基于催化活性的双功能纳米材料光化学传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光化学传感器由于响应速度快且具有高通量、可视化检测的特点,在公共安全、人类健康及环境监测等领域具有广泛的应用前景。利用纳米材料的催化活性来放大检测信号从而提高光化学传感器的灵敏度,是一个重要的研究方向。本论文设计了三种基于催化活性的双功能纳米材料光化学传感器,为提高光化学传感器的灵敏度提供了新思路。主要研究内容如下:
     1.提出了利用具有荧光性质和催化活性的金纳米团簇设计荧光传感器的方法。利用具有生物功能的辣根过氧化物酶制备了金纳米团簇(HRP-AuNCs),无需后续的功能化修饰得到了同时具有荧光性质和酶催化活性的双功能纳米材料,用于构建光化学传感器。HRP-AuNCs表面的HRP可以催化H_2O_2的氧化还原反应,导致金纳米团簇的荧光淬灭,从而可以实现H_2O_2的检测。该方法对H_2O_2的检测限达30nM,与不具有酶催化活性的BSA-AuNCs相比灵敏度提高了10倍。
     2.利用具有催化活性和识别性能的模拟酶纳米材料构建了高灵敏、高通量、可视化的蛋白质传感器阵列。制备了两种具有模拟酶活性的功能化Fe_3O_4NPs,其催化活性用于信号放大,其表面的功能化配体用于生物识别。生物分子与配体的相互作用可以调节其对显色底物的催化活性,从而提供响应信号的变化。由这两种双功能纳米材料组成的传感器阵列可有效区分11种蛋白质。响应灵敏度可低至50nM,对于部分蛋白质,最低可达1nM。与常规的显色阵列传感器相比,灵敏度提高了1000倍;与基于酶放大的阵列传感器的灵敏度相当,但纳米材料模拟酶比生物酶具有更好的稳定性且成本更低。
     3.利用纳米材料的催化活性和吸附性能,设计了可实现室温富集-原位检测的高灵敏催化发光传感器。选取了同时具有吸附性和催化活性的纳米二氧化锆作为传感材料,其吸附性用于乙醇的预富集,其催化活性用于输出原位发光信号。与传统的催化发光传感器相比,其灵敏度提高了3000倍。该传感器具有寿命长、灵敏度高、能耗低、无需发光试剂的优点,成功用于酒后呼吸气中乙醇的检测。在此基础上,还发展了由不同纳米材料组成的室温富集-原位催化发光检测的传感器阵列,并将其用于信息素的识别。
Optical chemical sensors has a wide range of applications in areas such as publicsafety, human health and environmental monitoring due to their fast response,multiplexing capabilities and potential in naked eye detection. The catalytic activity ofnanomaterials can trigger a detectable signal amplification to increase the sensitivity ofoptical chemical sensors. In the present dissertation, dual functional nanomaterials withcatalytic activity have been employed for the design and development of opticalchemical sensors. This strategy paves the way to the devolopment of minaturizedoptical chemical sensors with high sensitivity. The main contents of the presentdissertation are as follows:
     1. A new fluorescent sensor has been developed by using a dual functionalnanomaterial with catalytic activity and fluorescence properties. Horseradish peroxidasefunctionalized fluorescent gold nanoclusters (HRP-AuNCs) was successfully preparedvia a biomineralization process. We found HRP remains active and possesses itsintrinsic catalytic activity, thus HRP-AuNCs have dual functions including thefluorescence and catalytic ability. The fluorescence of HRP-AuNCs can be quenchedquantitatively by adding H_2O_2. The sensitivity for H_2O_2detection of this method (LOD=30nM) has been improved by10times compared with that using BSA-AuNCswithout catalytic activity. Accordingly, using biologically functional proteins for thepreparation of fluorescent gold nanoclusters, without subsequent modification, canobtain nanomaterials with dual functions of the fluorescence properties and biologicalactivity, which can be directly used to build up optical biosensors.
     2. A new colorimetric sensor array for proteins detection has been designed byemploying dual functional iron oxide nanoparticles featuring intrinsic enzyme mimeticactivity and recognition capability. Two functionalized Fe_3O_4NPs were prepared andused as signal amplifiers in the array-based sensor for colorimetric protein sensing.Interactions between positively charged Fe_3O_4NPs and different analyte proteinsmodulate the peroxidase-like activity of Fe_3O_4NPs in different fashions, affordingcatalytically amplified colorimetric signal patterns, enabling the detection andidentification of11proteins at a50nM concentration, for some proteins as low as1nM. The sensitivity was increased by1000times when compared with the conventionalnanoparticles based protein array sensor, and equal to that of protein array sensor basedon enzyme amplification. Nanomaterials based enzyme mimic has better thermal andchemical stability than biological enzyme, and are cost-effective.
     3. An optical chemical sensor for ethanol has been proposed by using anaomaterial with dual functions of catalytic activity and adsorption capability as sensingmaterials. Analytes were trapped on sensing nanomaterials and detected in situ byrecording the cataluminescence (CTL) signals with fast elevated temperature. Comparedthe previous CTL sensor, its sensitivity is3,000times improved. The sensor wassuccessfully applied to monitor the ethanol concentration in human expired gas afterdrinking, and the results agreed well with the reference values. This miniature ethanolsensor offers higher sensitivity, faster response and lower power consumption, whichmake it very promising in developing hand-hold sensing device for feld detection.Furthermore, a variety of nanomaterials with dual functions of catalytic activity andadsorption capality have been used to develop a sensor array for pheromone sensing.
引文
[1] Taniguchi, K; Kajiyama, T; Kambara, H, Quantitative analysis of gene expression in a singlecell by qPCR. Nat Meth2009,6(7):503-506.
    [2] Chiang, C K; Chen, W T; Chang, H T, Nanoparticle-based mass spectrometry for the analysisof biomolecules. Chem Soc Rev2011,40(3):1269-1281.
    [3] Li, J F; Huang, Y F; Ding, Y, et al., Shell-isolated nanoparticle-enhanced Raman spectroscopy.Nature2010,464(7287):392-395.
    [4]鞠熀先,基于功能纳米材料的灵敏生物传感策略.中国科学:化学2011,41(10):1658.
    [5] Rider, T H; Petrovick, M S; Nargi, F E, et al., A B cell-based sensor for rapid identification ofpathogens. Science2003,301(5630):213-215.
    [6] Lei, J; Ju, H, Signal amplification using functional nanomaterials for biosensing. Chem SocRev2012,41(6):2122-2134.
