用户名: 密码: 验证码:
海积软土特性及地基沉降分析若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地基沉降计算一直是岩土工程研究中的重要课题,实际问题中由于计算方法的不合理及岩土参数取值的不准确等原因,沉降计算的准确性较差。尤其对于滨海软土地基,因其具有独特的排水固结、蠕变、沉降非线性等特性,常用的沉降计算方法难以准确描述地基沉降发展规律。开展海积软土变形特性及地基非线性沉降计算方法的研究具有重要的理论和现实意义。
     本文通过文献成果归纳、工程资料统计分析、理论公式推导、数值模拟分析、室内试验、现场监测等手段,重点对地基的非线性沉降计算及海积软土排水固结、蠕变变形特性等问题进行了研究,并用多个工程实例对研究成果的可行性和合理性进行了验证,主要研究内容如下:
     收集并分析了深圳西部沿海多个典型工程勘察资料,运用统计方法对近千个海积软土样本的物理力学性质指标进行了统计分析,分析得出了海积软土物理力学指标随地层深度的分布情况,各指标之间的相关关系特征,以及主、次固结指标随荷载变化的规律。由于不同地域软土工程特性具有较大差异,本文的统计分析成果对深圳滨海软土区工程建设具有借鉴意义。
     对常用的分层总和法的计算原理及步骤进行了剖析,指出用分层总和法计算地基沉降时的理论缺陷及存在问题;针对软土压缩的非线性问题,从魏汝龙、施建勇提出的压缩模量的增长与压力呈线性关系出发,提出了压缩试验e-p曲线的双曲线拟合模型,并通过大面积荷载下海积软土地基固结沉降分析实例对模型的合理性进行了验证。双曲线模型参数可通过多种方法确定,避免了常规方法中利用e-p曲线计算沉降时的作图、插值等繁琐过程,使沉降计算方法更加简便。
     基于邓肯-张本构模型的简化,提出了用工程中常规压缩试验资料确定简化邓肯-张模型参数,从而可以实现用增量方法解决软土地基非线性沉降的简化计算,简化方法较常规方法更适合软土地基沉降的非线性特性,且不需做特殊试验即可确定计算参数,更具实用性。运用提出的简化方法,对位于珠海的深厚软土地基上的大型化工储油罐地基沉降进行计算分析,并将沉降计算结果与分层总和法、黄文熙法的计算结果进行了比较。研究认为,用常规的分层总和法计算建筑物软土地基沉降与实际情况相差较大,黄文熙法在实际应用时存在计算参数取值困难的问题,本文提出的简化方法计算结果更符合实际情况。
     运用杨光华教授提出的原位土切线模量法对美国Texas A&M University大学河滨校区的5个压板试验的非线性沉降进行了分析,研究由原位试验确定切线模量法计算参数的方法。通过理论推导和实例分析,提出当地基土的性质随深度变化不均匀分布时由旁压试验指标计算初始切线模量的方法;根据静力触探试验过程的数值模拟结果,得到了砂土地基强度参数与比贯入阻力的幂函数相关关系,从而提出了由CPT试验数据确定分层地基强度参数的方法。基于以上原位试验确定的切线模量法计算参数,对地基的非线性沉降进行了实例分析,分析结果表明,用简单的原位试验确定切线模量法参数进行地基沉降计算方法可行,较常规方法更适宜地基的非线性沉降计算。
     研究海积软土固结过程中渗透性的变化规律,提出了一个新的软土固结过程中渗透系数变化规律计算的经验公式。在此基础上推导了固结过程中软土固结系数的变化规律,得出固结过程中固结系数的计算公式,编制实用差分计算程序实现了考虑固结系数变化时软土地基固结度计算。实例分析表明,考虑固结系数变化时进行软土固结分析较经典固结理论更为合理。
     考虑软土地基次固结沉降的有限性,在Buisuman公式的基础上,提出了改进的软土地基次固结沉降计算模型,并用工程实例中长时间的软基沉降监测数据对提出的次固结沉降计算模型的合理性进行了验证。
     对堆载预压排水固结软土地基处理工法中沉降曲线拟合、推算方法进行了研究,提出了分段拟合沉降曲线的地基沉降推算改进方法。改进方法考虑了主、次固结阶段沉降曲线的不同特征,更适合软土地基的长期沉降预测。典型工程中沉降板观测数据实例分析表明,改进方法较常规预测方法更符合实际情况。
Ground settlement calculating is always an important subject in geotechnical engineering research, and, in actual engineering practice, settlement calculating results are quite inaccurate because of unreasonable methods and inexactness of soil parameter chosen. Especially for coastal soft ground, because of its special properties such as consolidating with drainage, creep deformation, nonlinear characteristics of settlement, et al, settlement calculating methods that commonly used can hardly describe the actual development rule of ground settlement. From angles of both theory and reality, it will be important and significant to take some researches on deformation properties of marine deposit clay and calculating methods of nonlinear ground settlement.
