珠江三角洲软土显微结构与渗流固结机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠江三角洲地区广泛分布着厚度几米至几十米的全新世海积形成的软土层,主要为淤泥、粉砂质淤泥和黏土,具有含水量高、孔隙比大、压缩性高、强度低、渗透性差、结构性和流变性显著等特点而导致地基沉陷和失稳等重大工程事故。为提高软土地基的工程质量,减少工程施工事故,需要深入研究软土的工程特性,提高软土地基的设计和施工水平。但长期以来,人们主要从宏观层次对软土的工程特性进行研究,难于抓住决定软土性质的本质因素从而对其工程特性作出深刻研究。因此,从土体的微观结构分析入手研究软土工程性质是一种“寻根溯源”的方法,可以从本质上深刻了解软土的工程特性。
     本文以珠江三角洲天然土(或重塑土)为研究对象,从统计学角度研究珠江三角洲软土区域特征及工程性质,并结合矿物成分试验、ESEM试验、压汞试验研究软土渗流固结过程中微观结构因素(如颗粒形状、分布、排列和连结方式、微颗粒聚合体的形态、孔隙数量、孔隙形态、尺度及分布、连通性及曲折性等)的变化特征与分形特征,将软土的微观参数与宏观工程性质结合,解释影响软土特性的微观机制。最后,提出了基于微观试验的修正固结模型,通过实测结果证实了模型的合理性和有效性。
     本文得到的主要研究成果和结论如下:
     (1)通过对珠江三角洲软土成因的地质与水文环境、矿物成分、颗粒特征、微观特征等区域特性分析,发现其特殊的宏观工程特性主要由微细观因素决定。利用“偏度、峰度检验法”研究了珠江三角洲软土物理力学指标的分布规律,为今后该地区开展软土工程提供借鉴。
     (2)与全局阈值分割法相比,局部阈值分割法得到的孔隙比结果与实际更接近。将显微结构二值化定量分析的阀值选择与微孔隙特征测试、三相图计算相匹配的方法,解决目前微观试验结果定量分析中的过渡离散性和人为干扰问题,改善现有微观试验的可靠性和准确性。
     (3)固结过程中,软土微结构类型逐步发生变化,由蜂窝结构(海绵结构)逐渐向骨架结构、紊流结构、密实结构转化,其连接方式由边-边,边-面连接向面-面连接转化,结构单元体面积明显增加,孔隙减小;重塑土颗粒由于缺乏结构性,揉合在一起,以聚合体为主,呈凝块状结构,相对密实,随着荷载的增加,颗粒单元体以面-面连接方式为主。
     (4)结构单元体及孔隙的微观结构定量化参数在固结的不同阶段具有不同的规律。在固结前期,当有效应力较小时,由于淤泥土具有一定的结构强度,微观结构处于稳定调整阶段,孔隙数量较少,孔隙比较大,以大、中孔隙为主,结构单元体和孔隙的大小、形态和定向性等变化幅度均较小;当有效应力增至结构屈服应力时,结构逐渐破坏,团聚体破碎,微观结构处于再造剧烈调整阶段,结构单元体等效直径明显增大,圆形度和平均形状系数显著减小,有变狭长趋势并在垂直于压力方向形成明显的定向排列。此时,孔隙数量明显增加,等效孔径不断变小,形态变得更为复杂,孔隙分布由中、小孔隙向小、微孔隙甚至超微孔隙发展,但定向性变化不明显;当有效应力继续增大时,新的微观结构作适当调整,结构单元体与孔隙的定量化参数变化多趋于平缓。
     (5)珠江三角洲天然软土(或重塑土)的结构单元体和孔隙均具有明显的分形结构特征。综合反映孔隙大小、形态、分布、定向性四方面特征的孔隙结构影响因子与荷载之间具有良好的相关性。研究表明,软土的宏观工程性质与微观参数之间存在紧密联系,固结土的压缩性、渗透性均可由天然部分和固结变化部分构成。其中,天然部分与初始结构性特征(主要是孔隙特征)相关,一般同时与多个结构参数相关;而固结变化部分与固结引起的结构性特征(主要是孔隙特征)的变化相关,最终可表达为与固结压力的关系。
     (6)建立基于微细观试验(经验公式)的修正固结模型,通过实测结果证实了模型的合理性和有效性。修正固结模型基于土体微细观结构特别是微细孔隙结构特征的物理机制,反映土体固结与荷载的非线性关系。
The holocene marine soft soil with a thickness of several meters to tens of meters iswidely distributed in the Pearl River Delta region, which is mainly including of the silt, siltymud and clay. The soft soil has many unfavorable project properties such as high watercontent, high void ratio, high compressibility, low strength, poor permeability, remarkablestructural and rheological characteristics and so on, therefore the serious engineeringaccidents such as foundation settlement, instability occur frequently. In order to improve softsoil foundation’s engineering quality and reduce construction accidents, it is needed to furtherstudy the engineering properties of soft soil, raise the level of design and construction of softfoundation. But for a long time, people mainly focuses on the study of engineeringcharacteristics of soft soil on macroscopic level, which is difficult to catch the essentialfactors to make deep research on its engineering properties. Therefore, the soil microstructureanalysis on the engineering properties of soft soil is a kind of "tracing" method forunderstanding the engineering properties of soft soil in essence.
     With the natural or reconstituted soft soil in the Pearl River Delta(PRD) as the researchobject, this dissertation studies domain features and engineering properties of PRD’s soft soilfrom the statistical point of view, and analyses variation characteristics and fractalcharacteristics of some microstructure factors in seepage consolidation process of soft soil,such as particle shape, particle distribution, arrangement and connection, polymer morphology,pore number, pore shape, scale and distribution, connectivity and twists, etc. by the mineralcomposition test, ESEM test and mercury injection test. Furthermore, the microscopicparameters and macroscopic engineering properties of soft soil have been linked forexplaining the micromechanism that influences the soft soil characteristics. Finally, modifiedconsolidation model based on microscopic test is established, which is confirmed reasonablyand effectively by test results.
