蜂胶中抗意大利青霉活性成分的追踪及抑菌作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂胶是蜜蜂从植物芽苞或树干分泌物中采集的树脂类物质,用于防护、抵御病原微生物、修补巢房和内环境消毒杀菌等。研究表明蜂胶提取物具有广谱的抑菌活性,素有“天然抗生素”之称。同时蜂胶中含有黄酮类、酚酸类、萜烯类、脂肪酸及氨基酸等多种活性物质,近年来已从不同产地的蜂胶中分离鉴定出300多种化合物。因此蜂胶是筛选天然抗菌剂的理想材料。本论文以引起柑橘采后腐烂变质的重要病原菌意大利青霉(Penicilum.italicum)为指示菌,采用生物活性追踪的方法,对蜂胶中抑制意大利青霉的活性成分进行了分离、纯化,并研究了活性成分的抑菌机理;同时对蜂胶提取物在柑橘上的防病效果及保鲜机理进行了初步研究。主要研究结果如下:
     1.蜂胶提取物的抑菌活性与黄酮、酚类物质含量密切相关。在水、乙醇、乙酸乙酯、氯仿、石油醚等五种不同极性的溶剂中,乙酸乙酯和乙醇所提取的蜂胶液中含有高含量的黄酮和酚类物质,抑菌活性最强,抑制率达100%;其次为氯仿;石油醚和水所提取的蜂胶提取液中的黄酮类和酚类物质含量最低,抑菌活性最差。来自河北永年、河北保定和湖北当阳等三个产地的蜂胶的主要成分相似,各个成分的相对含量存在差异;与河北蜂胶相比,湖北蜂胶中酚酸类物质的相对含量较高,而黄酮类物质的相对含量较低。来自河北保定的蜂胶的总黄酮和酚类物质含量最高,品质最好,抑菌活性最强;其次为河北永年蜂胶;湖北当阳蜂胶的品质和抑菌活性最差。
     2.采用溶剂萃取、薄层层析及柱层析等分离方法对蜂胶乙醇提取物和乙酸乙酯提取物中的抑菌活性成分进行生物活性追踪及分离,发现两种提取物的活性部位中的化学组成相同。对活性组分进行黄酮体的颜色反应和和紫外光谱分析,结果显示活性组分遇硼氢化钠变浅蓝色;在甲醇溶液中的特征吸收峰为291 nm,在可见区无明显吸收;在甲醇钠和醋酸钠溶液中主要吸收波长向长波移动38 nm;以上结果具备5,7-二羟基-双氢黄酮的典型特征。进一步对活性组分进行液质分析和紫外光谱分析,推断活性组分中化合物分别是短叶松素、松属素、白杨素和高良姜素,其中松属素的相对含量最高。
     3.对活性组分进一步通过Sephadex LH-20凝胶色谱柱分离、纯化得到松属素、白杨素、高良姜素。液相检测的纯度分别为87.13%,97.00%,94.55%。对浓度为200mg/L的松属素、白杨素和高良姜素的抑菌活性进行比较,发现松属素对意大利青霉的抑制效果最强,抑制率达70.28%;其次为白杨素,抑制率为34.12%;高良姜素的抑菌效果最差,抑制率仅为12.5%。
     4.采用生长速率法对松属素抑制意大利青霉菌丝体生长的效果进行评价,松属素对菌丝体表现出显著地抑制作用。通过毒力回归分析,松属素对意大利青霉的抑制作用呈浓度-效应依赖关系。松属素处理浓度与抑制率之间的线性回归方程为y=1.77lnx+1.54,r=0.98283,P=0.01717,达显著水平。EC_(50)和EC_(90)分别为89.06 mg/L和469.78 mg/L。同时,松属素对温度的变化和酸碱性环境具有良好的适应性,在35~100℃的温度范围内及pH 4.0~7.0的酸碱环境中仍能保持稳定的抑菌活性。
     5.松属素处理使意大利青霉的细胞结构受损。显微结构的观察结果表明经过松属素处理的意大利青霉在孢子萌发和菌丝体的培养过程中均出现了原生质分布不均匀,发生凝聚,菌丝体膨大变形,液泡增大等细胞走向衰亡的症状。超微结构的观察结果显示经过松属素处理的菌丝体发生严重的质壁分离,大量胞内容物外渗。同时松属素处理的意大利青霉菌丝体的几丁质酶活性和β-1,3-葡聚糖酶活性显著高于对照,反映菌体细胞壁的降解代谢增强。此外,松属素处理的菌丝体相对渗透率上升迅速,在整个培养过程中始终高于对照,表明松属素处理破坏了意大利青霉菌丝体细胞壁和细胞膜结构的完整性,是松属素抑制意大利青霉活性的原因之一。
     6.通过对意大利青霉菌丝体培养过程中的呼吸代谢及物质代谢相关指标等进行测定,结果显示松属素处理的菌丝体呼吸强度在整个培养过程中均保持在较低的水平;ATP、ADP、AMP含量也同样明显低于对照。同时实验结果发现经过松属素处理的意大利青霉菌丝体中的蛋白质含量很低,在培养8 h和24 h时,蛋白质含量仅为对照的62.29%和42.72%;而在培养24 h时经过松属素处理的意大利青霉菌丝体内出现了还原糖的累积,还原糖的含量约为同期对照还原糖含量的2.5倍。结果暗示松属素通过抑制呼吸作用,使菌丝体的能量代谢受阻,呼吸底物累积,使菌体的物质代谢发生紊乱,加之细胞壁降解酶活性的加强促进几丁质和葡聚糖等降解,还原糖累积,蛋白质合成受阻;以上结果暗示松属素导致了意大利青霉菌丝体的能量代谢和合成代谢发生紊乱,是菌丝体逐渐走向衰亡的另一重要原因。
     7.经过蜂胶提取物处理的柑橘果实贮藏期间青、绿霉病的发病率明显低于对照;同时能够延缓果实色度、可溶性固形物、V_C、有机酸等品质指标的下降;因此PEAE处理可以有效地控制柑橘贮藏期间青、绿霉病的发生。
     8.通过对蜂胶提取物诱导柑橘青霉病的表达时间以及蜂胶提取物处理对柑橘果实抗病性相关的物质及酶活性的影响研究,发现蜂胶提取物对柑橘果实诱导抗病性的最佳表达时间是处理后8h。蜂胶提取物处理增加了柑橘果皮中酚类物质的含量,提高了柑橘果皮中苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、多酚氧化酶(PPO)、几丁质酶(CHT)等与诱导抗病性密切相关的酶的活性。因此,蜂胶提取物增强了柑橘果实的防御系统,对柑橘表现出良好的保鲜效果,具有进一步研究及开发的潜在价值。