     In this dissertation, some questions as nonlinear settlement calculation, drainage and consolidation properties of marine deposit clay, and its creep deformation characteristics, and so on, will be studied with emphases through methods of summarizing research documents, collecting and analyzing actual project data, theoretical deducing, numerical analyzing, laboratory test, field monitoring, et al. And the rationality and feasibility of research results will be tested and verified in actual project examples. The main contents are included as follows:
     The geotechnical test data of typical projects on west coast Shenzhen region are collected, and nearly a thousand samples of marine deposit clay are analyzed with its physical and mechanical parameters using statistical method. As a result, the former research works draw conclusions such as distribution of physical and mechanical parameters of marine deposit clay with depth, characteristic of correlations between parameters, and the rule how indexes of consolidation or secondary consolidation vary with load. There are specific regional disparities in engineering properties of soft soil, and the statistical results in this paper have practical significance for construction in Shenzhen coastal soft soil region.
     Through considering carefully about the computation theory and processes of the stratified summation method which is commonly used, theoretical limitations and existing problems in applying the method to calculate ground settlement are pointed out. As for the problem of nonlinear compression characteristics for soft soil, starting from the linear relationship between compression modulus and pressure, which is advised by Wei Ru-Long and Shi Jian-Yong, the hyperbolic model for e-p curve of laboratory consolidation test is brought forward, and its reasonableness is testified by actual ground settlement analysis of marine clay subgrade in large area loading. As for the hyperbolic model, the calculation parameters can be determined through different ways, and the cockamamie process of plotting and interplotation in traditional methods, which use e-p curve to calculate settlement, can be avoided, and the settlement calculation becomes easier.
     Based on simplification of Duncan-Chang constitutive model, parameters of the simplified model can be obtained from laboratory compression test data in general projects, so the nonlinear soft ground settlements can be calculated with incremental approach. Compared to general method, the simplified method is more suitable for nonlinear characteristics of soft ground settlement, and no special test is needed to determine calculation parameters, and it provides a more practical way. The subgrade of a large oil tank on deep soft soil ground in Zhuhai region is analyzed by using the simplified method mentioned above, and the calculating result is compared with those obtained from stratified summation method and Huang Wen-Xi method. As a research result, calculation with the common stratified summation method for construction subgrade settlements in soft area will bring distinct error to actual situation. There is difficulty in taking calculation parameters when applying Huang Wen-Xi method in actual projects. Calculating results by using the simplified method advised in this paper will fit better to actual situation.
     With application of the tangent modulus method which is proposed by professor YANG Guang-Hua, the nonlinear settlement of five in-situ plate loading tests on Texas A&M University Riverside Campus in USA is analyzed, and how to determine calculation parameters of tangent modulus method through some in-situ tests is researched. Through theoretical deduction and actual example analysis, the method obtaining initial tangent modulus from pressuremeter test data is put forward when soil properties of subgrade vary unevenly with depth. According to numerical simulating results of cone penetration test (CPT), correlation of power function between strength parameter and specific penetration resistance for sandy soil subgrade is obtained, and this provides a way to gain strength parameters of different ground layers with CPT data. Based on calculating parameters of tangent modulus method obtained from the in-situ test mentioned above, nonlinear ground settlements are analyzed with actual examples. As an analysis result, the ground settlement calculation method, which uses some simple in-situ test to determine calculation parameters of the tangent modulus method, is feasible and more suitable for nonlinear ground settlement calculation than normal methods.
     The variation rules of permeability during consolidating process is studied about marine clay, and a new empirical formula is proposed to calculate seepage coefficient for soft soil in consolidating process. Based on the above work, the varying regulation of consolidation coefficient for soft soil is deducted, and an empirical formula for calculating the consolidation coefficient is obtained. A practical differential program is compiled to calculate consolidation degree of soft ground with considering the variation of consolidation coefficient. As actual example analysis shows, consolidation analysis with considering variable consolidation coefficient will be more reasonable than classical consolidation theary.
     Based on the Buisuman formula, an improved calculation model of secondary consolidation for soft ground settlement is provided with considering the limitation of secondary consolidation settlement, and the rationality of the calculation model is testified by long duration field monitoring data of soft ground settlement in actual project.
     Fitting and forecasting approaches of settlement curve are studied within ground treatment of preloading drainage consolidation method, and an improved method is advised to forecast ground settlement with segmented fitting curves. For the improved method considers the different characteristics of settlement curve between primary and secondary consolidation phases, it is more suitable for long term forecasting of soft ground settlement. According to the analysis of observational data of settlement plate with actual examples in typical project, the improved method is more correspond to actual situation than normal forecasting method.
引文
[1]深圳市勘察设计协会.深圳勘察设计25年(勘察与岩土工程篇)[M].北京:中国建筑工业出版社,2006.
    [2]中华人民共和国建设部.建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社,2002.
    [3]卢廷浩,刘祖德.高等土力学[M].北京:机械工业出版社,2005.