     The major achievements and conclusions of this dissertation are listed as follows:
     (1) Through the analysis of the cause of regional characteristics on PRD’s soft soil,which contains geological and hydrological environment, mineral composition, particlecharacteristics, microscopic characteristics and so on, it is found that micro-factors are decisive factors to cause special macro engineering characteristics. The laws of physical andmechanical indexes are studied by using "skewness and kurtosis method", in the future, whichwill provide the reference for the soft soil engineering in the region.
     (2) Local threshold segmentation method’s result of void ratio is more consistent withthe practice when compared with the global threshold segmentation method. As thecoordination of threshold selection in quantitative analysis of microstructure binarization,micropore characteristics test and three-phase diagram calculation is performed, it will solvethe transitional discreteness and human disturbance problems in microscopic quantitativeanalysis of test results to improve the reliability and accuracy of existing microscopic test.
     (3) In the process of consolidation, microstructure types of soft soil will change gradually,from the cellular structure (sponge structure) to the skeleton structure, turbulence structureand compact structure gradually. The connection mode transforms edge to edge, edge tosurface into face to face with structure unit area increasing and porosity decreasing; while dueto the lack of structuredness, particles of remolded soil blend together with relative density inthe form of polymer and clot structure, with the increase of load, the connection of particleswill be mainly transformed into face to face connection.
     (4)The microstructure quantitative parameters of structure units or pores has differentrules in different stages of consolidation. In the early stage of consolidation, the effectivestress is small, the microscopic structure is in a stable period of adjustment owing to silt’scertain structural strength, at this time, the small number of pores number, high void ratio anddominated by major and medium pores, the size, shape and orientation of changes of structureunits and pores are relatively smaller; When the effective stress increases to the structure yieldstress, structure is gradually destroyed and aggregate is crushed, microstructure reengineeringviolently, equivalent diameter of structure units increases significantly, the roundness and theaverage shape factor decreases significantly, change trend in narrow and perpendicular to thedirection of pressure form obvious orientation. At the moment, the number of pores increasessignificantly, the equivalent diameter becomes smaller, patterns become more complex, thepore distribution by the small pores, micropores to small, even ultrafine poredevelopment,,but its orientation has no obvious change; While effective stress continue toincrease, the new microstructure adjusts slightly and quantitative parameters of structure units or pores change is not obvious.
     (5) The structure unit and pore of natural or remolded soft soil in PRD has obviousfractal structure characteristics. Pore structure influence factor, which can reflectcomprehensive reflection of pore size, shape, distribution and orientation characteristics ofpore structure, has a good correlation with the load. The study shows that there is a closerelationship between macroengineering properties of soft soil and the microscopic parameters.Compressibility and permeability of consolidated soil can be made of natural andconsolidation change parts. Among them, natural part is related to the initial structuralcharacteristics (mainly pore characteristics), generally is also associated with multiplestructure parameters;while consolidation change part is related to changes in structuralcharacteristics (mainly pore characteristics)which is caused by consolidation pressure,eventually, consolidation change part can be expressed as the relationship with theconsolidation pressure.
     (6) Revised consolidation model is established on the basis of the micro test (empiricalformula) results, and its rationality and validity is verified by experimental results. Revisedconsolidation model based on soil microstructure, especially on the physical mechanism offine-pore structure characteristics, can reflect the nonlinear relationship between the soilconsolidation and the load.
引文
[1] Brand E. W.,Brenner R. P.编著;叶书麟,宰金璋,史佩栋译校.软粘土工程学[M].北京:中国铁道出版社,1991:16-24
    [2]谷任国,房营光.极细颗粒黏土渗流离子效应的试验研究[J].岩土力学,2009b,30(6):1595-1598
    [3]张功新.真空预压加固大面积超软弱吹填淤泥土试验研究及实践[D].广州:华南理工大学,2006