Propolis is a resinous material collected by bees from plant buds and exudates, which is employed for resisting pathogenic microorganism, construction and repair of the honeycomb and sterilization of surroundings. There was a substantial evidence indicating that propolis had broad antimicrobial activity and was named as "natural antibiotics". At the same time, propolis is a complex mixture of chemical constituents including flavonoids, phenolic acids and esters, terpenes, fatty acids and amino acid etc. More than 300 kinds of compounds were identified from propolis of different origin. It indicated propolis was a desirable material for screening out natural antimicrobial. In current study, Penicillum italicum (P.italicum) , an important pathogenic fungi which lead to blue mold during the citrus storage as the indicator., bioassay was used to separate the active compound ; the action mechanism of active compounds against P.italicum was studied; Inhibitory effect of propolis ethyl acetate extract(PEAE) against citrus blue mold was evaluated. The main results as follow:
     1. The extracted solvent and origin of propolis affected the chemical constituent and antifungal activity against P. italicum. Propolis ethyl acetate extract(PEAE) and propolis ethanol extract (PEE) demonstrated the most powerful activities, followed by propolis chloroform extract, while propolis petroleum ether extract and propolis water extract showed weak acivities, and the inhibitory activities were consistant with the contents of flavonoids or phenols in the corresponding extracts. Propolis from Hebei Baoding was of the highest contents of flavonoids or phenols and strongest inhibitory effect on the P. italicum; followed by Hebei Yongnian propolis; Propolis from Hubei Dangyang was last one.
     2. The antifungal fractions from PEE and PEAE were separated by organic solvent extract, thin-layer chromatography (TLC) or column chromatography combined with bioassay and they had the similar chemical constitutes assayed by HPLC. The color reaction and UV behaviour for flavonoids were determined to identify the substance in the active fraction .The results showed its color became blue when meeting with NaHBO_3; Its characteristic wavelength was 292 nm in methol and would be shifed 38nm to the longer wave in MeONa or NaAc. This main flavonoids in active fraction were of the typical characteristic of 5,7-dihydroxyflavanone. Using the HPLC-PDA-ESI-MS method, it was deduced that the main compounds in the active fraction were pinobanksin, pinocembrine, chrysin and galangin; and pinocembrine had the highest relative content in the four compounds.
     3. Purified pinocembrine, chrysin and galangin were attained by further separating active fraction through sephadex LH-20 chromatography, which purity for HPLC were 87.13%, 97.00%, 94.55% respectively. Among the three compounds, pinocembrine had the strongest inhibitory effect against P.italicum, followed by chrysin, and galangin was the last one; Their inhibition percents against P.italicum were 70.28%, 34.12%,12.5% separately at the concentration of 200 mg/L.
