strength of RPC after high temperature, but polypropylene fiber hasadverse effect on RPC strength. For the same heating treatment, the strength of RPC(compressive strength, flexural strength and tensile strength) increases with theincreasing steel fiber content, but decreases with the increasing polypropylene fibercontent. For steel fiber-reinforced RPC and RPC with polypropylene fiber, themechanical strength increases first and then decreases with the increasingtemperature. For hybrid fiber-reinforced RPC, with the temperature increases, thecompressive strength increases first and then decreases, while the flexural strengthand tensile strength reduce basically as linear law. Through regression analysis,equations to express the relationships between strength of different fiber-reinforcedRPC and heating temperature are established, and the theoretical curves are in goodagreement with the test data.
     In order to study the axial compressive stress-strain relationship of steelfiber-reinforced RPC and hybrid fiber-reinforced RPC, by the aid of the ordinarycompression testing machine with attached rigid auxiliary frame, the uniaxialcompression experiments were conducted by165specimens with the size of70.7mm×70.7mm×228mm. The stress-strain curves of steel fiber-reinforced RPCand hybrid fiber-reinforced RPC after different high temperatures were measured.The effects of fiber content and exposure temperature on the mechanical propertiesof RPC were analyzed, including the axial compressive strength, elastic modulus,peak strain and ultimate strain. The results indicate that the stress-strain curves ofsteel fiber-reinforced RPC and hybrid fiber-reinforced RPC become flatter with thetemperature increases, and the peak points of stress-strain curves move right anddownwards. The axial compressive strength and elastic modulus increase first andthen decrease with the temperature increasing. The peak strain and ultimate strainreach peaks at600℃and700℃, respectively, and they increase rapidly before thepeak points but decrease linearly after the peak points. Through regression analysis,the equations to express the relationship of the compressive strength, elasticmodulus, peak strain and ultimate strain with the exposure temperature are proposedto fit the test results. With the same heating treatment, the area under thestress-strain curves increases with the steel fiber volume dosage increases, whichmeans the greater the steel fiber content is, the better the RPC ductility and toughness are. When the temperature is lower than300℃, polypropylene fibercontent has less impact on the stress-strain curve; but when the temperature is higherthan300℃, with the polypropylene fiber content increases, the area under the RPCstress-strain curve increases. Quintic polynomial and rational fraction are used to fitthe ascending and descending of stress-strain curves, and the curves proposed byequation fit the test data well.
     By scanning electron microscope (SEM) technique, the microstructure andphase composition of RPC after different temperatures were studied. The resultsshow that after exposure to the temperature not higher than400℃, the cementhydration and the pozzolanic reaction promotes each other, which increases theamount of C-S-H gel, consumes part of the Ca(OH)2and improves themicrostructure of RPC. After exposure to400~800℃, with the temperatureincreases, the C-S-H gel shifts from continuous block-like form to dispersed phase,and the cracks at the bonding interface of steel fiber and matrix come into being andexpand gradually, meanwhile the melting channels of polypropylene fibersexacerbate the internal defects of RPC, so the microstructure of RPC deterioratesconstantly. The microstructure changes of RPC are the root causes of itsmacroscopic mechanical properties degradation.
     In this paper, the high-temperature explosive spalling, mechanical propertiesand microstructure of RPC were studied systematically. The stage achievementshave been achieved, which enriches the RPC high temperature resistance research,and provides basis for the fire resistance research and theoretical analysis of RPCcomponents and structures. This study has important significance for RPCapplication and promoting.
引文
[1]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004:5-30.
    [2]赵国藩.混凝土及其增强材料的发展与应用[J].建筑材料学报,2000,3(1):1-6.
    [3] Rostam S. High Performance Concrete Cover-Why It Is Needed, and How toAchieve It in Practice[J]. Construction and Building Materials,1996,10(5):407-421.
    [4] Richard P. Reactive Powder Concrete: A New Ultra-high StrengthCementitious Material[C]. The4th International Symposium on Utilization ofHigh Strength/High Performance Concrete, Paris,1996:1343-1349.