    [7]韩雪清,杨泽晓,林祥梅,极具应用前景的生物学检测技术——生物传感器.中国生物工程杂志2008,28(5):141-147.
    [8]孔涛.金纳米颗粒、ZnO纳米结构在癌症治疗和生物传感方面的应用[博士学位论文],中国科学技术大学,2009.
    [9]徐淑坤,无机纳米探针的制备及其生物应用.科学出版社:北京,2012.
    [10] Murray, C B; Norris, D J; Bawendi, M G, Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J AmChem Soc1993,115(19):8706-8715.
    [11] Peng, Z A; Peng, X, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdOas precursor. J Am Chem Soc2000,123(1):183-184.
    [12] Rajh, T; Micic, O I; Nozik, A J, Synthesis and characterization of surface-modified colloidalcadmium telluride quantum dots. J Phys Chem1993,97(46):11999-12003.
    [13] Qian, H; Dong, C; Weng, J, et al., Facile one-pot synthesis of luminescent, water-soluble, andbiocompatible glutathione-coated CdTe nanocrystals. Small2006,2(6):747-751.
    [14] Boev, V I; Soloviev, A; Rodríguez-González, B, et al., Formation of CdS nanoparticles bygas-diffusion method in sol–gel derived ureasilicate matrix. Mater Lett2006,60(29–30):3793-3796.
    [15] Lu, X; Mao, H; Zhang, W, et al., Synthesis and characterization of CdS nanoparticles inpolystyrene microfibers. Mater Lett2007,61(11–12):2288-2291.
    [16] Ran, C; Hui-Hui, L; Hai-Yan, X, et al., Living yeast cells as a controllable biosynthesizer forfluorescent quantum dots. Adv Funct Mater2009,19(15):2359-2364.
    [17] Medintz, I L; Uyeda, H T; Goldman, E R, et al., Quantum dot bioconjugates for imaging,labelling and sensing. Nat Mater2005,4(6):435-446.
    [18] Bruchez, M; Moronne, M; Gin, P, et al., Semiconductor nanocrystals as fluorescent biologicallabels. Science1998,281(5385):2013-2016.
    [19] Chan, W C W; Nie, S, Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science1998,281(5385):2016-2018.
    [20]张奎.量子点光学传感器的设计及其对痕量有害物质的可视化检测[博士学位论文],中国科学技术大学,2011.
    [21] Wu, X; Liu, H; Liu, J, et al., Immunofluorescent labeling of cancer marker Her2and othercellular targets with semiconductor quantum dots. Nat Biotech2003,21(1):41-46.
    [22] Sandros, M G; Gao, D; Benson, D E, A modular nanoparticle-based system for reagentlesssmall molecule biosensing. J Am Chem Soc2005,127(35):12198-12199.
    [23] Medintz, I L; Stewart, M H; Trammell, S A, et al., Quantum-dot/dopamine bioconjugatesfunction as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater2010,9(8):676-684.
    [24] Wu, P; Li, Y; Yan, X-P, CdTe quantum dots (QDs) based kinetic discrimination of Fe2+andFe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+.Anal Chem2009,81(15):6252-6257.
    [25] Mohamed Ali, E; Zheng, Y; Yu, H-h, et al., Ultrasensitive Pb2+detection byglutathione-capped quantum dots. Anal Chem2007,79(24):9452-9458.
    [26] Yun, Z; Zhengtao, D; Jiachang, Y, et al., Using cadmium telluride quantum dots as a protonflux sensor and applying to detect H9avian influenza virus. Anal Biochem2007,364(2):122-127.
    [27] Huang, C-P; Li, Y-K; Chen, T-M, A highly sensitive system for urea detection by usingCdSe/ZnS core-shell quantum dots. Biosens Bioelectron2007,22(8):1835-1838.
    [28] Jin, W J; Fernandez-Arguelles, M T; Costa-Fernandez, J M, et al., Photoactivated luminescentCdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem Commun2005,21(7):883-885.
    [29] Cordes, D B; Gamsey, S; Singaram, B, Fluorescent quantum dots with boronic acidsubstituted viologens to sense glucose in aqueous solution. Angew Chem Int Ed2006,45(23):3829-3832.
    [30] Yuan, J; Guo, W; Yang, X, et al., Anticancer drug DNA interactions measured using aphotoinduced electron-transfer mechanism based on luminescent quantum dots. Anal Chem2008,81(1):362-368.
    [31] Yuan, J; Guo, W; Wang, E, Utilizing a CdTe quantum dots-enzyme hybrid system for thedetermination of both phenolic compounds and hydrogen peroxide. Anal Chem2008,80(4):1141-1145.
    [32] Costa-Fernández, J M; Pereiro, R; Sanz-Medel, A, The use of luminescent quantum dots foroptical sensing. TracTrends Anal Chem2006,25(3):207-218.
    [33] Zheng, J; Ding, Y; Tian, B, et al., Luminescent and Raman active silver nanoparticles withpolycrystalline structure. J Am Chem Soc2008,130(32):10472-10473.
    [34] Peyser, L A; Vinson, A E; Bartko, A P, et al., Photoactivated fluorescence from individualsilver nanoclusters. Science2001,291(5501):103-106.
    [35] Chen, S; Ingram, R S; Hostetler, M J, et al., Gold nanoelectrodes of varied size: transition tomolecule-like charging. Science1998,280(5372):2098-2101.
    [36] Zheng, J; Zhang, C; Dickson, R M, Highly fluorescent, water-soluble, size-tunable goldquantum dots. Phys Rev Lett2004,93(7):077402.
    [37] Bao, Y; Zhong, C; Vu, D M, et al., Nanoparticle-free synthesis of fluorescent goldnanoclusters at physiological temperature. J Phys Chem C2007,111(33):12194-12198.
    [38] J. P. Wilcoxon, J E M, F. Parsapour, B. Wiedenman, and D. F. Kelley, Photoluminescencefrom nanosize gold clusters. J Chem Phys1998,108:9137-9143.
    [39]彭凌霄.强荧光金纳米团簇的制备与表征[硕士学位论文],华中科技大学,2006.
    [40] Shang, L; Dong, S; Nienhaus, G U, Ultra-small fluorescent metal nanoclusters: synthesis andbiological applications. Nano Today2011,6(4):401-418.
    [41] Cheng-An J. Lin; Chih-Hsien Lee; Jyun-Tai Hsieh, et al., Review: synthesis of fluorescentmetallic nanoclusters toward biomedical application: recent progress and present challenges. JMed Biol Eng2009,29(6):276-283.