     4. Effect of pinocembrine on the P.italicum were evaluated by growth rate method . Pinocembine appeared obviously inhibitory effect on the P.italicum and had the line relaxtion between the concentration and inhibition rate. The regression equation of toxicity was y = 1.77 lnx+1.54, ( r =0.98283, P =0.01717). EC_(50)=89.06 mg/L and EC_(90) =469.78 mg/L. At the same time, pinocembrime were still of the stable antifungal activity at at the temeperature range of 35~100℃and pH4~7.
     5. Pinocembrine treatment damaged the cell structure of P.italicum during spore germination and mycelium culture. Microscopic structure of P.italicum hyphas treated with pinocembrine became swollen and abnormal, the protoplasm concentrated and the cell wall degraded, which indicated that hyphas deem to death. The results of ultrastructure indicated evident plasmolysis, intracellular components were extravasation. At the same time, activity of chitinase andβ-1, 3-glucanase were higher than contolled after treated with pinocembrine. Pinocembrine also destroyed the integrality of cell membrane and the relative leakage rate was increasing greatly after treated with pinocembrine.
     6. Indexes on respiration metabolism and material metabolism were measured , the results indicated mycelium treated with pinocembine had the lower respiratory rate , ATP, ADP , AMP and protein contents . After culturing 8h and 24h, protein in the treated mycelium were only up to 62.29% and 42.72% compared with controlled. While the reduced sugar content in treated mycelium was higher than controlled mycelium at 24 h. It suggested that pinocembrine treatment blocked energy metabolism of mycelium through inhibited respiration; At the same time , Cell wall degrading enzyme in the mycelium accelerated the degradation of chitin and dextran. therefore , it led to the accumulation of reduced sugar and decreasing of protein, mycelium became deathward.
     7. Compared with control, PEAE treatment decreased the disease incidence of blue mold and green mold , and delayed the decline of color , total soluble solids(TSS) ,titratable acidity(TA) ,vitamin C level and eatable quality of citrus fruits during storage at 26°C. Therefore, PEAE could effectively controlled postharvest diseases of citrus fruit during storage.
     8.Expressive time of propolis extract on the induced resistance against citrus blue mold and influence of propolis extract on the activities of defensive related enzymes were investigated. The results showed that at 48 h after treatment with propolis extract, citrus fruit exhibited the strongest resistance against blue mold. Propolis extract treatment maintained higher level of the total phenolic contents, enhanced activities of phenylalanine ammonia-lyase, polyphenol oxidase and peroxidase, and stimulated chitinase in citrus fruit peel. Therefore, propolis treatment strengthened the defense system of citrus fruits and reduced disease incidence of citrus blue mold, and appeared great potential on postharvest disease control of citrus fruit.