    [4]Skempton A W, etal. A contribution to the settlement analysis of foundations on clay [J]. Geotechniqe, 1957,7(4).
    [5]黄文熙,张文正,愈仲泉.水工建筑物土壤地基的沉降量与地基中的应力分布[J].水利学报,1957,(3).
    [6]曾国熙,龚晓南.软土地基固结有限元法分析[J].浙江大学学报,1983,(1).
    [7]杨光华.基础非线性沉降变形计算的双曲线模型法[J].地基处理,1997,8(1).
    [8]杨光华.残积土上基础非线性沉降的双曲线模型的研究[C]//第七届全国岩土力学数值分析与解析方法讨论会论文集.大连理工大学出版社,2001,p168-171.
    [9]杨光华.软土地基非线性沉降计算的简化法[C]//中国水利学会首届青年科技论坛论文集.2003,p332-336.
    [10]杨光华.地基非线性沉降计算的原状土切线模量法[J].岩土工程学报,2006,28(1):1927-1931.
    [11]杨光华,王鹏华,乔有良.地基非线性沉降计算的原状土割线模量法[J].土木工程学报,2007,40(5):49-52.
    [12]杨光华.地基沉降计算的新方法[J].岩石力学与工程学报,2008,(4):679-686.
    [13]杨光华,王俊辉.地基非线性沉降计算原状土切线模量法的推广和应用[J].岩土力学,2011,32(S1):33-37.
    [14]彭长学,杨光华.软土e-p曲线确定的简易方法及在非线性沉降计算中的应用[J].岩土力学,2008,29(6):1706-1710.
    [15]杨光华.软土地基加荷速率与稳定性控制研究[R].广东省水利厅科技计划项目,2007.
    [16]沈珠江.用有限单元法计算软土地基的固结变形[J].水利水运科技情报,1977,(1).
    [17]殷宗泽.一个土体的双屈服面应力-应变模型[J].岩土工程学报,1998,(4).
    [18]余志顽,赵维炳,顾吉.粘弹-粘塑性软基排水预压的三维有限元分析[J].河海大学学报,1995,(5).
    [19]文海家,张永兴,柳源.多层超软土大变形固结的有限差分解[J].重庆大学学报,2003,26(6):101-104.
    [20]张延军,张延诘.海积软土弹粘塑性Biot固结的数值分析[J].吉林大学学报(地球科学版),2003,33(1):71-75.
    [21]刘占芳,杨全虎, 姜乃斌.饱和软土地基弹塑性固结沉降研究[J].重庆建筑大学学报,2005, 27(2):51-55.
    [22]郭丰永,史宇,毛毳,王雪松,高速公路软土地基沉降的FLAC3D数值模拟[J].天津城市建设学院学报,2005,11(4):263-266.
    [23]陈晓燕,张宏博,宋修广.湖相软土区路基填筑引起的地基沉降特性研究[J].公路与汽运,2009,(1):84-88.
    [24]董志良,陈平山,莫海鸿,张功新.真空预压下软土渗透系数对固结的影响[J].岩土力学,2010,31(5):1452-1456.
    [25]Indraratna B, et al. Soft ground improvement via vertical drains and vacuum assisted preloading[J]. Geotextiles and Geomembranes,2011, doi:10.1016/j. geotexmem.2011.01.004.
    [26]Burland J B. On the compressibility and shear strength of natural clays [J]. Geotechnique,1990,40(3): 327-378.
    [27]王长明,肖树芳,夏玉斌.海积软土固结变形的结构性模型研究[J].长春科技大学学报,2001,31(4):363-367.
    [28]雷华阳,肖树芳.软土结构性的试验研究及其对工程特性的影响[J].吉林大学学报(地球科学版),2004,34(1):106-110.
    [29]王立忠,丁利,陈云敏,李玲玲.结构性软土压缩特性研究[J].土木工程学报,2004,37(4):46-53.
    [30]李又云,刘保健,谢永利.软土结构性对渗透及固结沉降的影响[J].岩石力学与工程学报,2006,25(s2):3587-3592.
    [31]王军,高玉峰.加荷比对结构性软土沉降特性的影响[J].岩土力学,2007,28(12):2614-2618.
    [32]夏银飞,吴代华,文建华.结构性对软土压缩特性的影响[J].武汉理工大学学报,2007,29(6):85-88.
    [33]缪林昌,张军辉,陈艺南.江苏海相软土压缩特性试验研究[J].岩土工程学报,2007,29(11):1711-1714.
    [34]周科,孙德安.重塑上海软土的压缩特性试验[J].上海大学学报(自然科学版),2009,15(1):99-104.
    [35]李军霞,王长明,张先伟.基于扰动状态理论的软土压缩变形试验[J].吉林大学学报(地球科学版),2010,40(2):356-360.
    [36]孙德安,陈波,周科.重塑上海软土的压缩和剪切变形特性试验研究[J].岩土力学,2010,31(5):1389-1394.