    [42] Dreaden, E C; Alkilany, A M; Huang, X, et al., The golden age: gold nanoparticles forbiomedicine. Chem Soc Rev2012,41:2740-2779.
    [43] Paulrajpillai Lourdu Xavier, K C, Ananya Baksi, Thalappil Pradeep, Protein-protectedluminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience.Nano Reviews2012,3:14767-DOI:10.3402/nano.v3i0.14767.
    [44] Huang, T; Murray, R W, Visible luminescence of water-soluble monolayer-protected goldclusters. J Phys Chem B2001,105(50):12498-12502.
    [45] Apell, P M, R.; Lundqvist, S., Photoluminescence of noble metals. Physica Scripta1988,38(2):174-179.
    [46] Link, S; Beeby, A; FitzGerald, S, et al., Visible to infrared luminescence from a28-atom goldcluster. J Phys Chem B2002,106(13):3410-3415.
    [47] Huang, C-C; Hung, Y-L; Shiang, Y-C, et al., Photoassisted synthesis of luminescentmannose–Au nanodots for the detection of thyroglobulin in serum. Chem Asian J2010,5(2):334-341.
    [48] Zhou, C; Sun, C; Yu, M X, et al., Luminescent gold nanoparticles with mixed valence statesgenerated from dissociation of polymeric Au(I) thiolates. J Phys Chem C2010,114(17):7727-7732.
    [49] Wu, Z; Jin, R, On the ligand’s role in the fluorescence of gold nanoclusters. Nano Letters2010,10(7):2568-2573.
    [50] Mooradian, A, Photoluminescence of metals. Phys Rev Lett1969,22(5):185-187.
    [51] Fedrigo, S; Harbich, W; Buttet, J, Optical-response of Ag2, Ag3, Au2, and Au3in argonmatrices. J Chem Phys1993,99(8):5712-5717.
    [52] W. Harbich, S F, J. Buttet, and D. M. Lindsay, Deposition of mass selected goldclusters insolid krypton. J Chem Phys1992,96:8104-8108.
    [53] Zheng, J. Fluorescent noble metal nanoclusters[Thesis for Doctor of Philosophy inChemistry],Georgia Institute of Technology,2005.
    [54] Huang, C C; Yang, Z; Lee, K H, et al., Synthesis of highly fluorescent gold nanoparticles forsensing Mercury(II). Angew Chem Int Ed2007,46(36):6824-6828.
    [55] Lin, C-A J; Yang, T-Y; Lee, C-H, et al., Synthesis, characterization, and bioconjugation offluorescent gold nanoclusters toward biological labeling applications. Acs Nano2009,3(2):395-401.
    [56] Shibu, E S; Radha, B; Verma, P K, et al., Functionalized Au22clusters: synthesis,characterization, and patterning. ACS Appl Mater Interfaces2009,1(10):2199-2210.
    [57] Schaeffer, N; Tan, B; Dickinson, C, et al., Fluorescent or not? Size-dependent fluorescenceswitching for polymer-stabilized gold clusters in the1.1-1.7nm size range. Chem Commun2008,(34):3986-3988.
    [58] Xie, J; Zheng, Y; Ying, J Y, Protein-directed synthesis of highly fluorescent gold nanoclusters.J Am Chem Soc2009,131(3):888-889.
    [59] Jin, R, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale2010,2(3):343-362.
    [60] Negishi, Y; Nobusada, K; Tsukuda, T, Glutathione-protected gold clusters revisited: bridgingthe gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J AmChem Soc2005,127(14):5261-5270.
    [61] Negishi, Y; Takasugi, Y; Sato, S, et al., Magic-numbered aun clusters protected byglutathione monolayers (n=18,21,25,28,32,39): isolation and spectroscopiccharacterization. J Am Chem Soc2004,126(21):6518-6519.
    [62] Adhikari, B; Banerjee, A, Facile synthesis of water-soluble fluorescent silver nanoclusters andHgII sensing. Chem Mater2010,22(15):4364-4371.
    [63] Zhijiang, W; Wei, C; Jiehe, S, Blue luminescence emitted from monodisperse thiolate-cappedAu11clusters. Chemphyschem2009,10(12):2012-2015.
    [64] Paau, M C; Lo, C K; Yang, X, et al., Synthesis of1.4nm α-cyclodextrin-protected goldnanoparticles for luminescence sensing of mercury(II) with picomolar detection limit. J PhysChem C2010,114(38):15995-16003.
    [65] Lee, D; Donkers, R L; Wang, G, et al., Electrochemistry and optical absorbance andluminescence of molecule-like Au38nanoparticles. J Am Chem Soc2004,126(19):6193-6199.
    [66] Wang, G; Huang, T; Murray, R W, et al., Near-IR luminescence of monolayer-protected metalclusters. J Am Chem Soc2004,127(3):812-813.
    [67] Shang, L; Dorlich, R M; Brandholt, S, et al., Facile preparation of water-soluble fluorescentgold nanoclusters for cellular imaging applications. Nanoscale2011,3(5):2009-2014.
    [68] Huang, C C; Liao, H Y; Shiang, Y C, et al., Synthesis of wavelength-tunable luminescent goldand gold/silver nanodots. J Mater Chem2009,19(6):755-759.
    [69] Habeeb Muhammed, M; Ramesh, S; Sinha, S, et al., Two distinct fluorescent quantumclusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. NanoResearch2008,1(4):333-340.
    [70] Udaya Bhaskara Rao, T; Pradeep, T, Luminescent Ag7and Ag8clusters by interfacial synthesis.Angew Chem Int Ed2010,49(23):3925-3929.
    [71] Rao, T U B; Nataraju, B; Pradeep, T, Ag9quantum cluster through a solid-state route. J AmChem Soc2010,132(46):16304-16307.
    [72] Wei, W; Lu, Y; Chen, W, et al., One-pot synthesis, photoluminescence, and electrocatalyticproperties of subnanometer-sized copper clusters. J Am Chem Soc2011,133(7):2060-2063.
    [73] Zheng, J; Petty, J T; Dickson, R M, High quantum yield blue emission from water-solubleAu8nanodots. J Am Chem Soc2003,125(26):7780-7781.
    [74] Zhang, J; Xu, S; Kumacheva, E, Photogeneration of fluorescent silver nanoclusters in polymermicrogels. Adv Mater2005,17(19):2336-2340.
    [75] Shen, Z; Duan, H; Frey, H, Water-soluble fluorescent Ag nanoclusters obtained frommultiarm star poly(acrylic acid) as ldquomolecular hydrogelrdquo templates. Adv Mater2007,19(3):349-352.