引文
1.毕阳.Harpin对厚皮甜瓜果实抗病性的诱导及其生理机制.[博士学位论文].兰州:兰州大学图书馆,2002
    2.曹炜,符军放,索志荣,陈军卫,郑建斌.蜂胶与杨属芽提取物成分的比较研究.食品工业与发酵,2007,33:162-166
    3.曹炜,索志荣.Folin-Ciocalteus比色法测定蜂蜜中酚类物质酸的含量.食品与发酵工业,2003,29:80-82
    4.陈崇羔,周世雄.不同体积分数的乙醇对蜂胶有效成分提取率的影响.1996,25:361-363
    5.陈鹏.小麦对白粉病诱导抗性体系中蛋白质与墓因的表达差异研究.[博士学位论文].陕西杨凌:西北农林科技大学图书馆,2004
    6.程智慧,李玉红,孟焕文,陈鹏,杜慧芳.BTH诱导黄瓜幼苗对霜霉病的抗性与细胞壁HRGP和木质素含量的关系.中国农业科学,2006,39:935-940
    7.刁春玲,张国平,徐广芳,刘芳,薛伟,杨松,胡德禹,宋宝安.苯并噻唑衍生物亚磷酸盐对禾谷镰刀菌的作用机理初探.农药学学报,2006,8:233-238
    8.董文明,焦凌梅,董坤.蜂胶/魔芋涂膜酸石榴保鲜技术研究.食品科技,2006,12:154-157.
    9.杜冠华,刘艾林,张莉,胡娟娟,庾石山,石建功.天然产物中先导化合物的快速发现技术.中国天然药物,2005,3:328-331
    10.杜建玲.植物诱导抗性的理论及其应用前景.北京林业大学学报,1994,16:83-87
    11.段学武.纯氧处理抑制采后荔枝(Litchi chinensis Sonn.)果皮褐变生理机制研究.[博士学位论文].广州:华南植物研究所图书馆,2004
    12.段亚波,戚燕,姬政,方刚,程永浩,吴松.松属素及其衍生物的合成与抗菌活性.中国药学化学杂志,2006,16:342-346
    13.范青.果实采后病害生物防治及其机理研究.[博士学位论文].北京:中国科学院植物研究所图书馆,2001
    14.付英娟.蜂胶中有效成分的提取及应用研究.[硕士学位论文].陕西杨凌:西北农林科技大学图书馆,2007
    15.耿晓玲.杨梅果实提取物的抑菌作用研究.[硕士学位论文].江苏无锡:江南大学图 书馆,2007
    16.顾青,张燕萍,钟立人.蜂胶中有效成分提取工艺研究.浙江农业学报,2001,13:161-164
    17.郭新梅,陈耀锋,曹团武.禾谷镰刀菌粗毒素对不同抗性水平小麦品种细胞膜透性的影响.植物遗传资源学报.2005,6:186-190
    18.郝纯,常忠义,高红亮,任国谱.天然食品防腐剂-细菌素的研究新进展.食品科学,2004,25:193-197
    19.胡福良,李英华,朱威,陈民利,应华忠.不同方法提取的蜂胶液中总黄酮含量的测定.中国食品学报,2005,5:11-15
    20.胡福良,玄红专.蜂胶的化学成分和植物来源的研究进展.中国现代应用药学杂志,2003,19:469-471
    21.胡福良,朱威,李雅晶,郑火青.蜂胶化学成分和生物活性的多样性研究.蜜蜂杂志,2006,(1):3-5.
    22.黄儒强,邓卫文,伍静莲.山稔子中总黄酮含量的测定及其黄酮种类的鉴别.食品科学,2006,27:457-458.
    23.黄文诚.蜂胶在食品保鲜和畜禽上的应用前景.中国蜂业.2006,57:27-28.
    24.黄雪玲,黄丽丽,康振生.BTH对小麦白粉病抗性的诱导作用.西北农林科技大学学报,2005,33:78-80
    25.霍君生,关艳,邓春景.蜂胶对菜豆常温贮藏生理的影响.河北农业大学学报,1994,17:266-268
    26.计红芳,张令文,宋瑞清.绒白乳菇发酵液提取物对杨树叶枯病抑菌机理的初步研究.北京林业大学学报,2008,30:146-179
    27.姜廷福,师彦平.天然产物黄酮类化合物的高效液相色谱分析.分析测试技术与仪器,2002,12:201-207
    28.蒋庆锋,周有俊,盛春泉,王金政.作用于真菌细胞壁的抗真菌药物研究进展.中国药学杂志,2003,38:410-413
    29.蒋志国,施瑞城.10种中草药提取物对常见果蔬致腐真菌的抑制作用及有效成分分析.食品科技,2004,(3):68-71
    30.荆二勇.BIT对灰霉菌抑菌活性及抑菌机制的初步研究.[博士学位论文].西安:西北大学图书馆,2008
    31.雷明霞,王喜平.蜂胶浸出液在预防节果腐烂病中的应用探析.养蜂科技,2003,(3):40-41
    32.李洪莲,王守正,王金生.黄瓜对炭疽病诱导抗性的初步研究.植物病理学报,1993,23:327-332
    33.李叶,唐浩国,刘建学.黄酮类化合物抑菌作用研究进展.2008,12:53-55
    34.李熠.我国不同地区蜂胶黄酮类物质差异性分析.[硕士学位论文].北京:中国农业科学院图书馆,2008
    35.李玉红,陈鹏,程智慧.草酸和BTH对黄瓜幼苗霜霉病抗性和胞间隙病程相关蛋白的诱导.植物病理学报,2006,36:238-243
    36.廖春燕,马国瑞,洪文英.壳聚糖诱导番茄对早疫病的抗性及其生理机制.浙江大学学报,2003,29:280-283
    37.刘芳,刁春铃,宋宝安,杨松,胡德禹,王俊,曾松,黄荣茂.广枯灵对辣椒枯萎病原菌抑制机制的初步研究.农药,2007,45:89-91
    38.刘凤英,王刚,任小芳.利用壳聚糖防治柑橘采后青霉病的研究.安徽农学通报,2008,14:161-162
    39.刘静波,林松毅,王作昭.笃斯越桔叶片黄酮类化合物分离组分Ⅰ结构鉴定.食品科学,2007,28:90-91
    40.刘伟.蜂胶中脂溶性活性成分研究.[硕士学位论文].南昌:南昌大学图书馆,2007
    41.刘喜存,刘红彦,李洪连.植物诱导抗病性及其研究现状.河南农业科学,2006,(4):12-16