    [5] Cheyrezy M. Mierostmetuml Analysis of RPC[J]. Cement and ConcreteResearch,1995,25(7):1491-1500.
    [6] Richard P, Cheyrezy M H. Reactive Powder Concrete with High Ductility and200MPa-800MPa Compressive Strength[J]. ACI SP1994,144:507-518.
    [7] Long G C, Wang X Y. Very-high-performance Concrete with Ultra-finePowders[J]. Cement and Concrete Research,2002,32(4):601-605.
    [8] Bonneau O, Pouhn C, et al. Reactive Powder Concretes: from Theory toPractice[J]. Concrete International,1996,18(4):47-49.
    [9]何峰,黄政宇.200~300MPa活性粉末混凝土(RPC)的配制技术研究[J].混凝土与水泥制品,2000,114(4):2-7.
    [10] Li L, Zheng W Z, Lu S S. Experimental Study on Mechanical Properties ofReactive Powder Concrete[J]. Journal of Harbin Institute of Technology (NewSeries),2010,17(6):795-800.
    [11] Kalifa P, Menneteau F-D, Quenard D. Spalling and Pore Pressure in HPC atHigh Temperatures[J]. Cement and Concrete Research,2000,30(12):1915-1927.
    [12]柳献,袁勇,叶光等.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008,41(6):61-68.
    [13] Cwirzen A, Penttala V, Vornanen C. Reactive Powder Based Concretes:Mechanical Properties, Durability and Hybrid Use with OPC[J]. Cement andConcrete Research,2008,38(10):1217-1226.
    [14] Zhang Y S, Sun W, Liu S F, et al. Preparation of C200Green ReactivePowder Concrete and Its Static-Dynamic Behaviors[J]. Cement&ConcreteComposites,2008,30(9):831-838.
    [15]屈文俊,秦宇航.活性粉末混凝土(RPC)研究与应用评述[J].结构工程师,2007,23(5):86-92.
    [16]覃维祖,曹峰.一种超高性能混凝土—活性粉末混凝土[J].工业建筑,1999,29(4):16-18.
    [17] Richard P, Cheyrezy M. Composition of Reactive Powder Concretes[J].Cement and Concrete Research,1995,25(7):1501-1511.
    [18] Voo J, Foster S J, Gilbert R I, et al. Design of Disturbed Regions in ReactivePowder Concrete Bridge Girders[C]. High Performance Materials in Bridges:Proceedings of the International Conference, Hawaii,2001:117-127.
    [19] Yaz c H, Yi iter H, Karabulut A, et al. Utilization of Fly Ash and GroundGranulated Blast Furnace Slag as an Alternative Silica Source in ReactivePowder Concrete[J]. Fuel,2008,87(12):2401-2407.
    [20]吴炎海,何雁斌.活性粉末混凝土(RPC200)的配制试验研究[J].中国公路学报,2003,16(4):44-49.
    [21]闫光杰,阎贵平,安明喆,等.200MPa级活性粉末混凝土试验研究[J].铁道学报,2004,26(2):116-119.
    [22]杨志慧.不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D].北京交通大学硕士学位论文,2006:17-18.
    [23]郑文忠,李莉.活性粉末混凝土配制及其配合比计算方法[J].湖南大学学报:自然科学版,2009,36(2):13-17.
    [24]何峰,黄政宇.原材料对RPC强度的影响初探[J].湖南大学学报(自然科学版),2001,28(2):89-94.
    [25]谭彬.活性粉末混凝土受压应力应变全曲线的研究[D].湖南大学硕士学位论文,2007:24-25.
    [26]覃维祖.活性粉末混凝土的研究[J].石油工程建设,2002,28(3):1-3.
    [27]施韬,陈宝春,施惠生.掺矿渣活性粉末混凝土配制技术的研究[J].材料科学与工程学报,2005,23(6):867-870.
    [28]赖建中,孙伟.生态型RPC材料的力学性能及微观机理研究[J].新型建筑材料,2009,(12):20-23.
    [29]龙广成,谢友均,蒋正武,孙振平,王培铭.集料对活性粉末混凝土力学性能的影响[J].建筑材料学报,2004,7(3):269-273.