    [4]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44
    [5] Terzaghi K.. Erdbaumechanik anf bodenphysikalischer Grundlage[M]. Deuticke,Vienna.1925:25-56
    [6] Redulic L.. Porenziffer und Porenwasserdruck in Tonen[J]. Bauingenieur,1936,17:559-564
    [7] Biot M. A.. General Theory of Three-Dimensional Consolidation[J]. Journal of Applied Physics,1941,12(2):155-164
    [8] Biot M. A.. Consolidation settlement under a rectangular load distribution[J]. Journal of AppliedPhysics,1941,12(5):426-430
    [9] Biot M. A.. Theory of propagation of elastic waves in a fluid-saturated porous solid[J]. Journal ofAcoustical Society of America,1956,28(4): l68-191
    [10] Gray H.. Simultaneous consolidation of contiguous layers of unlike compressible soils[J]. Transactionsof the American Society of Civil Engineers,1945,110:1327-1356
    [11] Gibson R. E., England G. L., Hussey M. J. L.. The theory of one dimensional consolidation of saturatedclays: I, Finite nonlinear consolidation of thin homogeneous layers[J]. Geotechnique,1967,17(2):261-273
    [12] Gabson R. E., Schiffman R. L., Cargi1i K. W.. The theory of one dimensional consolidation of saturatedclays II, Finite nonlinear consolidation of thick of homogeneous layers[J]. Canadian GeotechnicalJournal,1981,18(2):280-293
    [13] Wilson N. E., Elaohary M. M. Consolidation of soils under cyclic loading[J]. Canadian GeotechnicalJournal,1974,2:420-423
    [14] Baligh M. M., Levadoux J. N.. Consolidation theory for cyclic loading[J]. Journal of the GeotechnicalEngineering Division, ASCE,1978,104(4):415-431
    [15]吴世明,陈龙珠,杨丹.周期荷载作用下饱和粘土的一维固结[J].浙江大学学报,1988,22(5):60-70
    [16]谢康和.双层地基一维固结理论与应用[J].岩土工程学报,1994,16(5):24-35
    [17]谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报,1995,17(5):80-85
    [18]蔡袁强,徐长节,丁狄刚.循环荷载下成层饱水地基的一维固结[J].振动工程学报,1998,(2):57-66
    [19]魏汝龙.从实测沉降过程推算固结系数[J].岩土工程学报,1993,15(2):12-19
    [20] McNamme J., Gibson R.E.. Displacement function and linear transforms applied to diffusion throughporous elastic media[J]. Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):98-111
    [21] Vardoulakis I., Harnpattanapnich T.. Numerical Laplace-Fourier transform inversion technique forLayered-soil consolidation Problem: Ⅰ.fundamental solution and validation[J]. International Journalfor Numerical and Analytical Methods in Geomechanics,1986,10(4):347-365
    [22] Booker J.R., Small J.C.. A Method of Computing the Consolidation Behaiour of Layered Soil UsingDirect Numerical Inversion of Laplace Transforms[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,1987,11(4):363-380
    [23]黄传志,肖原.二维固结问题的解析解[J].岩土工程学报,1996,18(3):47-54
    [24] Sandhu R. S., Wilson E. L.. Finite element analysis of seepage in elastic media[J]. Journal of theEngineering Mechanics Division, ASCE,1969,95(3):641-652
    [25] Booker J. R., Small J. C. Finite element analysis of primary and secondary consolidation[J].International Journal Solids and Structures,1977,13:137-149
    [26]沈珠江.用有限层法计算软士地基的固结变形[J].水利水运科技情报,1977,(1):7-23
    [27]殷宗泽,徐鸿江,朱泽民.饱和粘土平面固结问题有限单元法[J].华东水利学院学报,1978(1):71-82
    [28]赵维炳,钱家欢.设置砂井的软粘土地基动力固结[J].港口工程,1985,(3):1-7
    [29]余志顽,赵维炳,顾吉.粘弹-粘塑性软基排水预压的三维有限元分析[J].河海大学学报,1995,23(5):1-7
    [30]赵维炳,施建勇.软土流变理论及其在排水预压加固分析中的应用[J].水利水电科技进展,1996,(3):12-17
    [31]宰金珉,梅国雄.有限层求解三维比奥固结问题,岩土工程学报,2002,24(1):31-33
    [32]张延军,张延诘.海积软土弹粘塑性Biot固结的数值分析[J].吉林大学学报(地球科学版),2003,(1):71-75
    [33] Weber W. G.. Performance of Embankments Constructed Over Peat[J]. Journal of the Soil Mechanicsand Foundations Division, ASCE,1969,95(1):53-76
    [34] Cargill K. W.. Prediction of Consolidation of Very Soft Soil[J]. Journal of Geotechnical Engineering,ASCE,1984,110(6):775-795
    [35] Mikasa M.. The Consolidation of Soft Clay[J]. Civil Engineering in Japan, JSCE,1965,1(1):21-26
    [36] Gibson R. E., Shefford G. C.. The efficiency of horizontal drainage layers for accelerating consolidationof clay embankments[J]. Gèotechnique,1968,18(3):327-335
    [37] Cater J. P., Small J. C., Booker J. R.. A Theory of Finite Elastic Consolidation[J]. International JournalSolids and Structures,1977,13(5):467-478
    [38] Prevost J. H.. Nonlinear Transient Phenomena in Saturated Porous Media[J]. Computer Methods inApplied Mechanics and Engineering,1982,30(1):3-18
    [39]谢新宇,谢永利,潘秋元.饱和土体一维大变形固结理论研究[J].西安公路交通大学学报,1996,16(4):14-18
    [40]谢新宇,朱向荣,谢康和,等.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38
    [41]袁大军,丁洲祥,朱合华,等. Gibson大变形固结理论的一种连续介质力学表述[J].岩土力学,2009,30(7):1904-1908
    [42]张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究,1983,(3):65-71
    [43] Locat J., Lefebvre G.. The compressibility and sensitivity of an artifically sedimented clay soil: theGrande-Baleine marine clay[J].Quebes, Canada. Marine Geotechnology,1985,6(1):1-28