    42.刘新华,潘永贵,祖鹤.BTH诱导果蔬抗病性机理研究进展.安徽农业科学,2008,36:15053-15054
    43.刘昱佳.柑橘采后尘防菌34-9抗真菌活性物质的研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    44.龙超安,邓伯勋,何秀娟.柑橘青、绿霉病高效拮抗菌34-9的筛选及其特性研究.中国农业科学,2005,38:2434-2439.
    45.莫熙礼.辣椒白粉病的诱导抗病性研究.[硕士学位论文].陕西杨凌:西北农林科技大学,2008
    46.庞学群,黄雪梅,李军,张昭其.热水处理诱导香蕉采后抗病性及其对相关酶活性的影响.农业工程学报,2008,24:221-225.
    47.秦慧明,朱思明,于淑娟.橙皮柑及铜配合物的抑菌抗氧化活性研究.食品科技,2006,(3):81-82
    48.曲建博,娄红祥,范培红.TLC生物自显影技术在药物筛选中的应用.中草药,2005,36:132-137
    49.饶景萍,任小林.园艺产品贮运学.西安:陕西人民出版社,2003
    50.任传英,赵永焕,朱春,李静卫.蜂胶在食品中的应用及安全性分析.中国药物化学杂志,2006,16:342-345
    51.盛文胜.蜂胶中黄酮的提取及应用研究.[硕士学位论文].南昌:南昌大学图书馆,2007
    52.粟学俐,邱志强,张群.壳聚糖及其衍生物在果蔬保鲜中的应用及进展.荆门职业技术学院学报,2008,23:1-4
    53.孙亦阳,王健敏,卫沛.蜂胶提取物对牛乳制品的保鲜作用.食品研究与开发,2004,25:140-141
    54.唐卿雁,林奇.中草药在果蔬保鲜中的应用.食品研究与开发,2005,26:148-150
    55.田学军,王艳辉.蜂胶对葡萄的保鲜效果研究.红河学院学报,2008,6:35-36
    56.王岸娜,徐山宝,刘小彦,吴立根.福林法测定猕猴桃多酚含量的研究.食品科学,2008,29:398-401
    57.王洪伟.蜂胶超临界萃取活性成分研究.[硕士学位论文].福州:福建农林大学图书馆,2008.
    58.王世强.打孔法测定抗生素的效价.生物学通报,2005,(3):2-3
    59.王曙文,代永刚,牛红红,南喜平.国内外果蔬生物保鲜技术的研究进展.农产品加工·学刊.2008,157:110-113
    60.王天佑.清见果实贮藏过程中的介电特性及低温臭氧保鲜技术的研究.[硕士学位论文].四川雅安:四川农业大学,2008
    61.王玮,王琳.黄酮类化合物的研究进展.沈阳医学院学报,2002,4:115-119
    62.王文生,罗云波,石志平.臭氧在果蔬贮藏保鲜中的研究与应用.保鲜与加工,2004,(1):4-6.
    63.无公害食品-蜂胶.NY5136-2002.北京:中华人民共和国农业部,2002
    64.吴静,师光禄,苏学友,吴磊,王有年.地肤子提取物抑菌机理和超微结构观察.植物保护,2009,35:55-58
    65.吴玉敏.蜂胶中黄酮提取方法及工艺优化研究.四川农业大学,2007
    66.谢鹏,张敏红.黄酮类化合物抑菌作用的研究进展.中国动物保健,2004,(12):35-37
    67.徐利剑,周立刚,赵江林,姜微波.植物内生真菌抗菌活性物质的研究进展.天然产物研究与开发,2008,20:732-740
    68.徐颖,雷明击,程诚.蜂胶与蜂胶黄酮.食品工业,2005,(3):18-20
    69.玄红专,胡福良.不同产地蜂胶的抗氧化活性.蜜蜂杂志,2005,(5):13-15
    70.玄红专,胡福良.不同地区蜂胶抗氧化活性与化学组分的研究进展.蜜蜂杂志,2009,(2):7-10
    71.颜伟玉,杨明,曾志将.蜂胶萃取方法对蜂胶有效成分影响的研究.中国蜂业,2006,(7):6-8.
    72.颜伟玉,杨明,曾志将.蜂胶抗菌效果影响的研究.蜜蜂杂志,2006,(5):5-7.
    73.杨震峰,郑永华,曹士锋,李娜,马素娟,陈学红,王薛修.纯氧对采后杨梅果实腐烂的抑制与抗病相关酶的诱导.植物生理与分子生物学学报,2005,31:425-430
    74.尹玲莉,杨凤环,侯晓杰,杜绍华.化学药剂诱导植物抗病性研究进展.华北农学报,2004,22(增刊):43-46
    75.翟彩霞,马春红,王立安,陈霞,郭秀林,崔四平,李广敏.水杨酸(SA)诱导玉米抗小斑病研究.河北农业科学,2004,(8):57-60
    76.翟逸,涂增,王金芳,万永继.莱氏野村菌产几丁质酶条件及酶学性质研究.微生物学通报,2007,34:1082-1085
    77.张晓燕,芦春莲,田志喜.植物诱导抗病性.保定师专学报,200l,14:9-12
    78.赵静.蜂胶中主要黄酮官能团结构及其功效分析.中国养蜂,2004,55:22-23
    79.赵淑云,马海燕,朱美玲,毛海波,房柱,邵兴军.不同产地蜂胶超临界CO_2萃取物8种黄酮比较研究.中国蜂业,2006,57:8-10
    80.Ahn M R,Kumazawa S,Usui Y,Nakamura J,Matsuka M,Zhu F,Nakayama T.Antioxidant activity and constituents of propolis collected in various areas of China.Food Chemistry,2007,101:1383-1392
    81.Aligiannis N,Kalpotzakis E,Mitaku S.Composition and antimicrobial activity of the essential oils of two Origanum species.Journal of Agricultural and Food Chemistry,2001,40:4168-4170
    82. Aly S A, Elewa N A. The effect of Egyptian honeybee propolis on the growth of Aspergillus versicolor and sterigmatocystin biosynthesis in Ras cheese. Journal of Dairy Research, 2007, 74: 74-78
    