    [30]龙广成.活性粉末混凝土力学性能的试验研究[J].混凝土,2004,(10):44-45.
    [31] Dugat J, Roux N, Bernier G. Mechanical Properties of Reactive PowderConcretes[J]. Materials and Structures,1996,29(5):233-240.
    [32] Chan Y-W, Chu S-H. Effect of Silica Fume on Steel Fiber BondCharacteristics in Reactive Powder Concrete[J]. Cement and ConcreteResearch,2004,34(7):1167-1172.
    [33] Yaz c H, Yard mc M Y, Yi iter H. Mechanical Properties of ReactivePowder Concrete Containing High Volumes of Ground Granulated BlastFurnace Slag[J]. Cement&Concrete Composites,2010,32(8):639-648.
    [34] Kang S-T, Lee Y, Park Y-D, et al. Tensile Fracture Properties of an UltraHigh Performance Fiber Reinforced Concrete (UHPFRC) with Steel Fiber[J].Composite Structures,2010,92(1):61-71.
    [35]林清.纤维约束活性粉末混凝土基本力学性能研究[D].福州大学硕士学位论文,2005.
    [36]马亚峰.活性粉末混凝土(RPC200)单轴受压本构关系研究[D].北京交通大学硕士学位论文,2006.
    [37]单波.活性粉末混凝土基本力学性能的试验与研究[D].湖南大学硕士学位论文,2002.
    [38]李莉.活性粉末混凝土梁受力性能及设计方法研究[D].哈尔滨工业大学博士学位论文,2010.
    [39]卢姗姗.配置钢筋或GFRP筋活性粉末混凝土梁受力性能试验与分析[D].哈尔滨工业大学博士学位论文,2010.
    [40] Graybeal B, Tanesi J. Durability of an Ultrahigh-Performance Concrete[J].Journal of Materials in Civil Engineering,2007,19(10):848-854.
    [41]安明喆,杨新红,王军民,等. RPC材料的耐久性研究[J].建筑技术,2007,38(5):367-368.
    [42]刘斯凤,孙伟,林玮,等.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080-1085.
    [43]杨吴生,黄政宇.活性粉末混凝土耐久性能研究[J].混凝土与水泥制品,2003,(1):19-20.
    [44]纪玉岩.海洋环境下活性粉末混凝土耐久性研究[D].哈尔滨工业大学博士学位论文,2011.
    [45]叶青,朱劲松,马成畅,施韬.活性粉末混凝土的耐久性研究[J].新型建筑材料,2006,(6):33-36.
    [46] Roux N, Andrade C, Sanjuan M A. Experimental Study of Durability ofReactive Powder Concretes[J]. Journal of Materials in Civil Engineering,1996,8(1):1-6.
    [47]施惠生,施韬,陈宝春,姚玉梅.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报(自然科学版),2006,34(1):93-96.
    [48]宋少民,未翠霞.活性粉末混凝土耐久性研究[J].混凝土,2006,(2):72-73.
    [49]未翠霞,宋少民.大掺量粉煤灰活性粉末混凝土耐久性研究[J].新型建筑材料,2005,(9):27-29.
    [50] Lee M-G, Wang Y-C, Chiu C-T. A Preliminary Study of Reactive PowderConcrete as a New Repair Material[J]. Construction and Building Materials,2007,21(1):182-189.
    [51]李忠,黄利东.钢纤维活性粉末混凝土耐久性能的研究[J].混凝土与水泥制品,2005,(3):43-43.
    [52] Liu C-T, Huang J-S. Fire Performance of Highly Flowable Reactive PowderConcrete[J]. Construction and Building Materials,2009,23(5):2072-2079.
    [53] Taia Y-S, Pan H-H, Kung Y-N. Mechanical Properties of Steel FiberReinforced Reactive Powder Concrete Following Exposure to HighTemperature Reaching800℃[J]. Nuclear Engineering and Design,2011,241(7):2416-2424.
    [54]时术兆,齐砚勇,严云,潘思娟.纤维增强活性粉末混凝土高温力学性能的实验研究[J].材料导报,2009,23(5):65-68.