    [37]吴宏伟,李青,刘国彬.上海黏土一维压缩特性的试验研究[J].岩土工程学报,2011,33(4):630-636.
    [38]林鹏,许镇鸿,徐鹏,曾李生.软土压缩过程中固结系数的研究[J].岩土力学,2003,24(1):106-109.
    [39]余闯,刘松玉.考虑应力水平的软土固结系数计算与试验研究[J].岩土力学,2004,25(s):103-107.
    [40]房后国,刘娉慧,肖树芳,林德全.海积软土排水固结机理分析[J].吉林大学学报(地球科学版),2005,35(2):207-212.
    [41]吕卫清,董志良,陈平山,莫海鸿.正常固结软土渗透系数与固结应力关系研究[J].岩土力学,2009,30(3):769-773.
    [42]祝刘文.海相饱和软土固结特性的研究[J].港工技术,2010,47(4):51-54.
    [43]赵九斋.连云港软土路基沉降研究[J].岩土工程学报,2000,22(6):643-649.
    [44]经绯,刘松玉,邵光辉.软土地基上路堤沉降变形特征分析[J].岩土工程学报,2001,23(6):659-661.
    [45]王晓谋,袁怀宇,贾其军,杜秦文,颜可珍.路堤下河滩相软土地基变形研究[J].中国公路学报,2003,16(2):22-26.
    [46]刘传升,曹渊.新建铁路软土路基沉降规律研究[J].铁道工程学报,2010,(5):1-3.
    [47]李国文.考虑卸荷再加荷条件改进常规软土路基沉降计算方法[J].公路,2010,(9):65-67.
    [48]梁国钱,张民强,俞炯奇,孙伯永.浙江沿海地区软土工程特性[J].中国矿业大学学报,2002,31(5):435-437.
    [49]郑华,王志亮.基于参数反演的软土路基沉降计算与分析[J].水文地质工程地质,2004,(3):89-92.
    [50]俞亚南,张仪萍, 高庆丰.成层软土地基黏弹性参数反演及沉降预测[J].土木工程学报,2005,38(7):112-115.
    [51]魏丽敏,何群,王永和.软土参数反分析方法及其在沉降预测中的应用[J].中国铁道科学,2007,28(4):1-6.
    [52]LIU Song-yu, JING Fei. Settlement prediction of embankments with stage construction on soft ground[J].岩土工程学报,2003,25(2):228-232.
    [53]刘吉福,陈新华.应用沉降速率法计算软土路堤剩余沉降[J].岩土工程学报,2003,25(2):233-235.
    [54]潘林有,谢新宇.用曲线拟合的方法预测软土地基沉降[J].岩土力学,2004,25(7):1053-1058.
    [55]赵明华,刘煜,曹文贵.软土路基沉降发展规律及其预测[J].中南大学学报(自然科学版),2004,35(1):157-161.
    [56]李涛,张仪萍,张土乔.软土路基沉降的优性组合预测[J].岩石力学与工程学报,2005,24(18):3282-3286.
    [57]王志亮,吴克海,李永池,殷宗泽.一个预测路堤沉降的新经验公式模型[J].岩石力学与工程学报,2005,24(12):2013-2017.
    [58]赵明华,刘煜,曹文贵.软土地基沉降变权重组合s型曲线预测方法研究[J].岩土力学,2005,26(9):1443-1447.
    [59]郑永来,童琪华,杨柳峰,潘杰.软土路堤沉降预测方法研究[J].同济大学学报(自然科学版),2005,33(12):1581-1585.
    [60]吴起星,胡辉.基于Gompertz成长曲线的真空预压软土沉降规律分析[J].岩石力学与工程学报, 2006,25(s2):3600-3606.
    [61]张昆,郭菊彬,王鹰.基于时间序列的沉降预测[J].铁道建筑,2006,(4):44-45.
    [62]王志亮,黄景忠,杨夏红.考虑软土流变特性的沉降预测模型研究[J].岩土力学,2006,27(9):1567-1570.
    [63]钟翔熹,麦珊珊,许小建.泊松曲线沉降预测模型的遗传优化及应用[J].路基工程,2008,(4):135-137.
    [64]王伟,宰金珉,卢廷浩.软土工后沉降双曲线模型与指数曲线模型分析[J].江苏大学学报(自然科学版),2008,29(2):173-176.
    [65]李昌栩.软土地基加固的沉降预测[J].山西建筑,2010,36(27):127-128.
    [66]李月光,聂敏.高速公路软土地基沉降影响因素敏感性灰色关联分析[J].系统工程理论与实践,2010,30(5):956-960.
    [67]唐利民.地基沉降预测模型的正则化算法[J].岩土力学,2010,31(12):3945-3948.
    [68]Rendulic L. Porenziffer und porenwasserdruck in tonen [J]. Bauingenieur,1936,7:51-53.
    [69]Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941,27: 155-164.