    83. Apak R, Guclu K, Ozyurek M and Karademir S E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52 :7970-7981
    
    84. Areas M C, Botia J M, Ortuno A M, Del Rio J A. UV irradiation alters the levels of flavonoids involved in the defence mechanism of Citrus aurantium fruits against Penicillium digitatum. European Journal of Plant Pathology, 2000, 106: 617-622
    
    85. Bankova A H, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytotherapy Research, 2001, 15: 561-571
    
    86. Bankova V, Christov R, Kujumgiev A, Marcucci M C, Popov S. Chemical composition and antibacterial activity of brazilian propolis. Z Naturforsch, 1995,50:167-172
    
    87. Bankova V S, de Castro S L, Marcucci M C. Propolis: Recent advances in chemistry and plant origin. Apidologie, 2000, 31: 3-15
    
    88. Banskota A H,Takema N, Luciay S. Antiproliferative activity of the Netherlands propolis and its active principles in cancer cell lines. Jounral of Ethnopharmacology, 2002, 80:67-73
    
    89. Benhamou N. Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f.sp radicis-lycopersici, agent of tomato crown and root rot. Phytopathology,1992,82:1185-1193
    
    90. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing in the principle of protein-dye bingding. Analycal Biochemistry, 1976, 72: 248-254
    
    91. Burdock G A. Review of the biological properties and toxicity of bee propolis. Food Chem Toxicol, 1998,36:347-363
    
    92. Cao T, Zhou J, Zhong J, Zhong J, Tan Y J, Fu W, Tan H. Postharvest biological control of green and blue mold of citrus fruit by jiean-peptide and its possible antifungal mechanism. Chinese Journal of Applied and Environmental Biology.2008,14: 192-197
    93. Castaldo S, Capasso F. Propolis, an old remedy used in modern medicine. Fitoterapia,2002, 73: 1-6
    
    94. Chen C, Wu C , Shi H. Cytotoxic prenyflavones from Taiwanese propolis. Journal of Natural Products, 2003, 66:503-506
    
    95. Cuesta R O, Frontanauriba B, Ramirez Apan T, Cardenas J . Polyisoprenylated benzophenones in Cuban propolis: Biological activity of nemorosone. Z. Naturforsch,2002, 57: 372-378
    
    96. Davidson P M, Parish M E. Methods for testing the efficacy of food antimicrobials. Food Technology, 1989,43:148
    
    97. Del Rayo C M, Sanchez B, Quiroz H, Contreras J L, Mata R. Pinocembrine: a bioactive flavanone from Teloxys graveolens. Journal of Ethnopharmacology. 1991, 31: 383-389
    
    98. El Dieb S M. The antibacterial and antifungal effect of honey bee propolis and its use on ras cheese. Bullet in of Faculty of Agriculture,Cairo Univ.(Egypt). 1998, 48: 95-112
    
    99. Fernandes J A, Lopes M M R, Colombari V, Monteiro A C M, Vieira E P. Antimicrobial activity of Apis mellifera propolis from three regions of Brazil. Ciencia Rural, 2006,36:294-297
    
    100.Gardana C, Scaglianti M, Pietta P, Simonetti P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry.Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 390-399
    101.Ghisalbert E. Propolis: a review. Bee World, 1979, 60: 59-84
    102.Grange J M, Davey W. Antibacterial properties of propolis (bee glue). Journal of Royal Society on Medicine, 1990, 83: 159-160
    103.Gulhan V U, Silici S, Unl(?) M. Composition and in vitro antimicrobial activity of populus buds and poplar-type propolis. World Journal of Microbiology and Biotechnology, 2008, 4: 1011-1017
    104.Havsteen B. Flavonoids, a class of natural products of high pharmacological potency.Biochemistry and Pharmacology, 1983, 32:1141-1148
    105.Hegazi A G, Abdeihady F K, Amallah F A.Chemical composition and antimicrobial activity of European propolis. Z Naturforsch, 2000, 55: 70-75
    106.Hiroshi F, Ka'tsumi G, Mamoru T. Two antimicrobial flavanones from the leaves of Glycyrrhiza glabra.. Chemical and Pharmical Bulletin, 1988, 36: 4174-4176
    107.Holmes G J, Eckert J W. Sensitivity of P. digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 1999, 89: 716-721
    108.Hou J S, Guan Y C, Deng C J. The effect of propolis on bean storage physiology in normal temperature. Journal of Hebei Agricultural University, 1994,17; 266-268
    109.Janisiewicz W J, Tworkoski T J, Kurtzman C P. Biocontrol potential of Metschnikowia pulcherrima strains against blue mold of apple. Phytopathology, 2001,91: 1098-1108
    110.Jiang Y M. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browing. Journal of the Science of Food and Agriculture, 2000, 80:305-310
    111.Jiang Y M, Li Y B. Effects of chitosan coating on postharvest life and quliaty of longan fruit. Food Chem, 2001,73:139-143
    112.Kanetis L; Forster H; Adaskaveg J E. Optimizing efficacy of new postharvest Fungicides and evaluation of sanitizing agents for managing citrus green Mold. Plant Disease,2008,92:261-269
    113.Kant M R, Ament K, Sabelis M V, Haring M A, Schuurink R C. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiology, 2004,135:483-495
    114.Keskin , Nhazir S, Baser K H, et al. Antibacterial activity and chemical composition of Turkish propolis.Z Naturforsch, 2001, 56: 1112-1115
    115.Kinay P, Mansour M F, Gabler F M. Characterization of fungicide-resistant isolates of Penicillium digitatum collected in California. Crop Protection, 2007, 26: 647-656
    116.Kong A N, Yu R, Chen C, Mandlekar S and Primiano T. Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis, Arch. Pharm. Res. 2000, 23, 1-16
    117.Koo H, Rosalen P L, Cury J A. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicro-biological Agents Chemother, 2002, 46: 1302-1309
    118.Kuc J. Concepts and directions of induced systemic resistance in plants and its application.European Journal of Plant Pathology, 2001, 107: 7-12
    119.Leelasuphakul W, Hemmanee P; Chuenchitt S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 2008, 48: 113-121
    