    [55]刘红彬,李康乐,鞠杨,等.钢纤维活性粉末混凝土的高温爆裂试验研究[J].混凝土,2010,(8):6-8.
    [56]鞠杨,刘红彬,刘金慧,等.活性粉末混凝土热物理性质的研究[J].中国科学:技术科学,2011,41(12):1584-1605.
    [57]陈强.高温对活性粉末混凝土高温爆裂行为和力学性能的影响[D].北京交通大学硕士学位论文,2010.
    [58]康义荣.混杂纤维活性粉末混凝土高温残余力学性能的试验研究[D].北京交通大学硕士学位论文,2011.
    [59]杨少伟,刘丽美,王勇威,巴恒静.高温后钢纤维活性粉末混凝土SHPB试验研究[J].四川大学学报(工程科学版),2010,42(1):25-29.
    [60]徐飞.钢纤维活性粉末混凝土抗火性能试验研究[D].哈尔滨工业大学硕士学位论文,2011.
    [61] Aitcin P C, Richard P. The Pedesrain Bikeway Bridge of Sherbrooke[C]. The4th International Symposium of Utilization of High Strength/HighPerformance Concrete. Paris,1996:1399-1403.
    [62] Aitcin P C, Lachemi M, Richard P, et al. The Sherbrooke Reactive PowderConcrete Footbridge. Structural Engineering International[J].1998,8(2):140-144.
    [63] Behloul B, Lee K C. Ductal Seonyu Footbridge[J]. Structure Concrete,2003,4(4):195-201.
    [64]屈文俊,秦宇航.活性粉末混凝土(RPC)研究与应用评述[J].结构工程师,2007,23(5):86-92.
    [65] Brian C, Gordan C. The Worlds First Ductal Road Bridge Shepherds GullyCreek Bridge[C]. CIA21th Biennial Conference, Brisbane,2003:1-11.
    [66] Matte V, Richet C, Moranville M. Characterization of Reactive PowderConcrete as a Candidate for the Storage of Nuclear Wastes[C]. Symposium onHigh-Performance and Reactive Powder Concretes, Sherbrooke,1998,3:75-88.
    [67]张立军,安明喆,阎贵平.活性粉末混凝土及其工程应用[J].世界科技研究与发展,2005,27(6):49-52.
    [68]高淑平.活性粉末混凝土在铁路预应力桥梁中的应用[J].商品混凝土,2007,(3):19-21.
    [69]陈国平,方志,张旷怡,胡建华.基于高性能材料大型岩锚体系应用研究[J].中外公路,2011,31(6):16-19.
    [70]陆建新.铁路客运专线桥梁用RPC人行道盖板制备技术与生产工艺研究
    [Z].陕西省:中铁一局集团有限公司.
    [71]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003:73-76.
    [72]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].建筑材料学报,2003,6(2):182-189.
    [73]陆洲导.钢筋混凝土梁对火灾反应的分析[D].同济大学工程结构研究所,1989.
    [74] Kodur V K R, Sultan M A. Effect of Temperature on Thermal Properties ofHigh-Strength Concrete[J]. Journal of Materials in Civil Engineering,2003,15(2):101-107.
    [75] Kodur V, Khaliq W. Effect of Temperature on Thermal Properties of DifferentTypes of High-Strength Concrete[J]. Journal of Materials in Civil Engineering,2011,23(6):793-801.
    [76]胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报,2002,35(6):44-47.
    [77]谢狄敏,钱在兹.高温(明火)作用后混凝土强度与变形试验研究[J].工程力学(增刊),1996:54-58.
    [78]肖建庄,王平.掺聚丙烯纤维高性能混凝土高温后的抗压性能[J].建筑材料学报,2004,7(3):81-85.
    [79]巴恒静,杨少伟.钢纤维混凝土高温应力损伤性能[J].混凝土,2009,(1):15-17.
    [80] Eurocode2: Design of Concrete Structures-Part1-2: General Rules-StructuralFire Design [S]. BS EN1992-1-2, European Committee for Standardization,2004:19-22.