    [76] Shang, L; Dong, S J, Facile preparation of water-soluble fluorescent silver nanoclusters usinga polyelectrolyte template. Chem Commun2008,44(9):1088-1090.
    [77] Díez, I; Pusa, M; Kulmala, S, et al., Color tunability and electrochemiluminescence of silvernanoclusters. Angew Chem Int Ed2009,48(12):2122-2125.
    [78] Duan, H W; Nie, S M, Etching colloidal gold nanocrystals with hyperbranched andmultivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J AmChem Soc2007,129(9):2412-2413.
    [79] Hussain, I; Graham, S; Wang, Z, et al., Size-controlled synthesis of near-monodisperse goldnanoparticles in the14nm range using polymeric stabilizers. J Am Chem Soc2005,127(47):16398-16399.
    [80] Wang, Z; Tan, B; Hussain, I, et al., Design of polymeric stabilizers for size-controlledsynthesis of monodisperse gold nanoparticles in water. Langmuir2006,23(2):885-895.
    [81] Santiago González, B; Rodríguez, M a J; Blanco, C, et al., One step synthesis of the smallestphotoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Letters2010,10(10):4217-4221.
    [82] Pitchiaya, S; Krishnan, Y, First blueprint, now bricks: DNA as construction material on thenanoscale. Chem Soc Rev2006,35(11):1111-1121.
    [83] Petty, J T; Zheng, J; Hud, N V, et al., DNA-templated Ag nanocluster formation. J Am ChemSoc2004,126(16):5207-5212.
    [84] Luk, K F S; Maki, A H; Hoover, R J, Studies of heavy metal binding with polynucleotidesusing optical detection of magnetic resonance. Silver(I) binding. J Am Chem Soc1975,97(5):1241-1242.
    [85] Patel, S A; Richards, C I; Hsiang, J-C, et al., Water-soluble Ag nanoclusters exhibit strongtwo-photon-induced fluorescence. J Am Chem Soc2008,130(35):11602-11603.
    [86] Richards, C I; Choi, S; Hsiang, J-C, et al., Oligonucleotide-stabilized Ag nanoclusterfluorophores. J Am Chem Soc2008,130(15):5038-5039.
    [87] Choi, S; Dickson, R M; Yu, J, Developing luminescent silver nanodots for biologicalapplications. Chem Soc Rev2012,41(5):1867-1891.
    [88] Marzilli, L G; Kistenmacher, T J; Rossi, M, An extension of the role of O2of cytosineresidues in the binding of metal ions. synthesis and structure of an unusual polymeric silver(I)complex of1-methylcytosine. J Am Chem Soc1977,99(8):2797-2798.
    [89] Gwinn, E G; O'Neill, P; Guerrero, A J, et al., Sequence-dependent fluorescence ofDNA-hosted silver nanoclusters. Adv Mater2008,20(2):279-283.
    [90] Zhou, R J; Shi, M M; Chen, X Q, et al., Atomically monodispersed and fluorescentsub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized goldparticles and rods. Chem Eur J2009,15(19):4944-4951.
    [91] Yu, J; Patel, S A; Dickson, R M, In vitro and intracellular production of peptide-encapsulatedfluorescent silver nanoclusters. Angew Chem Int Ed2007,46(12):2028-2030.
    [92] Wei, H; Wang, Z D; Yang, L M, et al., Lysozyme-stabilized gold fluorescent cluster:Synthesis and application as Hg2+sensor. Analyst2010,135:1406-1410.
    [93] Lin, Y-H; Tseng, W-L, Ultrasensitive sensing of Hg2+and CH3Hg+based on the fluorescencequenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem2010,82(22):9194-9200.
    [94] Chen, W-Y; Lin, J-Y; Chen, W-J, et al., Functional gold nanoclusters as antimicrobial agentsfor antibiotic-resistant bacteria. Nanomedicine2010,5(5):755-764.
    [95] Xavier Le Guével, N D, Marc Schneider, Synthesis and characterization of humantransferrin-stabilized gold nanoclusters. Nanotechnology2011,22:275103.
    [96] Kawasaki, H; Hamaguchi, K; Osaka, I, et al., ph-Dependent synthesis of pepsin-mediated goldnanoclusters with blue green and red fluorescent emission. Adv Funct Mater2011,21(18):3508-3515.
    [97] Liu, C-L; Wu, H-T; Hsiao, Y-H, et al., Insulin-directed synthesis of fluorescent goldnanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew ChemInt Ed2011,50(31):7056-7060.
    [98] Yan, L; Cai, Y; Zheng, B, et al., Microwave-assisted synthesis of BSA-stabilized andHSA-protected gold nanoclusters with red emission. J Mater Chem2012,22(3):1000-1005.
    [99] Guo, C; Irudayaraj, J, Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ionsensor. Anal Chem2011,83(8):2883-2889.
    [100] Mathew, A; Sajanlal, P R; Pradeep, T, A fifteen atom silver cluster confined in bovine serumalbumin. J Mater Chem2011,21(30):11205-11212.
    [101] Shiang, Y C; Huang, C C; Chang, H T, Gold nanodot-based luminescent sensor for thedetection of hydrogen peroxide and glucose. Chem Commun2009,(23):3437-3439.
    [102] Huang, C C; Chiang, C K; Lin, Z H, et al., Bioconjugated gold nanodots and nanoparticles forprotein assays based on photoluminescence quenching. Anal Chem2008,80(5):1497-1504.
    [103] Chen, W B; Tu, X J; Guo, X Q, Fluorescent gold nanoparticles-based fluorescence sensor forCu2+ions. Chem Commun2009,45(13):1736-1738.
    [104] Yeh, H-C; Sharma, J; Han, J J, et al., A DNA silver nanocluster probe that fluoresces uponhybridization. Nano Letters2010,10(8):3106-3110.
    [105] Guo, W; Yuan, J; Dong, Q, et al., Highly sequence-dependent formation of fluorescent silvernanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J AmChem Soc2009,132(3):932-934.
    [106] Han, B; Wang, E, Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitivedetection of biothiols in biological fluids. Biosens Bioelectron2011,26(5):2585-2589.
    [107] Chen, W-Y; Lan, G-Y; Chang, H-T, Use of fluorescent DNA-templated gold/silvernanoclusters for the detection of sulfide ions. Anal Chem2011,83(24):9450-9455.