    [70]Barron R A. Consolidation of fine-grained soils by drained wells [J]. Trans. ASCE,1948,113: 718-733.
    [71]高木俊介(南京水科究所译).为排水砂井工程制备的图表及其使用例[J].土と基础,1955,3(12).
    [72]Richart E F. Review of the theories for sand drains [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1957,83:1301.
    [73]Hart E G, Kondner R L, Boyer W C. Analysis for partially penetrating sand drains [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1958,84:1812.
    [74]Yoshikuni H, Nakanodo H. Consolidation of soils by vertical drain well with finite permeability [J]. Soils and Foundations,1974,14(2):35-46.
    [75]Basak P. Consolidation by sand drains in initial gradient soils [J]. Journal of Geotechnical Engineering Division, ASCE,1977,103:1327-1332.
    [76]Atkinson M S, Eldred P J L. Consolidation of soil using vertical drains [J].Geotechnique,1981,31(1): 33-43.
    [77]曾国熙,王铁儒,顾尧章.砂井地基的若干问题[J],岩土工程学报,1981,3(3):74-81.
    [78]王贻荪.考虑砂井阻力的折减井径法[J],岩土工程学报,1982,4(3):43-51.
    [79]陈根援.多层地基的一维固结计算方法与砂井地基计算的改进建议[J].水利水运科学研究,1984,(2):18-29.
    [80]钱家欢,赵维炳.真空预压砂井地基固结分析的半解析方法[J].中国科学(A),1988,(4):439-448.
    [81]赵维炳.砂井地基固结分析半解析解方法的改进[J].岩土工程学报,1991,13(4):51-58.
    [82]赵维炳.主次固结简化计算方法[J].水利学报,1994,(1):30-37.
    [83]谢康和等.应变条件下的双层理想井地基固结理论[J].浙江大学学报,1995,29(5):529-539.
    [84]房营光.砂井地基固结的空间渗流和群井效应的解析分析[J].岩土工程学报,1996,18(2):30-36.
    [85]Mikasa M.The consolidation of soft clay--a new consolidation theory and its application [J]. Civil Engineering in Japan, JSCE,1965,21-26.
    [86]Gibson R E, England Q L, Hussey M J L. The theory of one dimensional consolidation of saturated clays, Finite non-linear consolidation of thin homogeneous layers [J]. Geotechnique,1967,17(2): 261-273.
    [87]Gibson R E, Robert L, Schiffman, Kenneth W, Cargill. The theory of one dimensional consolidation of saturated clays, II Finite non-linear consolidation of thick homogeneous layers [J]. Canadian Geotechnique Journal,1981,18(2):280-293.
    [88]洪振舜.吹填土的一维大变形固结计算模型[J].河海大学学报,1987,15(6):27-36.
    [89]洪振舜.一维大变形固结方程的近似函数解[J].水利学报,1988,5:49-54.
    [90]窦宜,蔡正银,盛树馨.自重应力作用下饱和粘土的固结变形特性[J].岩土工程学报,1996,(6).
    [91]谢新宇,朱向荣,谢康和,潘秋元.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38.
    [92]郑辉.软粘土地基大应变非线性流变固结理论研究[D].杭州:浙江大学博士学位论文,2004.
    [93]丁洲祥,龚晓南,谢永利.欧拉描述的大变形固结理论[J].力学学报,2005,37(1):92-99.
    [94]丁洲祥,龚晓南,谢永利,李韬.基于不同客观本构关系的路基大变形固结分析[J].岩土力学,2006,27(9):1485-1489.
    [95]Zhuang Y C, Xie K H, Li Y B. Nonlinear analysis of consolidation with vriable compressibility and permeability [J]. Journal of Zhejiang University Science,2005,6A(3):181-187.
    [96]Casagrande A. The structure of clay and its importance in foundation engineering [J]. Journal Boston Social Civil Engineering,1932,19:168-209.
    [97]余湘娟.软土的次固结特性试验及计算模型研究[D].南京:河海大学博士学位论文,2008.
    [98]陈宗基.Structure Mechanics of Clay [J].中国科学,1959,8(1):41-45.
    [99]Osipov J B, Soklov B A. Quantitative Characteristics of clay fabrics using the method of magnetic anisotropy[J], Bulletin of the International Association of Engineering Gelogy,1972,5:23-28.
    [100]Osipov J B, Soklov B A. On the texture of clay soils of different genesis investigated by magnetic anisotropy method [C]//Proceedings of the International Symposium on soil Stmcture. Gothenburg, Sweden,1973,21-29.
    [101]Tovey N K. Quantitative analysis of electron microgrphs of soil structure [C]//Proceedings of the International Symposium on Soil Structure. Gothenburg, Sweden,1973,176-184.
    [102]Tovey N K. A digilal computer technique for orientation analysis of micrograph soil fabric [J]. Journal of Microscope,1990,120:303-315.