    [81] Chang Y F, Chen Y H, Sheu M S, Yao G C. Residual Stress-strainRelationship for Concrete after Exposure to High Temperatures[J]. Cementand Concrete Research,2006,36(10):1999-2005.
    [82]吴波,袁杰,王光运.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8-12.
    [83]王珍,张泽江,黄涛.高温中及冷却后高性能混凝土残余抗压强度试验[J].郑州大学学报(工学版),2010,31(5):78-81.
    [84] Chan Y N, Peng G F, Anson M. Residual Strength and Pore Structure ofHigh-strength Concrete and Normal Strength Concrete after Exposure to HighTemperatures[J]. Cement and Concrete Composites,1999,21(1):23-27.
    [85] Song P S, Wang S H. Mechanical Properties of High-strength SteelFiber-reinforced Concrete[J]. Construction and Building Materials,2004,18(9):669-673.
    [86]刘沐宇,程龙,丁庆军,胡曙光.不同混杂纤维掺量混凝土高温后的力学性能[J].华中科技大学学报(自然科学版),2008,36(4):123-125.
    [87] Chan Y N, Luo X, Sun W. Compressive Strength and Pore Structure ofHigh-performance Concrete after Exposure to High Temperature up to800℃[J]. Cement and Concrete Research,2000,30(2):247-251.
    [88] Chen B, Liu J Y. Residual Strength of Hybrid-fiber-reinforced High-strengthConcrete after Exposure to High Temperatures[J]. Cement and ConcreteResearch,2004,34(6):1065-1069.
    [89] Xiao J Z, Falkner H. On Residual Strength of High-performance Concretewith and without Polypropylene Fibers at Elevated Temperatures[J]. FireSafety Journal,2006,41(2):115-121.
    [90] Poon C S, Shui Z H, Lam L. Compressive Behavior of Fiber ReinforcedHigh-performance Concrete Subjected to Elevated Temperatures[J]. Cementand Concrete Research,2004,34(12):2215-2222.
    [91]李卫,过镇海.高温下砼的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [92]王晴,刘永军,刘磊.轻质混凝土耐火性能研究进展[J].混凝土,2005,(12):29-31.
    [93] Phan L T, Carino N J. Effects of Test Conditions and Mixture Proportions onBehaviour of High-strength Concrete Exposed to High Temperatures[J]. ACIMaterials Journal,2002,99(1):54-66.
    [94]陈茜,朋改非.不同冷却制度下普强高性能混凝土的残余力学性能与渗透性的探讨[J].江苏建材,2008,(1):24-26.
    [95]张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学强度研究[J].混凝土,2001,(9):50-53.
    [96]林志威. PPF高性能混凝土高温后性能试验研究[D].武汉理工大学硕士学位论文,2007:30-32.
    [97]肖建庄,任红梅,王平.高性能混凝土高温后残余抗折强度研究[J].同济大学学报(自然科学版),2006,34(5):80-85.
    [98] Li M, Qian C X, Sun W. Mechanical Properties of High-strength Concreteafter Fire[J]. Cement and Concrete Research,2004,34(6):1001-1005.
    [99] Pliya P, Beaucour A-L, Noumowé A. Contribution of Cocktail ofPolypropylene and Steel Fibres in Improving the Behaviour of High StrengthConcrete Subjected to High Temperature[J]. Construction and BuildingMaterials.2011,25(4):1926-1934.
    [100] Husem M. The Effects of High Temperature on Compressive and FlexuralStrengths of Ordinary and High-performance Concrete[J]. Fire Safety Journal,2006,41(2):155-163
    [101] Cülfik M S, zturan T. Mechanical Properties of Normal and High StrengthConcretes Subjected to High Temperatures and Using Image Analysis toDetect Bond Deteriorations[J]. Construction and Building Materials,2010,24(8):1486-1493.
    [102] Khalig W, Kodur V K R. Effect of High Temperature on Tensile Strength ofDifferent Types of High-strength Concrete[J]. ACI Materials Journal,2011,108(4):394-402.
    [103]鞠丽艳,张雄.聚丙烯纤维对高性能混凝土高温性能的影响[J].建筑材料学报,2004,7(1):25-28.