    120.Liang H. Sordarin, an antifungal agent with a unique mode of action. Beilstein Journal of Organic Chemistry, 2008,31:1-14.
    121.Liu X, Wang J, Gou P, Mao C, Zhu Z R, Li H. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. International Journal of Food Microbiology, 2007,119: 223-229
    122.Liu X H, Jiang W B, Bi Y. Postharvest BTH treatment induces resistance of peach (Prunus persicaL.cv.Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms.Postharvest Biology and Technology, 2005, 35:263-269
    123.Liu, J, Tian, S P, Meng, X H, Xu Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 2007,44: 300-306
    124.Lotito S B and Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Rad.Biol. Med. 2006,41: 1727-1746
    125.MacAdam J W, Nelson C J, Sharp R E. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 1992, 99: 872-878.
    126.Martins R S, Pereira E S Jr, Lima S M. Effect of commercial ethanol propolis extract on the in vitro growth of Candida albicans collected from HIV-seropositive and HIV-seronegative Brazilian patients with oral candidiasis. Journal of Oral Science, 2002,44: 41-48.
    127.Medana C, Carbone F, Aigotti R, Appendino G, Baiocchi C. Selective analysis of phenolic compounds in propolis by HPLC-MS/MS. Phytochemistry Analysis, 2008, 19:32-39.
    128.Mercan N, Kivrak I, Duru M, Katircioglu H, Gulcan S, Malci S, Acar G, Salih B.Chemical composition effects onto antimicrobial and antioxidant activities of propolis collected from different regions of Turkey. Annals Of Microbiology, 2006, 56: 373-378.
    129.Michael N. Antioxidative and antihemolytic of soybean isoflavones. Agricultural and Food Chemistry, 1976,24: 1174-1177
    130.Middleton J E, Chithan K. The impact of plant flavonoids on mammalian biology:Implications for immunity, inflammation and cancer. In: Harborne JB, eds. The Flavonoids: Advances In Research Since 1986. London, UK: Chapman and Hall, 1993
    131.Nicola V, Gianluca B. Analysis of flavonoids from propolis by on-line HPLC electrospray mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis.2006,42:354-361
    132.Nicolas F, Isabelle R, Edmond H, Joelle Q. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Journal of American Society on Mass Spectrometry, 2001, 12: 707-715
    133.Nunes C, Usall J, Teixido N, Torres R, Vinas I. Control of Penicillium expansum and Botrytis cinerea on apples and pears with the combination of Candida sake and Pantoea agglomerans, Journal of Food Protecttion, 2002, 65: 178-184
    134.Obagwu J, Korsten L, Control of citrus green and blue molds with garlic extracts.European Journal of Plant Pathology, 2003, 109: 221-225
    135.Obagwu J, Korsten L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology and Technology, 2003, 28: 17-194
    136.O1iveira A C, Shinobu C S, Longhini R. Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions. Mem Inst Oswaldo Cruz, 2006, 101:493-497
    137.Ota C, Unterkircher C, Fantinato V. Antifungal activity of propolis on different species of Candida. Mycoses. 2001,44: 375-378
    138.Ozcan M, Unver A, Ceylan DA, et al. Inhibitory effect of pollen and propolis extracts.Nahrung, 2004,48: 188-194
    139.Palou L, Smilanick J L, Usall J, Vigrias I. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate and sodium bicarbonate. Plant Disease, 2001,8: 371-376
    140.Palou L. Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit.Plant Disease, 2001, 8: 632-638.
    141.Park Y K, Koo M H, Abreu JAS, Ikegaki M, Cury J A, Rosalen P L. Antimicrobial activity of propolis . Current microbiology, 1998, 36:24-28
    142.Pepeljnjak S, Jalsenjak I, Maysinger D. Flavonoid content in propolis extracts and growth inhibition of Bacillus subtilis. Pharmazie, 1985, 40: 122-123
    143.Popova M, Bankova V, Butovska D. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemical Analysis, 2004,15: 235-240
    144.Popova M, Bankova V, Tsvetkova I, Naydenski C, Silva MV. The first glycosides isolated from propolis: Diterpene rhamnosides. Journal of Biosciences, 2001, 56:1108-1111.
    145.Porat R, Daus A, Weiss B, Cohen L, Fallik E, Droby S. Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biology and Technology, 2000, 18: 151-157
    146.Porat R, Daus A, Weiss B, Cohen L, Fallik E, Droby S.. Effects of combining hot water,sodium bicarbonate and biocontrol on postharvest decay of citrus fruit. Journal of Horticultural Science & Biotechnology, 2002, 77 441-445
    147.Porat R, Mccollum T G, Vinokur V, Droby S. Effects of various elicitors on the transcription of a β-1,3-endoglucanase gene in citrus fruit. Journal of Phytopathology,2002, 150: 70-75