    [103]Tovey N K, Krinsley D H. Mapping of the orientation of fine grained minerals in soils and sendiments [J]. Bulletin of IMAGE,1992,46:93-101.
    [104]吴义祥.工程粘性土微观结构的定量研究[D].北京:中国地质科学院博士论文,1988.
    [105]吴义祥.速冻试样的温差真空干燥装置研制成功[J].水文地质工程地质,1988,(3).
    [106]王清,唐大雄,李洪玉.微结构理论的认识和发展趋向[J].水文地质工程地质,1991,(4).
    [107]谢和平.岩土介质的分形孔隙和分形粒子[J].力学进展,1993,(2).
    [108]李榴芬,彭元贵.珠江三角洲软土微结构的定量研究[J].华东地质学院学报,2001,24(2):127-130.
    [109]孟庆山,杨超,许孝祖,雷学文,孙士玲.动力排水固结前后软土微观结构分析[J].岩土力学,2008,29(7):1759-1763.
    [110]Buisuman A S K. Result of long duration settlement tests [C]//Proceeding of 1st International Conference on Soil Mechanics and Foundation Engineering.1936, Cambridge, Mass, vl:103-105.
    [111]Taylor D W, Merchant W. A theory of day consolidation accounting for secondary compressions [J]. Journal of Mathematics and Physics,1940,19:167-185.
    [112]陈宗基.固结及次时间效应的单维问题[J].土木工程学报,1958,5(1):1-3.
    [113]Gibson R E, Lo K Y. A theory of consolidation of soils exhibiting secondary compression. Acta Polytechnical Scandinavia, Ci 10 296(Scandinavian Academy of Science),1961.
    [114]Crawford C B. Interpretation of consolidation tests [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1964,90(5):87-102.
    [115]Johnson. Pre-compression for improving foundation soil [J]. Journal of Soil Mechanics and Foundation Division, ASCE 1970,96(1).
    [116]Garlanger J E. The consolidation of soils exhibiting creep under constant effective stress [J]. Geotechnique,1972,22(1):71-78.
    [117]Bjerrum L. Embankments on soft ground [C]//Proceedings of Special Conference on Performance of earth and earth-supported structures. ASCE, Purdue University,1972,1-54.
    [118]Bjerrum L. Engineering geology of normally consolidated marine clays as related to the settlement of buildings[J]. Geotechnique,1976,17(2):83-118.
    [119]Mesri, Godlewski. Time and stress-compressibility inter-relationship [J]. Journal of the Geotechnical Engineering Division,1977,103(5):417-430.
    [120]Nakase A, Kamei T, Kusakabe O. Constitutive parameters estimated by plasticity index [J]. Journal of Geotechnical Engineering, ASCE,1988,114(7).
    [121]李作勤,粘土固结变形的时间性,岩土工程学报,1992,114(6).
    [122]詹美礼,钱家欢,陈绪禄.上海软粘土的次固结试验及次固结的简化计算方法[J].港口工程,1993,(1).
    [123]殷建华,李廷芥,周国林.土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析[J].岩土力学,1994,15(3).
    [124]YIN Jian-hua, Graham J. Elastic visco-plastic modeling of one-dimensional consolidation [J]. Geotechnique,1996,46(3):515-527.
    [125]雷华阳,肖树芳,天津软土的次固结变形特性研究[J],工程地质学报,2002,10(4).
    [126]殷宗泽,张海波,朱俊高,李国维.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [127]王常明,王清,张淑华.滨海软土蠕变特性及蠕变模型[J].岩石力学与工程学报,2004,23(2): 227-230.
    [128]刘加才,.赵维炳,宰金珉,王旭东.双层黏弹性地基一维固结分析[J].岩土力学,2007,28(4):743-746.
    [129]余湘娟,殷宗泽,董卫军.荷载对软土次固结影响的试验研究[J].岩土工程学报,2007,29(6):913-916.
    [130]刘汉龙,扈胜霞,Ali Hassan真空-堆载预压作用下软土蠕变特性试验研究[J].岩土力学,2008,29(1):6-12.
    [131]徐珊,陈有亮,赵重兴.单向压缩状态下上海地区软土的蠕变变形与次固结特性研究[J].工程地质学报,2008,16(4):495-501.
    [132]邵光辉,刘松玉.海相结构软土的次固结研究[J].岩土力学,2008,29(8):2057-2062.
    [133]盛维高,李国维,刘汉龙,杨华,韩春桥.超载预压软土的次压缩沉降估算方法[J].河海大学学报(自然科学版),2009,37(5):596-601.
    [134]冯志刚,朱俊高.软土次固结变形特性试验研究[J].水利学报,2009,40(5):583-588.
    [135]王元战,王婷婷,王军.滨海软土非线性流变模型及其工程应用研究[J].岩土力学,2009,30(9):2679-2685.
    [136]李军霞,王常明,张先伟,王彬.两种滨海相软土固结特性的试验研究[J].水文地质工程地质,2009,(5):35-39.