    [104]刘沐宇,林志威,丁庆军,胡曙光.不同PPF掺量的高性能混凝土高温后性能研究[J].华中科技大学学报(城市科学版),2007,24(2):14-17.
    [105]鞠丽艳,张雄.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报(自然科学版),2006,34(1):89-92.
    [106] Xiao J Z, Xie M, Zhang Ch. Residual Compressive Behaviour of Pre-heatedHigh-performance Concrete with Blast-furnace-slag[J]. Fire Safety Journal,2006,41(2):91-98.
    [107]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42-49.
    [108] Youssef M A, Moftah M, General Stress–strain Relationship for Concrete atElevated Temperatures[J]. Engineering Structures,2007,29(10):2618-2634.
    [109] Lau A, Anson M, Effect of High Temperatures on High Performance SteelFiber Reinforced Concrete[J]. Cement and Concrete Research,2006,36(9):1698-1707.
    [110] Li L-Y, Purkiss J, Stress-strain Constitutive Equations of Concrete Material atElevated Temperatures[J]. Fire Safety Journal,2005,40(7):669-686.
    [111] He Z J, Song Y P. Failure Mode and Constitutive Model of PlainHigh-strength High-performance Concrete under Biaxial Compression afterExposure to High Temperatures[J]. Acta Mechanica Solida Sinica,2008,21(2):149-159.
    [112]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004:33-38.
    [113]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报(自然科学版),1998,32(5):597-602.
    [114]王峥,宋玉普.高温对混凝土抗拉强度与黏结强度影响的试验研究[J].混凝土,2010,(8):51-53.
    [115] Ali F A, óConnor D, Abu-Tair A. Explosive Spalling of High-StrengthConcrete Columns in Fire[J]. Magazine of Concrete Research,2001,53(3):197-204.
    [116] Hertz K D, Sorensen L S. Test Method for Spalling of Fire ExposedConcrete[J]. Fire Safety Journal,2005,40(5):466-476.
    [117] Kalifa P, Menneteau F-D, Quenard D. Spalling and Pore Pressure in HPC atHigh Temperatures[J]. Cement and Concrete Research,2000,30(12):1915-1927.
    [118] Ba ant Z P. Analysis of Pore Pressure, Thermal Stresses and Fracture inRapidly Heated Concrete[A]. Proceedings of International Workshop on FirePerformance of High-strength Concrete (NIST Special Publication919)[C].Gaithersburg: NIST,1997:155-164.
    [119] G.H.A. van der Heijden, R.M.W. van Bijnen, Pel L, et al. Moisture Transportin Heated Concrete, as Studied by NMR, and Its Consequences for FireSpalling[J]. Cement and Concrete Research,2007,37(6):894-901.
    [120]柳献,袁勇,叶光, Geert De Schutter.高性能混凝土高温爆裂的机理探讨[J].土木工程学报,2008,41(6):61-68.
    [121] Kodur V K R, Spalling in High Strength Concrete Exposed to Fire-Concerns,Causes, Critical Parameters and Cures[C], Structures Congress2000:Advanced Technology in Structural Engineering, v103,2004.
    [122] Hertz K D. Limits of Spalling of Fire-exposed Concrete[J]. Fire SafetyJournal,2003,38(2):103-116.
    [123]朋改非,陈延年, MikeAnson.高性能硅灰混凝土的高温爆裂与抗火性[J].建筑材料学报,1999,2(3):193-198.
    [124]朋改非,段旭杰,黄广华.钢纤维对高性能混凝土高温爆裂行为的抑制作用[A].“全国特种混凝土技术及工程应用”学术交流会[C].西安,2008:566-571.
    [125] Han C-G, Hwang Y-S, Yangb S-H, Gowripalan N. Performance of SpallingResistance of High Performance Concrete with Polypropylene Fiber Contentsand Lateral Confinement[J]. Cement and Concrete Research,2005,35(9):1747-1753.
    [126] Kalifa P, Chéné G, Gallé C. High-temperature Behaviour of HPC withPolypropylene Fibres from Spalling to Microstructure[J]. Cement andConcrete Research,2001,31(10):1487-1499.