    [108] Xie, J P; Zheng, Y G; Ying, J Y, Highly selective and ultrasensitive detection of Hg2+basedon fluorescence quenching of Au nanoclusters by Hg2+-Au+interactions. Chem Commun2010,46(6):961-963.
    [109] Liu, Y; Ai, K; Cheng, X, et al., Gold-nanocluster-based fluorescent sensors for highlysensitive and selective detection of cyanide in water. Adv Funct Mater2010,20(6):951-956.
    [110] Hu, L; Han, S; Parveen, S, et al., Highly sensitive fluorescent detection of trypsin based onBSA-stabilized gold nanoclusters. Biosens Bioelectron2012,32(1):297-299.
    [111] Daniel, M C; Astruc, D, Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology. Chem Rev2003,104(1):293-346.
    [112]王昊.核酸/金纳米颗粒相互作用研究及其生物传感应用[博士学位论文],北京大学,2010.
    [113] Saha, K; Agasti, S S; Kim, C, et al., Gold nanoparticles in chemical and biological sensing.Chem Rev2012: DOI:10.1021/cr2001178.
    [114] Rosi, N L; Mirkin, C A, Nanostructures in biodiagnostics. Chem Rev2005,105(4):1547-1562.
    [115] Elghanian, R; Storhoff, J J; Mucic, R C, et al., Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science1997,277(5329):1078-1081.
    [116] Si, S; Kotal, A; Mandal, T K, One-Dimensional CNhaenmopisatrrtyic Cle s2:00A6,n11A1p (p3r)o: a1c2h48T-1o2w5a5r.d Mercury AIsosne mSbelnys ionfg P. eTpthide e-JFouunrcntailo noafli zPedh yGsiocladl
    [117] Lee, J-S; Han, M S; Mirkin, C A, Colorimetric detection of mercuric ion (Hg2+) in qqueousmedia using DNA-functionalized gold nanoparticles. Angew Chem Int Ed2007,46(22):4093-4096.
    [118] Lin, S-Y; Wu, S-H; Chen, C-h, A simple strategy for prompt visual sensing by goldnanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed2006,45(30):4948-4951.
    [119] Lin, S-Y; Liu, S-W; Lin, C-M, et al., Recognition of potassium ion in water by15-crown-5functionalized gold nanoparticles. Anal Chem2001,74(2):330-335.
    [120] Lin, S-Y; Chen, C-h; Lin, M-C, et al., A cooperative effect of bifunctionalized nanoparticleson recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. AnalChem2005,77(15):4821-4828.
    [121] Obare, S O; Hollowell, R E; Murphy, C J, Sensing strategy for lithium ion based on goldnanoparticles. Langmuir2002,18(26):10407-10410.
    [122] Schofield, C L; Haines, A H; Field, R A, et al., Silver and gold glyconanoparticles forcolorimetric bioassays. Langmuir2006,22(15):6707-6711.
    [123] Itoh, H; Naka, K; Chujo, Y, Synthesis of gold nanoparticles modified with ionic liquid basedon the imidazolium cation. J Am Chem Soc2004,126(10):3026-3027.
    [124] Liu, J; Lu, Y, Fast colorimetric sensing of adenosine and cocaine based on a general sensordesign involving aptamers and nanoparticles. Angew Chem Int Ed2006,45(1):90-94.
    [125] Aslan, K; Lakowicz, J R; Geddes, C D, Nanogold plasmon resonance-based glucose sensing.2. wavelength-ratiometric resonance light scattering. Anal Chem2005,77(7):2007-2014.
    [126] Liang, X; Wei, H; Cui, Z, et al., Colorimetric detection of melamine in complex matricesbased on cysteamine-modified gold nanoparticles. Analyst2011,136(1):179-183.
    [127] Jiang, Y; Zhao, H; Zhu, N, et al., A simple assay for direct colorimetric visualization oftrinitrotoluene at picomolar levels using gold nanoparticles. Angew Chem Int Ed2008,47(45):8601-8604.
    [128] Storhoff, J J; Elghanian, R; Mucic, R C, et al., One-pot colorimetric differentiation ofpolynucleotides with single base imperfections using gold nanoparticle probes. J Am ChemSoc1998,120(9):1959-1964.
    [129] Schofield, C L; Mukhopadhyay, B; Hardy, S M, et al., Colorimetric detection of Ricinuscommunis Agglutinin120using optimally presented carbohydrate-stabilised goldnanoparticles. Analyst2008,133(5):626-634.
    [130] Fan, C; Wang, S; Hong, J W, et al., Beyond superquenching: hyper-efficient energy transferfrom conjugated polymers to gold nanoparticles. PNAS2003,100(11):6297-6301.
    [131] Dubertret, B; Calame, M; Libchaber, A J, Single-mismatch detection using gold-quenchedfluorescent oligonucleotides. Nat Biotech2001,19(4):365-370.
    [132] Liu, J; Cao, Z; Lu, Y, Functional nucleic acid sensors. Chem Rev2009,109(5):1948-1998.
    [133] Liu, J; Lee, J H; Lu, Y, Quantum dot encoding of aptamer-linked nanostructures for one-potsimultaneous detection of multiple analytes. Anal Chem2007,79(11):4120-4125.
    [134] Seferos, D S; Giljohann, D A; Hill, H D, et al., Nano-Flares: probes for transfection andmRNA detection in living cells. J Am Chem Soc2007,129(50):15477-15479.
    [135] Oh, E; Lee, D; Kim, Y-P, et al., Nanoparticle-based energy transfer for rapid and simpledetection of protein glycosylation. Angew Chem Int Ed2006,45(47):7959-7963.
    [136] Miranda, O R; Creran, B; Rotello, V M, Array-based sensing with nanoparticles:‘chemicalnoses’ for sensing biomolecules and cell surfaces. Curr Opin Chem Biol2010,14(6):728-736.
    [137] Miranda, O R; You, C-C; Phillips, R, et al., Array-based sensing of proteins using conjugatedpolymers. J Am Chem Soc2007,129(32):9856-9857.
    [138] You, C C; Miranda, O R; Gider, B, et al., Detection and identification of proteins usingnanoparticle-fluorescent polymer 'chemical nose' sensors. Nat Nanotechnol2007,2(5):318-323.
    [139] De, M; Rana, S; Akpinar, H, et al., Sensing of proteins in human serum using conjugates ofnanoparticles and green fluorescent protein. Nat Chem2009,1(6):461-465.