    [137]王常明,黄超,张浩,张先伟,李军霞.营口软土的固结不排水剪切蠕变特性[J].吉林大学学报(地球科学版),2009,39(4):728-733.
    [138]张云,薛禹群,吴吉春,何佳佳,王慧敏.饱和黏性土蠕变变形试验研究[J].岩土力学,2011,32(3):672-677.
    [139]温耀霖,潘健,吴湘兴.珠江三角洲软土的微观结构与力学特性[J].华南理工大学学报(自然科学版),1995,23(1):144-152.
    [140]陈嘉鸥,叶斌,郭素杰,李志民.珠江三角洲软土SEM微结构定量研究[J].电子显微学报,2001,20(1):72-75.
    [141]李榴芬.珠江三角洲软土微结构的扫描电镜研究[J].中山大学学报(自然科学版),2001,40(4):102-105.
    [142]周翠英,牟春梅.珠江三角洲软土分布及其结构类型划分[J].中山大学学报(自然科学版),2004,43(6):81-84.
    [143]周龙翔,童华炜,王梦恕,张顶立.广州软土的工程特性及地基处理方法的对比研究[J].北京交通大学学报,2006,30(1):17-20.
    [144]林奕禧,艾康洪,黄良机.珠海地区软土的工程特性及工程建设问题[J].岩石力学与工程学报,2006,25(s2):3372-3376.
    [145]丘建金,文建鹏.深圳地区滨海软土工程特性及加固技术[J].工程地质学报,2008,16(6):567-571.
    [146]彭立才,蒋明镜,林奕禧,黄良机.珠海海积软土孔隙分布与应力水平的关系研究[J].同济大学学报(自然科学版),2009,37(12):1598-1602.
    [147]周晖,房营光,禹长江.广州软土固结过程微观结构的显微观测与分析[J].岩石力学与工程学报,2009,28(s2):3830-3837.
    [148]周晖,房营光,曾铖.广州饱和软土固结过程微孔隙变化的试验分析[J].岩土力学,2010,31(s1):138-144.
    [149]刘勇健,李彰明,伍四明,吴加武.南沙地区软土物理力学性质指标与微结构参数的统计分析[J].广东工业大学学报,2010,27(2):21-26.
    [150]谢晓华,周永章,张澄博,等.珠三角饱和软土固结过程中微观孔隙结构的演化规律[J].桂林理工大学学报,2010,30(3):368-373.
    [151]陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003,22(1):137-141.
    [152]朱鸿鹄,陈晓平,张芳枝,黄丽娟南沙软土固结变形特性试验研究[J],工程勘察,2005,(1):1-3.
    [153]陈晓平,朱鸿鹄,张芳枝,张波.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005,24(12).
    [154]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学,2006,27(3):404-408.
    [155]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报,2006,28(5):626-630.
    [156]陈晓平,周秋娟,朱鸿鹄,张波.软土蠕变固结特性研究[J].岩土力学,2007,28(s1):1-10.
    [157]陈晓平,曾玲玲,吕晶,等.结构性软土力学特性试验研究[J].岩土力学,2008,29(12):3223-3228.
    [158]陈晓平.海陆交互相沉积软土固结效应[J].岩土工程学报,2011,33(4):520-528.
    [159]张惠明,徐玉胜,曾巧玲.深圳软土变形特性与工后沉降[J].岩土工程学报,2002,24(4):509-514.
    [160]张长生,张伯友,江辉煌.深圳湾浅海相淤泥固结变形特性研究[J].水文地质工程地质,2005,(3):35-37.
    [161]张明,赵有明,龚镭,胡荣华.深圳湾新吹填超软土固结系数的试验研究[J].岩石力学与工程学报,2010,29(s1):3157-3161.
    [162]樊克,周华.珠江三角洲软土特性与排水固结研究[J].中国地质灾害与防治学报,2007,18(1):77-80.
    [163]珠海市住房和城乡规划建设局.珠海市软土分布区工程建设指引[S].北京:中国建筑工业出版社,2010.
    [164]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2002.
    [165]深圳市勘察研究院.深圳市后海填海市政工程项目岩土工程勘察报告[R].2002年8月.
    [166]深圳市勘察测绘院.深圳市后海湾填海区市政工程沙河环北立交桥、沙河东滨立交桥工程地质勘察报告[R].2005年6月.
    [167]深圳市勘察研究院.深圳西部通道一线口岸区填海及软基处理工程勘察报告[R].1998年7月.
    [168]香港奥雅纳工程顾问公司.深港西部通道口岸场地(港方)岩土工程勘察报告[R].2004年6月.
    [169]深圳地质建设工程公司.深圳市前海填海区岩土工程勘察报告[R].2005年5月.
    [170]深圳市岩土综合勘察设计有限公司.深圳市前海填海区2、3号地块岩土工程勘察报告[R].2009年3月.