    [127]吴波,周鹏.表面设置防火涂料高强混凝土的高温爆裂[J].建筑材料学报,2011,14(3):406-412.
    [128]钱春香,游有鲲.抑制高强混凝土受火爆裂的措施[J].硅酸盐学报,2005,33(7):846-852.
    [129]边松华,朋改非,赵章力,易全新.含湿量和纤维对高性能混凝土高温性能的影响[J].建筑材料学报,2005,8(3):321-327.
    [130] Peng G-F, Yang W-W, Zhao J, et al. Explosive Spalling and ResidualMechanical Properties of Fiber-toughened High-performance ConcreteSubjected to High Temperatures[J]. Cement and Concrete Research,2006,36(4):723-727.
    [131] Zeiml M, Leithner D, Lackner R, et al. How Do Polypropylene FibersImprove the Spalling Behavior of In-situ Concrete?[J]. Cement and ConcreteResearch,2006,36(5):929-942.
    [132]王立闻.活性粉末混凝土高温后动力学特性研究[D].哈尔滨工业大学博士学位论文,2011.
    [133]董香军.纤维高性能混凝土高温、明火力学与爆裂性能研究[D].大连理工大学博士学位论文,2006.
    [134] Debicki G, Haniche R, Delhomme F. An Experimental Method for Assessingthe Spalling Sensitivity of Concrete Mixture Submitted to HighTemperature[J]. Cement and Concrete Composites,http://dx.doi.org/10.1016/j.cemconcomp.2012.04.002.
    [135] Zanni H, Cheyrezy M, Maret V, et al. Investigation of Hydration andPozzolanic Reaction in Reactive Powder Concrete (RPC) Using29Si NMR[J].Cement and Concrete Research,1996,26(1):93-100.
    [136] Tai Y S. Uniaxial Compression Tests at Various Loading Rates for ReactivePowder Concrete[J]. Theoretical and Applied Fracture Mechanics,2009,52(1):14-21.
    [137] Zhang Y S, Sun W, Liu S F, et al. Preparation of C200Green ReactivePowder Concrete and Its Static-dynamic Behaviors[J]. Cement&ConcreteComposites,2008,30(9):831-838.
    [138]原海燕.配筋活性粉末混凝土受拉性能试验研究及理论分析[D].北京交通大学博士学位论文,2009:28-31.
    [139]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003:78-82.
    [140]闫光杰.200Mpa级活性粉末混凝土(RPC200)的破坏准则与本构关系研究
    [D].北京交通大学博士学位论文,2005.
    [141]过镇海,张秀琴,张达成,王如琦.混凝土应力—应变全曲线的试验研究[J].建筑结构学报,1982,(1):1-12.
    [142]金贤玉,吴慧,钱在兹.混凝土受温后的电镜及X衍射观测[J].工程力学(增刊),1996:64-68.
    [143] Mindeguia J-C, Pimienta P, Noumowé A, et al. Temperature, Pore Pressureand Mass Variation of Concrete Subjected to High Temperature-Experimental and Numerical Discussion on Spalling Risk[J]. Cement andConcrete Research,2010,40(3):477-487.
    [144] Hertz K D. Heat-induced Explosion of Dense Concretes[R]. Institute ofBuilding Design Report No.166, Technical University of Denmark,1984.
    [145] Sideris K K, Manita P, Papageorgiou A, et al. Mechanical Characteristic ofHigh Performance Fiber Reinforced Concretes at Elevated Temperatures[R].ACI Special Publication,2006:212-60,973-988.
    [146] Castillo C, Durrani A J. Effect of Transient High Temperature onHigh-strength Concrete[J]. ACI Materials Journal,1990,87(1):47-53.
    [147] Phan L T, Carino N J. Review of Mechanical Properties of HSC at ElevatedTemperature[J]. Journal of Materials in Civil Engineering-ASCE,1998,10(1):58-64.
    [148] Chan Y N, Peng G F, Anson M. Fire Behavior of High-performance ConcreteMade with Silica Fume at Various Moisture Contents[J]. ACI MaterialsJournal,1999,96(3):405-409.