    [140] Miranda-Sanchez, O R. Engineering nanoparticles surface for biosensing:“chemical noses” todetect and identify proteins, bacteria and cancerous cells[Thesis for Doctor of Philosophy inChemistry],Amherst:University of Massachusetts,2011.
    [141] Bajaj, A; Miranda, O R; Kim, I B, et al., Detection and differentiation of normal, cancerous,and metastatic cells using nanoparticle-polymer sensor arrays. PNAS2009,106(27):10912-10916.
    [142] Santra, S; Zhang, P; Wang, K, et al., Conjugation of biomolecules with luminophore-dopedsilica nanoparticles for photostable biomarkers. Anal Chem2001,73(20):4988-4993.
    [143] Santra, S; Liesenfeld, B; Bertolino, C, et al., Fluorescence lifetime measurements to determinethe core–shell nanostructure of FITC-doped silica nanoparticles: An optical approach toevaluate nanoparticle photostability. J Lumin2006,117(1):75-82.
    [144] Zhao, X; Tapec-Dytioco, R; Tan, W, Ultrasensitive DNA detection using highly fluorescentbioconjugated nanoparticles. J Am Chem Soc2003,125(38):11474-11475.
    [145] Climent, E; Marcos, M D; Martínez-Má ez, R, et al., The determination of methylmercury inreal samples using organically capped mesoporous inorganic materials capable of signalamplification. Angew Chem Int Ed2009,48(45):8519-8522.
    [146] Chen, X; Estévez, M C; Zhu, Z, et al., Using aptamer-conjugated fluorescence resonanceenergy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem2009,81(16):7009-7014.
    [147] Herr, J K; Smith, J E; Medley, C D, et al., Aptamer-conjugated nanoparticles for selectivecollection and detection of cancer cells. Anal Chem2006,78(9):2918-2924.
    [148] Scrimin, P; Prins, L J, Sensing through signal amplification. Chem Soc Rev2011,40:4488-4505.
    [149] Nam, J-M; Thaxton, C S; Mirkin, C A, Nanoparticle-based bio-bar codes for the ultrasensitivedetection of proteins. Science2003,301(5641):1884-1886.
    [150] Bi, S; Zhou, H; Zhang, S, Bio-bar-code functionalized magnetic nanoparticle label forultrasensitive flow injection chemiluminescence detection of DNA hybridization. ChemCommun2009,(37):5567-5569.
    [151] Bi, S; Yan, Y; Yang, X, et al., Gold nanolabels for new enhanced chemiluminescenceimmunoassay of alpha-fetoprotein based on magnetic beads. Chem Eur J2009,15(18):4704-4709.
    [152] de laRica, R; Fratila, R M; Szarpak, A, et al., Multivalent nanoparticle networks asultrasensitive enzyme sensors. Angew Chem Int Ed2011,50(25):5704-5707.
    [153] Choi, M M F, Progress in enzyme-based biosensors using optical transducers. MicrochimicaActa2004,148(3):107-132.
    [154] Miranda, O R; Li, X; Garcia-Gonzalez, L, et al., Colorimetric bacteria sensing using asupramolecular enzyme–nanoparticle biosensor. J Am Chem Soc2011,133(25):9650-9653.
    [155] Gao, L; Zhuang, J; Nie, L, et al., Intrinsic peroxidase-like activity of ferromagneticnanoparticles. Nat Nano2007,2(9):577-583.
    [156] Asati, A; Santra, S; Kaittanis, C, et al., Oxidase-like activity of polymer-coated cerium oxidenanoparticles. Angew Chem Int Ed2009,48(13):2308-2312.
    [157] Singh, S; Dosani, T; Karakoti, A S, et al., A phosphate-dependent shift in redox state ofcerium oxide nanoparticles and its effects on catalytic properties. Biomaterials2011,32(28):6745-6753.
    [158] Ornatska, M; Sharpe, E; Andreescu, D, et al., Paper bioassay based on ceria nanoparticles ascolorimetric probes. Anal Chem2011,83(11):4273-4280.
    [159] Song, Y J; Qu, K G; Zhao, C, et al., Graphene oxide: intrinsic peroxidase catalytic activity andits application to glucose detection. Adv Mater2010,22(19):2206-2210.
    [160] Dai, Z H; Liu, S H; Bao, J C, et al., Nanostructured FeS as a mimic peroxidase for biocatalysisand biosensing. Chem Eur J2009,15(17):4321-4326.
    [161] Lee, Y M; Garcia, M A; Huls, N A F, et al., Synthetic tuning of the catalytic properties ofAu-Fe3O4nanoparticles. Angew Chem Int Ed2010,49(7):1271-1274.
    [162] Jv, Y; Li, B; Cao, R, Positively-charged gold nanoparticles as peroxidiase mimic and theirapplication in hydrogen peroxide and glucose detection. Chem Commun2010,46(42):8017-8019.
    [163] Song, Y J; Wang, X H; Zhao, C, et al., Label-free colorimetric detection of single nucleotidepolymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity.Chem Eur J2010,16(12):3617-3621.
    [164] Wiester, M J; Ulmann, P A; Mirkin, C A, Enzyme mimics based upon supramolecularcoordination chemistry. Angew Chem Int Ed2011,50(1):114-137.
    [165] Wang, Q; Yang, Z; Zhang, X, et al., A supramolecular-hydrogel-encapsulated hemin as anartificial enzyme to mimic peroxidase. Angewandte Chemie2007,119(23):4363-4367.
    [166]梁敏敏;阎锡蕴,纳米材料模拟酶性质及其应用.东南大学学报(医学版)2011,30(1):105-107.
    [167] Wei, H; Wang, E, Fe3O4magnetic nanoparticles as peroxidase mimetics and their applicationsin H2O2and glucose detection. Anal Chem2008,80(6):2250-2254.
    [168] Yu, C J; Lin, C Y; Liu, C H, et al., Synthesis of poly(diallyldimethylammoniumchloride)-coated Fe3O4nanoparticles for colorimetric sensing of glucose and selectiveextraction of thiol. Biosens Bioelectron2010,26(2):913-917.
    [169] Ding, N; Yan, N; Ren, C L, et al., Colorimetric determination of melamine in dairy productsby Fe3O4magnetic nanoparticles-H2O2-ABTS detection system. Anal Chem2010,82(13):5897-5899.
    [170] Asati, A; Kaittanis, C; Santra, S, et al., pH-Tunable oxidase-like activity of cerium oxidenanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH.Anal Chem2011,83(7):2547-2553.
    [171] Park, K S; Kim, M I; Cho, D-Y, et al., Label-free colorimetric detection of nucleic acids basedon target-induced shielding against the peroxidase-mimicking activity of magneticnanoparticles. Small2011,7(11):1521-1525.