    [44]马驯.固结系数与固结压力关系的统计分析及研究[J].港口工程,1993,(1):46-53
    [45]王年香,魏汝龙.软粘土工程性质数据库的初步建立[J].水利水运科学研究,1994,(3):259-265
    [46] Mesri G., Roskhsar A., Bohor B. F.. Composition and compressibity of typical samples of Mexico Cityclay[J]. Geotchnique,1995,25(3):527-554
    [47]龚晓南,熊传祥,项可祥,等.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,(10):43-47
    [48]王国欣,肖树芳,周旺高.原状结构性土先期固结压力及结构强度的确定[J].岩土工程学报,2003,(2):249-251
    [49]孔令伟,吕海波,汪稔,等.海口某海域软土工程特性的微观机制浅析[J].岩土力学,2002,23(1):36-40
    [50]王立忠,丁利,赵志远,等.结构性软土应力-应变关系的分段特性研究[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册)[C].北京:清华大学出版社,2003:320-333
    [51]赵志远.考虑土体结构性的修正邓肯一张模型[D].杭州:浙江大学,2003
    [52]拓勇飞,孔令伟,郭爱国,等.湛江地区结构性软土的赋存规律及其工程特性[J].岩土力学,2004,25(12):1879-1884
    [53]胡瑞林,李向全,官国琳,等.粘性土微结构的定量化研究进展[A].中国地质学会工程地质专业委员会、中国科学院地质研究所工程地质力学开放研究实验室.第五届全国工程地质大会文集
    [C].北京:地震出版社,1996:497-502
    [54] Jackson, M.L.. Soil chemical analysis—Advanced course[M]. Madison: University of Wisconsin,1956:521-646
    [55] Gibbs, R.J.. Error due to segregation in quantitative clay mineral x-ray diffraction mountingtechniques[J]. American Mineralogist,1965,50:741-751
    [56] Brindley, G.W., Brown G. Crystal structures of clay minerals and their X-ray identification[M]. London:Mineralogical Society,1980:411-438
    [57] Bish D.L., Post J.E.. Modern powder diffraction[M]. Washington, D.C: Mineralogical Society ofAmerica,1989:101-144
    [58] Bish D. L.. Quantitative x-ray analysis of soils. Chap.9in Quantitative Methods in SoilMineralogy[M].Madison: Soil Science Society of America Miscellaneous Publication,1994:267-296
    [59]丁佩民,张其林.水泥处理的沉积淤泥膨胀试验及其矿物机理分析[J].同济大学学报,2002,30(9):1083-1086
    [60]刘云华,黄同兴,刘成东. X射线衍射增量法在三水铝石定量分析中的应用—以桂西堆积型铝土矿中的红土为例[J].地质科技情报,2004,23(2):109-112
    [61]王洪兴,唐辉明,晏同珍.小浪底库区庙上北滑坡滑带土粘土矿物定向性的X射线衍射研究及其对滑坡的作用[J].矿物岩石,2004,2(24):26-29
    [62] Sridharan A., Altschaeffl A. G., Diamond S.. Pore size distribution studies[J]. Journal of thesoilmechanics and foundations division, ACSE,1971,97(5):771-787
    [63] Delage P., Lefebvre G.. Study of the structure of a sensitive Champlain clay and of its evolution duringconsolidation[J]. Canadian Geotechnical Journal,1984,21(1):21-35
    [64] Griffiths F. J., Joshi R. C.. Change in pore size distribution due to consolidation of clays[J].Gèotechnique,1989,39(1):159-167
    [65] Griffiths F. J., Joshi R. C.. Change in pore size distribution owing to secondary consolidation of clays[J].Canadian Geotechnical Journal,1991,28(1):20-24
    [66] Lapierre C., Leroueil S., Locat J.. Mercury intrusion and permeability of louiseville clay[J]. CanadianGeotechnical Journal,1990,27(6):761-773
    [67]黄俊.南昆线七甸泥炭土研究的新技术及新方法[J].路基工程,1999,(6):13-18
    [68]吕海波,汪稔,赵艳林,等.软土结构性破损的孔径分布试验研究[J].岩土力学,2003,24(4):574-578
    [69]叶为民,黄雨,崔玉军,等.自由膨胀条件下高压密膨胀粘土微观结构随吸力变化特征[J].岩土力学与工程学报,2005,24(24):4569-4575
    [70]孔令荣,黄宏伟,张冬梅,等.不同固结压力下饱和软粘土孔隙分布试验研究[J].地下空间与工程学报,2007,3(6):1036-1040
    [71]赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000,22(6):720-722
    [72]盛永刚,徐耀,李志宏,等.气体吸附法测定二氧化硅干凝胶的分形维数[J].物理学报,2005,54(1):221-227
    [73]杨正红, Mattias Thommes.气体吸附法进行孔径分析进展--密度函数理论(DFT)及蒙特卡洛法(MC)的应用[A].胡荣泽.第六届全国颗粒测试学术会议论文集[C].北京:中国粉体技术杂志社,2005:67-71
    [74] Mitchell J.K. The fabric of natural clays and its relation to engineering properties[C]. ProceedingsHighway Research Board, Highway Research Board,1956,35:693-713.
    [75] Morgenstern N.R., Tchalenko J.S.. Microscopic structures in kaolin subjected to direct shear:Geotechnique,1967,17:309-328
    [76]袁俊平,殷宗泽,包承纲.膨胀土裂隙的量化手段与度量指标研究[J].长江科学院院报,2003,20(6):27-30
    [77]袁俊平,殷宗泽.膨胀土裂隙的量化指标与强度性质研究[J].水利学报,2004,(6):1-7
    [78] Danilatos G. D.. Theory of the gaseous detector device in the ESEM[M]. Advances in Electronics andElectron Physics,Academic Press,1990,78:1-102
    [79]张梅英,袁建新.岩土介质微观力学动态观测研究[J].科学通报,1993,38(10):920-924
    [80]张梅英,袁建新,古流祥,等.适用于实验细观力学研究的小型剪切仪[J].岩土力学,1996,17(1):22-26
    [81]刘小明,李焯芬.岩石断口微观断裂机理分析与实验研究[J].岩石力学与工程学报,1997,16(6):509-513
    [82]胡瑞林,官国琳,李向东,等.黄土压缩变形的微结构效应[J].水文地质工程地质,1998,3:30-35
    [83]胡瑞林,王思敬,李向全,等.模拟强夯下黄土的固结变形特征及其微观分析[J].岩土力学,1999,20(4):12-18
    [84]胡瑞林,李焯芬,王思敬,等.动荷载作用下黄土的强度特征及结构变化机理研究[J].岩土工程学报,2000,22(2):174-181
    [85]赵永红,梁海华,熊春阳,等.用数字图像相关技术进行岩石损伤的变形分析[J].岩石力学与工程学报,2002,21(1):73-76
    [86]唐朝生,施斌,刘春,等.黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析[J].岩土工程学报,2007,29(5):743-749
    [87]吴义祥.工程粘性土微观结构的定量研究[D].北京:中国地质科学院,1988
    [88]施斌,姜洪涛.粘性土的微观结构分析技术研究[J].岩石力学与工程学报,2001,20(6):864-870
    [89]李妥德,嵁壮丽.土样微观结构研究中的样品制备技术[J].水文地质工程地质,1985,(2):37-41
    [90]王明光,刘太乾,赵丹.浅谈风干法和冻干法制备微结构试验用土样[J].山西建筑,2010,(1):111-112
    [91]张家俊,龚壁卫,胡波.干湿循环作用下膨胀土裂隙演化规律试验研究[J].岩土力学,2011,32(9):2729-2734
    [92]张平,房营光,闫小庆,等.不同干燥方法对重塑膨润土压汞试验用土样的影响试验研究[J].岩土力学,2011,32(S1):388-391