    148.Porat R, Vinokur V, Weiss B. Induction of resistance to Penicillium digitatum in grapefruit by β-aminobutyric acid. European Journal of Plant Pathology, 2003, 109:901-907
    149.Quiroga E N, Sampietro D A, Soberon J R, Sgariglia M A, Vattuone M A. Propolis from the northwest of Argentina as a source of antifungal principles. Journal of Applied Microbiology, 2006, 101: 103-110
    150.Sala A, Recio M C, Schinella G R, Manez S, Giner R M, Cerda-Nicolas M, Rosi J L.Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. European Journal of. Pharmacology, 2003, 461: 53-61
    151.Salomao, K., Dantas, A. P., Borba, C. M., Campos, L. C, Machado, D. G., Aquino Neto,F. R., Castro, S. L. de . Chemical composition and microbicidal activity of extracts from Brazilian and Bulgarian propolis. Letter of Applied Microbiology, 2004, 38: 87-92
    152.Santos A C, Uyemura S A, Lopes J L, Bazon J N, Mingatto F E, Curti. C. Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria, Free Radical. Biology and Medicine. 1998, 24: 1455-1461.
    153.Sawaya A C, Palma A M, Caetano F M, Marcucci M C, da Silva Cunha I B, Araujo C E,Shimizu M T. Comparative study of in vitro methods used to analyse the activity of propolis extracts with different compositions against species of Candida. Letter of Applied Microbiology, 2002, 35: 203-207.
    154.Shrestha C L; Ona I; Muthukrishnan S, Mew T W. Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. European Journal of Plant Pathology, 2008, 120: 69-77.
    155.Smilanick J L, Margosan D A, Mlikota F, Usall J, Michael I F. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Disease, 1999, 83: 139-145
    156. Suzuki L Hayashi L Takaki T, Groveman D S, Fujimiya Y. Antitumor and Anticytopenic Effects of Aqueous Extracts of Propolis in Combination with Chemotherapeutic Agents. Cancer Biotherapy&Radiopharmaceuticals, 2002, Cancer Biotherapy & Radiopharmaceuticals.
    157.Usia T, Banskota A H, Tezuka Y, Midorikawa K, Matsushige K, Kadota S. Constituents of Chinese propolis and their antiproliferative activity. Journal of Natural Products, 2002,65: 673-676.
    158.Velikova M, Bankova V, Sorkun K, Houcine S, Tsvetkova I, Kujumgiev A. Propolis from the mediterranean region: Chemical composition and antimicrobial activity. Journal of Biosciences, 2000, 55: 790-793.
    159.Volpi N, Bergonzini G. Analysis of flavonoids from propolis by on-line HPLC-electrospray mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis,2006,42:354-361.
    160.Villarreal Victor, Prokai Laszlo, Lorand Tamas. Antifungal unsaturated cyclic Mannich ketones and amino alcohols: Study of mechanism of action .European Journal of Medicinal Chemistry. 2009,44:1823-1829
    161.Wally O; Jayaraj J; Punja Z. Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, beta-l,3-glucanase and peroxidise. European Journal of Plant Pathology, 2000, 123: 331-342
    162.Williams C A, Harborne J B, Newman M, Greenham J, Eagles J. Chrysin and other leaf exudate flavonoids in the genus Pelargonium. Ecological Biochemistry, 1997, 46:1349-1353
    163.Xu G F, Song B A, Bhadury P S, Yang S, Zhang P Q, Jin L H, Xue W, Hu D Y, Lu P.Synthesis and antifungal activity of novel s-substituted 6-fluoro -4-alkyl (aryl) thioquinazoline derivatives. Bioorganic & Medicinal Chemistry, 2007,15: 3768-3774
    164.Yaghoubi M J, Ghorbani G, Soleimanian Z S, Satari R. Antimicrobial activity of Iranian propolis and its chemical composition. Daru-Journal of Faculty of Pharmacy, 2007, 15:45-48
    165.Yao H J; Tian S P. Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 2006, 35: 253-262
    166.Zakrzewska A, Boorsma A, Brul S. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell, 2005,4: 703-715
    167.Zao Y, Cai R C, Fan G Z, et al. Study on the biological way of keeping fresh ginseng root fresh. Agricultural Technology, 1995,(2): 36-38
    168.Zeng, KF; Cao, JK; Jiang, WB. Enhancing disease resistance in harvested mango (Mangifera indica L. cv. 'Matisu') fruit by salicylic acid. Journal of the Science of Food and Agriculture, 2006, 86: 694-698
    169.Zhang JX. The potential of a new fungicide fludioxonil for stem-end rot and green mold control on Florida citrus fruit. Postharvest Biology and Technology, 2007, 46: 262-270
    170.Zhou JH, Li Y, Zhao J, et al. Geographical traceability of propolis by high-performance liquid-chromatography fingerprints. Food Chemistry, 2008, 108: 749-759
    171.Zhu XM, Fang LH, Li YJ, Du GH. Endothelium-dependent and -independent relaxation induced by pinocembrin in rat aortic rings, Vascultural. Pharmacology, 2007, 46:160-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700