    [172] Miranda, O R; Chen, H-T; You, C-C, et al., Enzyme-amplified array sensing of proteins insolution and in biofluids. J Am Chem Soc2010,132(14):5285-5289.
    [173]张振宇.基于纳米材料的化学发光传感器研究[博士学位论文],清华大学,2004.
    [174] Wu, Y; Zhang, S; Na, N, et al., A novel gaseous ester sensor utilizing chemiluminescence onnano-sized SiO2. Sens Actuator B-Chem2007,126(2):461-466.
    [175] Na, N; Zhang, S; Wang, S, et al., A catalytic nanomaterial-based optical chemo-sensor array. JAm Chem Soc2006,128(45):14420-14421.
    [176] Zhang, Z Y; Xu, K; Xing, Z, et al., A nanosized Y2O3-based catalytic chemiluminescentsensor for trimethylamine. Talanta2005,65(4):913-917.
    [177] Zhang, Z Y; Xu, K; Baeyens, W R G, et al., An energy-transfer cataluminescence reaction onnanosized catalysts and its application to chemical sensors. Anal Chim Acta2005,535(1-2):145-152.
    [178] Sun, Z Y; Yuan, H Q; Liu, Z M, et al., A highly efficient chemical sensor material for H2S:alpha-Fe2O3nanotubes fabricated using carbon nanotube templates. Adv Mater2005,17(24):2993-2997.
    [179] Wu, Y Y; Na, N; Zhang, S, et al., Discrimination and identification of flavors with catalyticnanomaterial-based optical chemosensor array. Anal Chem2009,81(3):961-966.
    [180] Kong, H; Zhang, S; Na, N, et al., Recognition of organic compounds in aqueous solutions bychemiluminescence on an array of catalytic nanoparticles. Analyst2009,134(12):2441-2446.
    [181] Lv, Y; Zhang, S C; Liu, G H, et al., Development of a detector for liquid chromatographybased on aerosol chemiluminescence on porous alumina. Anal Chem2005,77(5):1518-1525.
    [182] Huang, G M; Lv, Y; Zhang, S C, et al., Development of an aerosol chemiluminescent detectorcoupled to capillary electrophoresis for saccharide analysis. Anal Chem2005,77(22):7356-7365.
    [183] Kong, H; Liu, D; Zhang, S, et al., Protein sensing and cell discrimination using a sensor arraybased on nanomaterial-assisted chemiluminescence. Anal Chem2011,83(6):1867-1870.
    [184] Huang, C-C; Chen, C-T; Shiang, Y-C, et al., Synthesis of fluorescent carbohydrate-protectedAu nanodots for detection of concanavalin A and Escherichia coli. Anal Chem2009,81(3):875-882.
    [185] Retnakumari, A; Setua, S; Menon, D, et al., Molecular-receptor-specific, non-toxic,near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging.Nanotechnology2010,21(5):055103.
    [186] Mejiritski, A; Polykarpov, A Y; Sarker, A M, et al., Quantum yield determination forphotolysis of photoimageable polymer in thin films. J Photochem Photobiol A1997,108(2-3):289-293.
    [187] Maretti, L; Billone, P S; Liu, Y, et al., Facile photochemical synthesis and characterization ofhighly fluorescent silver nanoparticles. J Am Chem Soc2009,131(39):13972-13980.
    [188] Kim, G; Lee, Y E K; Xu, H, et al., Nanoencapsulation method for high selectivity sensing ofhydrogen peroxide inside live cells. Anal Chem2010,82(6):2165-2169.
    [189] Finkel, T; Holbrook, N J, Oxidants, oxidative stress and the biology of ageing. Nature2000,408(6809):239-247.
    [190] Mullenix, M C; Wiltshire, S; Shao, W, et al., Allergen-specific IgE detection on microarraysusing rolling circle amplification: correlation with in vitro assays for serum IgE. Clin Chem2001,47(10):1926-1929.
    [191] Kingsmore, S F; Patel, D D, Multiplexed protein profiling on antibody-based microarrays byrolling circle amplification. Curr Opin Biotech2003,14(1):74-81.
    [192] Okuno, J; Maehashi, K; Kerman, K, et al., Label-free immunosensor for prostate-specificantigen based on single-walled carbon nanotube array-modified microelectrodes. BiosensBioelectron2007,22(9–10):2377-2381.
    [193] Anderson, N L; Anderson, N G, The human plasma proteome. Mol Cell Proteomics2002,1(11):845-867.
    [194] Hartwell, L; Mankoff, D; Paulovich, A, et al., Cancer biomarkers: a systems approach. NatBiotech2006,24(8):905-908.
    [195] Charych, D; Nagy, J; Spevak, W, et al., Direct colorimetric detection of a receptor-ligandinteraction by a polymerized bilayer assembly. Science1993,261(5121):585-588.
    [196] Thanh, N T K; Rosenzweig, Z, Development of an aggregation-based immunoassay foranti-protein a using gold nanoparticles. Anal Chem2002,74(7):1624-1628.
    [197] Ho, H-A; Najari, A; Leclerc, M, Optical detection of DNA and proteins with cationicpolythiophenes. Acc Chem Res2008,41(2):168-178.
    [198] Haab, B B, Applications of antibody array platforms. Curr Opin Biotech2006,17:415-421.
    [199] Baker, K N; Rendall, M H; Patel, A, et al., Rapid monitoring of recombinant protein products:a comparison of current technologies. Trends Biotechnol2002,20(4):149-156.
    [200] Rakow, N A; Suslick, K S, A colorimetric sensor array for odour visualization. Nature2000,406(6797):710-713.
    [201] Folmer-Andersen, J F; Kitamura, M; Anslyn, E V, Pattern-based discrimination ofenantiomeric and structurally similar amino acids: An optical mimic of the mammalian tasteresponse. J Am Chem Soc2006,128(17):5652-5653.
    [202] Guo, Y J; Deng, L; Li, J, et al., Hemin-graphene hybrid nanosheets with intrinsicperoxidase-like activity for label-free colorimetric detection of single-nucleotidepolymorphism. Acs Nano2011,5(2):1282-1290.
    [203] Pelossof, G; Tel-Vered, R; Elbaz, J, et al., Amplified biosensing using the horseradishperoxidase-mimicking DNAzyme as an electrocatalyst. Anal Chem2010,82(11):4396-4402.