    [93] Tovey N. K., Wong K. Y.. The preparation of soils and other geological materials for the S.E.M[C].Proceedings of the International symposlum on soil structure, Gethenburg, Sweden,1973:59-67
    [94]唐朝生,崔玉军, Anh-Minh Tang,等.土体干燥过程中的体积收缩变形特征[J].岩土工程学报,2011,33(8):1271-1279
    [95] Mitchell J. K.. Fundamentals of Soil Behavior[M]. Second Edition, New York: John wiley and Sons,Inc.,1993,131-160
    [96] Gillott J. E.. Fabric of Leda clay investigated by optical, electron-optical and X-ray diffractionmethods[J]. Engineering Geology,1970,4(2):133-153
    [97] Gillott J. E.. Importance of specimen preparation in microscopy[J].Soil Preparation for LaboratoryTesting, ASTM, Special Technical Publication.1976,599:289-307
    [98]奥西波夫.粘土类土和岩石的强度与变形性能的本质[M].北京:地质出版社,1985:88-101
    [99]李生林,秦素娟,薄遵照,等.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992:25-36
    [100]李榴芬.软土微结构制样的一点体会[J].西部探矿工程,2000,12(5):2223
    [101] Cheng X. H., Janssen H., Barends F B.J, et al. A combination of ESEM, EDX and XRD studies on thefabric of Dutch organic clay from Oostva ardersplassen (Netherlands) and its geotechnical implications[J]. Applied Clay Science,2004,25(3):179-185
    [102]陈宝,钱丽鑫,叶为民,等.高庙子膨润土的土水特征曲线[J].岩石力学与工程学报,2006,25(4):788-793
    [103]施斌,李立. DIPIX图像处理系统在土体微结构定量研究中的应用[J].南京大学学报,1996,32(2):275-280
    [104]施斌.粘性土微观结构定向性的定量研究[J].地质学报,1997,71(1):36-44
    [105]梁双华,孙如华,李文平.基于Mapinfo和PhotoShop的粘性土扫描图像处理[J].河南科技大学学报(自然科学版),2005,26(1):55-58
    [106]田桥.上拔桩—桶基础的土体细观结构分析[D].上海:上海海事大学,2006
    [107]房后国,刘娉慧,袁志刚.海积软土固结过程中微观结构变化特征分析[J].水文地质工程地质,2007,28(2):49-52
    [108]黄丽.饱和软粘土微观孔隙的定量分析及其分形研究[D].武汉:武汉理工大学,2007
    [109]徐清浩.数字图象分析程序在土的微观结构研究中的应用以及数据分析[D].太原:太原理工大学,2008
    [110]唐朝生,施斌,刘春.影响黏性土表面干缩裂缝结构形态的因素及定量分析[J].水利学报,2007,38(10):1186-1193
    [111]施斌,唐朝生,王宝军,等.粘性土在不同温度下龟裂的发展及其机理讨论[J].高校地质学报,2009,15(2):192-198
    [112]刘春,王宝军,施斌,等.基于数字图像识别的岩土体裂隙形态参数分析方法[J].岩土工程学报,2008,30(9):1383-1388
    [113] Mesri G. Discussion[J]. Journal of the Geotechnical. Engineering Division, ASCE,1975,101(GT4):409-412
    [114] Leroueil S., Vaughan P. R..The general and congruent effects of structure in natural soil and weakrock[J]. Geotechnique,1990,40(3):467-488
    [115]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656
    [116]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97
    [117]塔萨奇,泼克R. B.著,蒋彭年译.工程实用土力学[M].北京:水利电力出版社,1960:201-243
    [118] Collins K., Megown A.. The form and function of microfabric feature in a variety of natural soils.Géotechnique,1974,24(2):223-254
    [119] Casagranda A. The structure of clay and its importance in foundation engineering[J]. Journal BostonSociety Civil Engineers,1932,19(4):168-209
    [120] Lambe T. W.. The structure of compacted clay[J]. Journal of Soil Mechanics and Foundation Division,ASCE,1958,84(SM2):1-33
    [121] Lambe T. W.. The engineering behaviour of compacted clay[J]. Journal of Soil Mechanics andFoundation Division, ASCE,1958,84(2):1-35
    [122] Aylmore L.A.G., Quirk, J.P..The structure Status of clay systems[J]. Clays and Clay Minerals,1960,9(1):104-130
    [123] Olphen H. V.. An introduction to clay colloid chemistry[M]. New York: Interscience Publishers,1963:159-192
    [124] Smart, P. Soil structure, mechanical properties and electronmicroscopy[D]. Cambridge, England:Cambridge University,1967
    [125]胡瑞林,李向全.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995:20-58
    [126]高国瑞.细粒上组构专门术语、概念和分类命名的初步方案[J].水文地质工程地质,1986,(1):8-16
    [127] Osipov V. L.. Physico-chemical fundamentals of soil microrheology[A]. In The6th Congress ofIAEG[C]. Amsterdam:[sn],1990,20-26
    [128]胡瑞林,王思敬,李向全,等.21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999,26(4):5-8
    [129]李向全,胡瑞林,张莉.软土固结过程中的微结构变化特征[J].地学前缘,2000,7(1):147-152
    [130]刘松玉,张继文.土中孔隙分布的分形特征研究[J].东南大学学报,1997,27(3):127-130
    [131]彭涛,武威,黄少康,等.吹填淤泥的工程地质特性研究[J].工程勘察,1999,(5):1-4
    [132]叶正强,李爱群,杨国华等.粘性土的渗透规律性研究[J].东南大学学报,1999,29(5):121-125
    [133]王秀艳,刘长礼.深层黏性土渗透释水规律的探讨[J].岩土工程学报,2003,25(3):308-312
    [134]顾中华,高广远,王结虎.结构性对上海软土渗透系数影响的试验研究[J].探矿工程(岩土钻掘工程),2004,(5):1-3
    [135]叶为民,杨林德,黄雨,等.上海软土微观空隙各向异性特征及其成因分析[J].工程地质学报,2004,12(S):84-87
    [136]顾正维,孙炳楠,董邑宁.粘土的原状土、重塑土和固化土渗透性试验研究[J].岩石力学与工程学报,2003,22(3):505-508
    [137]李又云,刘保健,谢永利.软土结构性对渗透及固结沉降的影响[J].岩石力学与工程学报,2006,25(S2):3587-3592
    [138]刘莹,王清.吹填土沉积后微观结构特征定量化研究[J].水文地质工程地质,2006,(3):124-128
    [139]牛文杰,叶为民,陈宝,等.考虑微观结构的非饱和渗透系数计算公式[J].探矿工程(岩土钻掘工程),2009,36(6):34-39
    [140]刘阳,乔熙,张鹏.多孔介质渗透系数数值模拟研究[J].徐州建筑职业技术学院学报,2010,10(4):8-12
    [141]骆进.黄土渗透变形特性及机理研究[D].武汉:中国地质大学,2010
    [142]高发亮,商庆森,马国梁.粉土、粘土压实与渗透微观机理的研究[J].中外公路,2010,30(3):292-295
    [143]孔令荣.饱和软粘土的微结构特性及其微观弹塑性本构模型[D].上海:同济大学,2007
    [144]刘晓漩.软粘土等向固结过程中微观孔隙结构演化机制的定量研究[D].武汉:武汉理工大学,2010
    [145]徐超,李志斌,高彦斌.溶液特征对GCL膨胀和渗透特性的影响[J].同济大学学报(自然科学版),2009,37(1):36-40,46.