    [171]深圳市岩土综合勘察设计有限公司.深圳市前海填海区1、4号地块岩土工程勘察报告[R].2009年5月.
    [172]广东有色工程勘察设计院.深圳市前海片区北区E、H地块软基处理岩土工程勘察报告[R].2010年12月.
    [173]辽宁有色勘察研究院.深圳市前海填海区南区F、G地块软基处理岩土工程勘察报告[R].2011年4月.
    [174]深圳市勘察测绘院有限公司.深圳地铁前海北区软基处理详细阶段补充勘察岩土工程勘察报告[R].2010年5月.
    [175]深圳市勘察测绘院.深圳机场第二条跑道填海及软基处理岩土工程勘察报告[R].2004年3月.
    [176]深圳市土地投资开发中心,铁道部科学研究院深圳研究设计院.深港西部通道工程软基处理技术分析报告[R].2004年12月.
    [177]冯国栋.土力学[M].北京:中国水利电力出版社,1986.
    [178]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [179]魏汝龙.软粘土的工程性状[J].土木工程学报,1986,19(3).
    [180]魏汝龙.软粘土的强度变形[M].北京:人民交通出版社,1987.
    [181]施建勇,杨立昂,赵维炳等.考虑土体非线性特性的一维固结理论研究[M].河海大学学报,2001,29(1):1-5.
    [182]广东省珠海工程勘察院.珠海市横琴岛番禺/惠州天然气开发项目终端场地岩土工程详细勘察报告[R].2003年12月.
    [183]珠海市交通工程质量监督检测站.番禺/惠州天然气开发项目地基处理工程压板竖向抗压静载试验检测报告[R].2005年2月.
    [184]广东中海工程建设总局.番禺/惠州天然气终端场地回填及地基处理工程竣工图.2005年3月.
    [185]天津大港油田集团石油工程有限责任公司.番禺/惠州天然气开发项目终端工程球罐基础设计图纸.2006年1月.
    [186]深圳市勘察测绘院有限公司.番禺/惠州天然气开发项目珠海终端工程地基沉降分析与处理方案[R].2007年9月.
    [187]Duncan J M, Chang C Y. Non-linear analysis of stress and strain in Soils [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1970,96(SM5).
    [188]Duncna J M. Limiattions of Conventional Analysis of Consolidation Settlement [J]. Journal of Geotechnical Engineering, ASCE,1993,119(9):1333-1359.
    [189]Briaud J L, Gibbens R M. Predicted and measured behavior of five spread footings on sand[C]//Proceedings of a Prediction Symposium Sponsored by the Federal Highway Administration, Settlement'94 ASCE Conference. Texas A&M University, USA, June 16-18,1994.
    [190]American Society for Testing and Materials Committee on Standard. Standard test method for prebored pressuremeter testing in soils[S]. ASTM D4719,2000.
    [191]中华人民共和国铁道部.铁路工程地质原位测试规程(TB10018-2003)[S].北京:中国铁道出版社,2003.
    [192]徐超,石振明,高彦斌,赵春风.岩土工程原位测试[M].上海:同济大学出版社,2005.
    [193]中华人民共和国建设部.建筑地基处理技术规范(JGJ79-2002)[S].北京:中国建筑工业出版社,2002.
    [194]Mesri G, Olson R E. Mechanisms controlling the permeability of clays[J]. Clay and Clay Mineral, 1971,19(3):151-158.
    [195]Samarasinghe A M, Huang Y H. Permeability and consolidation of normally consolidated soils [J]. Journal of the Geotechnical Engineering Division, ASCE,1982,108(GT6):835-850.
    [196]谢康和,郑辉,Leo C J.软黏土一维非线性大应变固结解析理论[J].岩土工程学报,2002,24(6):680-684.
    [197]Mesri G, Rokhsar A. Consolidaiton of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1974,100(GT8):889-903.
    [198]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [199]谢康和,齐添,胡安峰,夏建中.基于GDS的黏土非线性渗透特性试验研究[J].岩土力学,2008,29(2):420-424.
    [200]Mikasa M. Consolidation theory for nonhomogeneous clay layer [C]//Proceedings of Autunm Convertion of JSSMFE,1963, pp41-43.
    [201]Asaoka A. Observational procedure of settlement prediction[J]. Soils and Foundations,1978,18(4): 87-101.
    [202]曾国熙,杨锡令.砂井地基沉陷分析[J].浙江大学学报(工学版),1959年03期.
    [203]宰金珉,梅国雄.全过程的沉降量预测方法研究[J].岩土力学,2000,21(4):322-325.
    [204]铁道部科学研究院深圳研究设计院.深港西部通道口岸区海堤工程施工图[R].2000年8月.
    [205]深圳市勘察研究院.深港西部通道口岸区场坪填海及地基处理工程内隔堤施工图设计[R].2002年5月.
    [206]深圳市勘察研究院.深港西部通道口岸区场坪填海及地基处理施工图设计[R].2002年7月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700