    [204] Gao, L; Wu, J; Lyle, S, et al., Magnetite nanoparticle-linked immunosorbent assay. J PhysChem C2008,112(44):17357-17361.
    [205] Qu, H; Caruntu, D; Liu, H, et al., Water-dispersible iron oxide magnetic nanoparticles withversatile surface functionalities. Langmuir2011,27(6):2271-2278.
    [206] Sun, S; Zeng, H, Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc2002,124(28):8204-8205.
    [207] Hostetler, M J; Templeton, A C; Murray, R W, Dynamics of place-exchange reactions onmonolayer-protected gold cluster molecules. Langmuir1999,15(11):3782-3789.
    [208] Bunn, H F; Jandl, J H, Exchange of heme among hemoglobins and between hemoglobin andalbumin. J Biol Chem1968,243(3):465-475.
    [209] Karnovsky, M J, The ultrastructural basis of capillary permeability studied with peroxidase asa tracer. J Cell Biol1967,35(1):213-236.
    [210] Mitsubayashi, K; Yokoyama, K; Takeuchi, T, et al., Gas-phase biosensor for ethanol. AnalChem1994,66(20):3297-3302.
    [211] Park, J-K; Yee, H-J; Kim, S-T, Amperometric biosensor for determination of ethanol vapor.Biosens Bioelectron1995,10(6-7):587-594.
    [212] Bie, L J; Yan, X N; Yin, J, et al., Nanopillar ZnO gas sensor for hydrogen and ethanol. SensActuator B-Chem2007,126(2):604-608.
    [213] Labidi, A; Gillet, E; Delamare, R, et al., Ethanol and ozone sensing characteristics of WO3based sensors activated by Au and Pd. Sens Actuator B-Chem2006,120(1):338-345.
    [214] Raj, C R; Behera, S, Mediatorless voltammetric oxidation of NADH and sensing of ethanol.Biosens Bioelectron2005,21(6):949-956.
    [215] Wu, L N; McIntosh, M; Zhang, X J, et al., Amperometric sensor for ethanol based on one-stepelectropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase.Talanta2007,74(3):387-392.
    [216] Mitsubayashi, K; Matsunaga, H; Nishio, G, et al., Bioelectronic sniffers for ethanol andacetaldehyde in breath air after drinking. Biosens Bioelectron2005,20(8):1573-1579.
    [217] Breysse, M; Claudel, B; Faure, L, et al., Chemiluminescence during the catalysis of carbonmonoxide oxidation on a thoria surface. J Catal1976,45:137-144.
    [218] Nakagawa, M; Yamashita, N, Cataluminescence-based gas sensors. Springer Ser Chem SensBiosens2005:93-132.
    [219] Zhu, Y; Shi, J; Zhang, Z, et al., Development of a gas sensor utilizing chemiluminescence onnanosized titanium dioxide. Anal Chem2002,74(1):120-124.
    [220] Utsunomiya, K; Nakagawa, M; Tomiyama, T, et al., An adsorption-luminescent Al2O3sheetfor determining vapor of odor substances in air. Sens Actuators B-Chem1993,13:627-628.
    [221] Nakagawa, M; Okabayashi, T; Fujimoto, T, et al., A new method for recognizing organicvapor by spectroscopic image on cataluminescence-based gas sensor. Sens Actuator B-Chem1998,51(1-3):159-162.
    [222] Nakagawa, M; Yamamoto, I; Yamashita, N, Detection of organic molecules dissolved inwater using a gamma-Al2O3chemiluminescence-based sensor. Anal Sci1998,14(1):209-214.
    [223] Zhang, Z Y; Jiang, H J; Xing, Z, et al., A highly selective chemiluminescent H2S sensor. SensActuator B-Chem2004,102(1):155-161.
    [224] Shi, J J; Li, J J; Zhu, Y F, et al., Nanosized SrCO3-based chemiluminescence sensor forethanol. Anal Chim Acta2002,466(1):69-78.
    [225] Na, N; Zhang, S C; Wang, S A, et al., A catalytic nanomaterial-based optical chemo-sensorarray. J Am Chem Soc2006,128(45):14420-14421.
    [226] Hu, J; Xu, K; Jia, Y, et al., Oxidation of ethyl ether on borate glass: chemiluminescence,mechanism, and development of a sensitive gas sensor. Anal Chem2008,80(21):7964-7969.
    [227] Tang, H R; Li, Y M; Zheng, C B, et al., An ethanol sensor based on cataluminescence on ZnOnanoparticles. Talanta2007,72(4):1593-1597.
    [228] Yang, P; Lau, C W; Liu, X, et al., Direct solid-support sample loading for fastcataluminescence determination of acetone in human plasma. Anal Chem2007,79(22):8476-8485.
    [229] Huang, C Z; Jiang, Z C; Hu, B, Mesoporous titanium dioxide as a novel solid-phase extractionmaterial for flow injection micro-column preconcentration on-line coupled with ICP-OESdetermination of trace metals in environmental samples. Talanta2007,73(2):274-281.
    [230] Vassileva, E; Varimezova, B; Hadjiivanov, K, Column solid-phase extraction of heavy metalions on a high surface area CeO2as a preconcentration method for trace determination. AnalChim Acta1996,336(1-3):141-150.
    [231] Liu, G; Lin, Y, Electrochemical sensor for organophosphate pesticides and nerve agents usingzirconia nanoparticles as selective sorbents. Anal Chem2005,77(18):5894-5901.
    [232] Haneda, M; Shinoda, K; Nagane, A, et al., Catalytic performance of rhodium supported onceria-zirconia mixed oxides for reduction of NO by propene. J Catal2008,259(2):223-231.
    [233] Khaleel, A; Kapoor, P N; Klabunde, K J, Nanocrystalline metal oxides as new adsorbents forair purification. Nanostruct Mater1999,11(4):459-468.
    [234] Weckhuysen, B M; Rosynek, M P; Lunsford, J H, Destructive adsorption of carbontetrachloride on lanthanum and cerium oxides. PCCP1999,1(13):3157-3162.
    [235] Liu, G H; Zhu, Y F; Zhang, X R, et al., Chemiluminescence determination of chlorinatedvolatile organic compounds by conversion on nanometer TiO2. Anal Chem2002,74(24):6279-6284.
    [236] Zhang, Z Y; Zhang, C; Zhang, X R, Development of a chemiluminescence ethanol sensorbased on nanosized ZrO2. Analyst2002,127(6):792-796.
    [237]那娜.基于纳米材料表面化学发光的传感器阵列研究[博士学位论文],清华大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700