    [146]徐超,李丹,黄亮.水泥-膨润土泥浆固结体渗透性与微观结构的关系[J].同济大学学报(自然科学版),2011,39(6):819-823
    [147]单悬媚,梁合诚,刘佳伟,等.饱水过程中松散土体渗透性变化研究[J].水文地质工程地质,2010,37(5):97-101
    [148]张明鸣,李荣玉,张剑等.淤泥土细观渗透固结实验研究[J].水运工程,2011,(4):140-144
    [149]张家发,焦赳赳.颗粒形状对多孔介质孔隙特征和渗流规律影响研究的探讨[J].长江科学院院报,2011,28(3):39-44
    [150]牛岑岑,王清,苑晓青等.渗流作用下吹填土微观结构特征定量化研究[J].吉林大学学报(地球科学版),2011,41(4):1104-1109
    [151]吴承伟,马国军,周平.流体流动的边界滑移问题研究进展[J].力学进展,2008,38(3):265-282.
    [152] Weber L. J. and Neugebauer H. Theoretische betrachtungen über das Traube-Whangsche ph nomen[J].Z Phys. Chem. A.,1928,138:161-168.
    [153] Schnell E. Slippage of water over nonwettable surfaces[J]. Journal of Applied Physics,1956,27:1149-1152.
    [154] Stemme G., Kitttilsland G. and Norden B. A sub micron particle filter in silicon channels[J]. Sensors andActuators,1990,431(4):21-23.
    [155]过增元.国际传热研究前沿—微细尺度传热[J].力学进展,2000,30(1):1-6.
    [156]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨[J].广东工业大学学报,2001,18(3):46-48.
    [157]周翠英,林春秀,刘祚秋,等.基于微观结构的软土地基加固效果评价[J].中山大学学报(自然科学版),2004,43(5):20-23
    [158]周宇泉,胡昕,洪宝宁等.从微细结构方面解释某黏性土压缩特性的差异[J].水利水电科技进展,2006,26(1):31-33+36
    [159]张礼中,胡瑞林,李向全等.土体微观结构定量分析系统及应用[J].地质科技情报,2008,31(1):108-112
    [160]孟庆山,杨超,许孝祖.动力排水固结前后软土微观结构分析[J].岩土力学,2008,29(7):1759-1763
    [161]贾敏才,王磊,周健.砂性土宏细观强夯加固机制的试验研究[J].岩石力学与工程学报,2009,28(S1):3282-3290
    [162]彭立才,蒋明镜,朱合华,等.珠海地区软土微观结构类型及定量分析研究[J].水利学报,2010,(S):687-690
    [163]张宏,柳艳华,杜东菊.基于孔隙特征的天津滨海软粘土微观结构研究[J].同济大学学报(自然科学版),2010,38(10):1444-1449
    [164]陶高梁.岩土多孔介质孔隙结构的分形研究及其应用[D].武汉:武汉理工大学,2010
    [165] Batdorf S.B., Budianski B.. A mathematical theory of Plasticity based on the concept of slip[R].Technical Note No.1871, National Advisory Committee for Aeronautics, Washington, D. C,1949
    [166]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型[J].岩土工程学报,1997,17(3):6-13
    [167] Cundall P. A., Strack O.D.L.. The distinct numerical model for granular assemblies [J]. Geotechnique,1979,29(1):47-65
    [168] Yimsiri S., Soga K.. Micromechanics-based stress-strain behavior of soils at small strains [J].Geotechnique,2002,50(5):559-571
    [169]王常明.海积软土微观结构定量化及固结模型研究[D].长春:长春科技大学,1999
    [170]雷华阳.海积软土结构性模型的试验研究及其在基坑开挖工程中的应用[D].长春:吉林大学,2001
    [171] Katz A. J., Thompson A. H.. Fractal sandstone pores: implications for conductivity and poreformation[J]. Physical Review Letters,1985,54(12):1325-1328
    [172] Tyler S. W., Wheatcraft S. W.. Application of fractal mathematics to soil water retention estimation[J].Soil Science Society of America Journal,1989,53(4):987-996
    [173] Tyler S. W., Wheatcraft S. W.. Fractal processes in soil water retention[J]. Water Resources Research,1990,26(5):1047-1054
    [174] Rieu M., Sposito G. Fractal fragmentation, soil porosity, and soil water properties:I.Theory,II.Applications[J]. Soil Science Society of America Journal,1991,55:1231-1248
    [175] Kravchenko A., Zhang R. Estimating the soil water retention from particle-size distribution: a fractalapproach[J]. Soil Science,1998,163(3):171-179
    [176] Turcotte D.L. Fractals and fragmentation[J]. Journal of Geophysical Research,1986,91(B2):1921-1926
    [177] Tyler S. W., Wheatcraft S. W. Fractal scaling of soil particle-size distributions analysis andlimitations[J]. Soil Science Society of America Journal,1992,56(2):362-369
    [178]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J].水利学报,2004,(4):67-71,79.