    [149]李敏.高强混凝土受火损伤及其综合评价研究[D].东南大学博士学位论文,2005:78-79.
    [150] Anderberg Y. Spalling Phenomena of HPC and OC[C]. Proceedings ofInternational Workshop on Fire Performance of High-strength Concrete(NIST Special Publication919)[A]. Gaithersburg: NIST,1997:69-74.
    [151]傅宇方,黄玉龙,潘智生,唐春安.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报,2006,9(3):323-329.
    [152] Consolazio G R, Mcvay M C, Rish J WIII. Measurement and Prediction ofPore Pressures in Saturated Cement Mortar Subjected to Radiant Heating[J].ACI Materials Journal,1998,95(5):525-536.
    [153] Phan L T, Lawson J R, Davis F L. Effects of Elevated Temperature Exposureon Heating Characteristics, Spalling and Residual Properties of HighPerformance Concrete[J]. Materials and Structures,2001,34(236):83-91.
    [154] Ulm F J, Coussy O, Ba ant Z P. The “Chunnel” Fire I: ChemoplasticSoftening in Rapidly Heated Concrete[J]. Journal of Engineering Mechanics,1999,125(3):272-282.
    [155]刘小平.活性粉末混凝土高温爆裂行为及高温作用后渗透性的研究[D].北京交通大学硕士学位论文,2011:21-47.
    [156] Lee M K, Barr B I G. Strength and Fracture Properties of IndustriallyPrepared Steel Fibre Reinforced Concrete[J]. Cement and ConcreteComposites,2003,25(3):321-332.
    [157]黄承逵,赵国藩.纤维混凝土研究和工程应用的进展[C].第十二届全国混凝土及预应力混凝土学术交流会[A],2003:16-23.
    [158]韩嵘,赵顺波,曲福来.钢纤维混凝土抗拉性能试验研究[J].土木工程学报,2006,39(11):63-67.
    [159]金祖权,孙伟,侯保荣,蒋金洋.混凝土的高温变形与微结构演化[J].东南大学学报(自然科学版),2010,40(3):619-623.
    [160]柳献,袁勇,叶光, Geert De Schutter.高性能混凝土高温微观结构演化研究[J].同济大学学报(自然科学版),2008,36(11):1473-1478.
    [161]龙广成,谢友均,王培铭.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456-461.
    [162] Cheyrezy M, Maret V, Frouin L. Microstructural analysis of RPC (ReactivePowder Concrete)[J]. Cement and Concrete Research,1995,25(7):1491-1500.
    [163]何振军.高温前后高强混凝土多轴力学性能试验研究[D].大连理工大学博士学位论文,2008:61-64.
    [164] Georgali B, Tsakiridis P E. Microstructure of Fire-damaged Concrete. A CaseStudy [J]. Cement&Concrete Composites,2005,27(2):255-259.
    [165] Wang X-S, Wu B-S, Wang Q-Y. Online SEM Investigation of MicrocrackCharacteristics of Concretes at Various Temperatures [J]. Cement andConcrete Research,2005,35(7):1385-1390.
    [166]吕天启,赵国藩,林志伸.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2):135-141.
    [167]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004:302-303.
    [168] Pons G, Mouret M, Alcantara M, et al. Mechanical Behaviour ofSelf-compacting Concrete with Hybrid Fibre Reinforcement[J]. Materials andStructures,2007,40(2):201-210.
    [169] Sahmaran M, Yurtseven A, Yaman I O. Workability of Hybrid FiberReinforced Self-compacting Concrete[J]. Building and Environment,2005,40(12):1672-1677.
    [170] Qian C X, Stroeven P. Development of Hybrid Polypropylene-steelFiber-reinforced Concrete[J]. Cement and Concrete Research,2000,30(1):63-69.
    [171]焦楚杰,孙伟,秦鸿根,李丽.聚丙烯-钢纤维高强混凝土弯曲性能试验研究[J].建筑技术,2004,35(1):48-49.
    [172]庞宝君,王立闻,何丹薇,杨震琦.活性粉末混凝土高温后的扫描电镜试验研究[J].混凝土,2010,(12):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700