    [179]刘松玉,方磊.试论粘性土粒度分布的分形结构[J].工程勘察,1992,(2):16
    [180] McBratney A. B. Comments on “fractal dimensions of soil aggregate-size distributions calculated bynumber and mass”[J]. Soil Science Society of America Journal,1993,57(5):1393
    [181]田勘良,张慧莉,张佰平,等.超径无粘性粗粒土填筑标准的确定方法[J].西北农林科技大学学报(自然科学版),2002,(6):193-197
    [182] Bartoli F. R., Philippy R. and Doirisse M., et al. Structure and self-similarity in silty and sandy soils:Thefractal approach[J]. Journal of Soil Science,1991,42(2):167-185
    [183] Horgan G. W., Ball R. C. Simulating diffusion in a Boolean model of soil pores[J]. European Journal ofSoil Science,1994,45(4):483-491
    [184] Horgan G. W. Mathematical morphology for analyzing soil structure from images[J].European Journalof Soil Science,1998,49:161-173
    [185]徐永福,田美存.土的分形微结构[J].水利水电利技进展,1996,16(1):25
    [186] Anderson A. N., McBratney A. B., FitzPatrick E. A. Soil mass, surface, and spectral fractal dimensionsestimated from thin section photographs[J]. Soil Science Society of America Journal,1996,60(4):962-969
    [187] Zeng Y., Gantzer C. J., Payton R. L., et al. Fractal dimension and lacunarity of bulk density determinedwith X-ray computed tomography[J].Soil Science Society of America Journal,1996,60(6):1718-1724
    [188] Young I. M., Crawford J. W., Anderson A., et al. Comment on number-size distributions,Soil structureand fractals[J]. Soil Science Society of America Journal,1997,61(6):1799-1800
    [189] Arya L. M., Leij F. J., Shouse P. J., et al. Relationship between the hydraulic conductivity function andparticle-size distribution[J].Soil Science Society of America Journal,1999,63(5):1063-1070
    [190]王清.土孔隙的分形几何研究[J].岩土工程学报,2000,22(4):496-498
    [191]柳艳华,张宏,杜东菊.多重分形在海积软土微观结构研究中的应用[J].水文地质工程地质,2006,(3):89-93
    [192] Gupta S. C., Larson W. E. Estimating soil water retention characteristics from particle size distribution,organic matter percent, and bulk density[J]. Water Resources Research,1979,15(6):1633-1635
    [193] Arya L. M., Paris J. F. A physicoempirical model to predict the soil moisture characteristic fromparticle-size distribution and bulk density data[J]. Soil Science Society of America Journal,1981,45:1023-1030
    [194] Haverkamp R., Parlange, J. Y. Predicting the water retention curve from particle-size distribution:Sandy soils without organic matter[J]. Soil Science Journal,1986,142:325-399
    [195]徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405
    [196]戚国庆,黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报,2004,12(2):182-186
    [197] Ogawa S., Baveye P., Boast C. W., et al. Surface fractal characteristics of preferential flow patterns infield soils: evaluation and effect of image processing[J]. Geoderma,1999,88(3):109-136
    [198] Dathe A., Eins S., Niemeyer J., et al. The surface fractal dimension of the soil-pore interface asmeasured by image analysis[J]. Geoderma,2001,103(2):203-229
    [199]张华杰,孙秋,胡昕,等.岩土微结构试验研究综述[J].土工基础,2008,22(4):49-52
    [200]毛灵涛,薛茹,安里千,等.软土孔隙微观结构的分形研究[J].中国矿业大学学报,2005,34(5):600-604
    [201] Tovey N. K. Quantitative analysis of electron micro-graphs of soil structure[C]. Proceeding in theInternational Symposium on Soil Structure, Gothenburg,1980:55-62
    [202]钱家欢,殷宗泽.土工原理与计算[M].第二版.北京:水利电力出版社,1993:110-132
    [203]邱正松,丁锐,于连香.泥页岩比表面积测定方法研究[J].钻井液与完井液,1999,16(1):9-11
    [204] Carter D. L., Heilman M. D. and Gonzalez C. L. Ethylene glycol monoethyl ether for determiningsurface area of silicate minerals[J]. Soil Science,1965,100(5):356-360
    [205]孟昭福,张一平,郭仲义.有机修饰壤土表面特性的研究I.CEC和比表面[J].土壤学报,2008,45(2):370-374
    [206]梁大川.粘土和泥页岩比表面积测定和计算方法综述[J].钻井液与完井液,1995,12(5):11-15
    [207]李学垣,土壤化学及实验指导[M].北京:中国农业出版社,1997:56-75
    [208]柴寿喜,韩文峰,王沛,等.用冻干法制备微结构测试用土样的试验研究[J].煤田地质与勘探,2005,33(2):46-48
    [209]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006:107-116
    [210] Autopore ΙV9500压汞仪操作手册[M].美国麦克仪器公司,2007:5-6
    [211] Shear D. L., Olsen H. W., Nelson K. R. Effects of desiccation on the hydraulic conductivity versus voidratio relationship fora natural clay[R]. Transportation research record, NRC, National academy press.Washington D.C.,1993:1365-1370
    [212] Kodikara J., Barbour S. L. and Fredlund D. G. Changes in clay structure and behavior due to wettingand drying[C]. Proceedings of the8th Australian New Zealand conference on Geomechanics:Consolidating Knowledge. Barton, ACT: Australian Geomechanics Society,1999:179-185
    [213] Danilatos G. D. Review and Outline of Environmental SEM at Present[J]. Journal of Microscopy,1991,162(3):391-402
    [214] Pratibha L. Gai. In-Situ Microscopy in Materials Research: Leading International Research In electronScanning probe Microscopy[M]. Boston: Kluwer Academic Publishers,1997:13-44
    [215] Danilatos G. D. Mechnisms of Detection anal Imaging in the ESEM[J]. Journal of Microscopy,1990,160(1):9-19
    [216]干蜀毅,陈长琦,朱武,等.扫描电子显微镜探头新进展[J].现代科学仪器,2001,(1):47-49
    [217] Hvorsleu M.J.. Subsurface Exploration and Sampling of Soils for Civil Engineering Purposes[M]. NewYork: American Society of Civil Engineers,1949:411-464
    [218]魏汝龙.软粘土取土技术及其改进[J].岩土工程学报,1986,(6):113-125
    [219]沈珠江.原状取土还是原位测试—土质参数测试技术发展方向刍议[J].岩土工程学报,1996,(5):90-91
    [220]麦克,海莉. Quanta200,400,600用户操作手册(第三版)[M].北京: FEI公司,2002:15-35
    [221]陈洪江,崔冠英.花岗岩残积土物理力学指标的概型分布检验[J].华中科技大学学报,2001,29(5):49-53
    [222]潘天有,胡宝群.花岗岩风化物物理力学指标的概率统计分析[J].人民长江,2004,35(12):40-46
    [223]黄镇国,李平日,张仲英,等.珠江三角洲形成发育演变[M].广州:广州科普出版社,1982:33-42
    [224]陈国能,张珂.珠江三角洲晚更新世以来的沉积一古地理[J].第四纪研究,1994,(1):67-74
    [225]陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003,22(1):137-141
    [226]梁健伟.软土变形和渗流特性的试验研究与微细观参数分析[D].广州:华南理工大学,2010
    [227]陆培炎.陆培炎科技著作及论文选集[M].北京:科学出版社,2006:102-124
    [228]范明桥,盛金保.土强度指标c, φ的互相关性[J].岩土工程学报,1997,19(4):100-104
    [229]张征,刘淑春,鞠硕华.岩土参数空间变异分析原理与最优估计模型[J].岩土工程学报,1996,18(4):40-47
    [230]唐兴莉.土体物理力学参数及其关系的试验研究[J].重庆交通学院学报,2003,22(4):68-71
    [231]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1979:31-48
    [232]陈嘉鸥,叶斌,郭素杰.珠江三角洲粘性土微结构与工程特性初探[J].岩石力学与工程学报,2000,19(5):132-136
    [233]王盛源,关锦荷,蒋雪琴.饱和粘土微粒及其工程特性研究[J].水运工程,1999,(5):3-7
    [234]张咸恭,王思敬,张倬元,等著.中国工程地质学[M].北京:科学出版社,2000:79-121
    [235]施斌,刘志斌,姜洪涛.土体结构系统层次划分及其意义[J].工程地质学报,1999,(5):145-153
    [236] Shi Jianbo, Malik J., Normalized cuts and image segmentation[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2000,22(8):888-905
    [237] Weiss Y.. Segmentation using Eigenvectors:A Unifying View[C]. Proceedings of the InternationalConference on Computer Vision(2),Washington, D C,1999:975-982
    [238] Adleman L. M. Molecular Computation of Solution to Combinatorial Problems[J]. Science,1994,66(11):1021-1024
    [239] Martin N., Leblond V., Guillotel G., et al. BOC(x,y) signal acquisition techniques and performances[C].Proceedings of U.S. Institute of Navigation GPS/GNSS Conference, Portland, OR, September2003:188-198
    [240]章毓晋.图像分割[M].北京:科学出版社,2001:58-97
    [241]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6):92-94
    [242]阴国富.基于阈值法的图像分割技术[J].现代电子技术,2007,(23):107-108
    [243] Mandelbrot B. B. The Fractal Geometry of Nature[M]. New York: W H Freeman,1982:361-366
    [244]杨展如.分形物理学[M].上海:上海科技教育出版社,1996:21-35
    [245] Perfect E., Kay B. D. Applications of fractals in soil and tillage research: a review[J]. Soil&TillageResearch,1995,(36):1-20
    [246]张济忠.分形[M].北京:清华大学出版社,2001:101-115
    [247]李榴芬,彭元贵.珠江三角洲软土微结构的定量研究[J].华东地质学院学报,2001,24(2):127-130
    [248]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997:68-79
    [249]谢和平.分形—岩石力学导论[M].北京:科学出版社,1996:78-102
    [250]胡瑞林.特殊土工程性质的微观机理定量研究[D].北京:中国科学院地质与地球物理研究所,2000
    [251]谢和平.孔隙与破断岩体的宏细观力学研究[J].岩土工程学报,1998,20(4):113-114
    [252]杨静.高粘粒含量吹填上加固过程中结构强度的模拟试验研究[D].长春:吉林大学,2009
    [253]杨伟,王勇.应用排水固结法处理广州地铁鱼珠车辆段软基[J].路基工程,2008,(1):77-79
    [254]童华炜,周龙翔,邓祎文,等.动力排水固结法在广州软土地基处理中的应用[J].施工技术,2007,36(7):56-59
    [255]文海家,张永兴.超软土的排水固结机理分析[J].重庆大学学报,2002,25(9):82-85
    [256]李广信.高等土力学[M].北京:清华大学出版社,2004:268-275
    [257]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999:100-105
    [258] Tanaka H., Shiwakoti D. R., Omukai N. and et al. Pore size distribution of clayey soils measured bymercury intrusion porosimetry and its relation to hydraulic conductivity[J]. Journal of The JapaneseGeotechnical Society of Soils and Foundations,2003,43(6):63-73
    [259]张光澄.实用数值分析[M].成都:四川大学出版社,2004:163-167
    [260]谷任国.软土流变的成分影响和渗流的离子效应研究[D].广州:华南理工大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700