基于卟啉的肺癌早期诊断和传感方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呼吸气体诊断是一种无创诊断技术,通过检测呼吸气体中的特征成份及浓度实现对病人的诊断和筛选,是一种很有前景的疾病诊断与监护方法。
     本课题根据国内外关于呼吸气体中的某些挥发性有机化合物成份与肺癌相关的研究工作报告,重点参考了Phillips博士建立的22种挥发性有机化合物标志物筛选诊断肺癌病人的模型,并以此为出发点选出了5种目标检测物质,有:苯、庚醛、苯乙烯、对二甲苯、α-甲基苯乙烯。采用卟啉及金属卟啉作为敏感物质对5种目标检测物质进行检测,重点研究其相互作用特征响应的传感方法。
     针对这5种目标检测物质,本论文主要完成了以下两方面的工作:
     首先,制备得到了9种卟啉及金属卟啉。利用卟啉及金属卟啉溶液与5种目标检测物质溶液做了紫外可见光谱液体敏感实验的筛选工作,比较单种卟啉针对单种检测物质的紫外可见光谱变化,明确了检测限和相互作用后的特征响应,筛选出了检测效果较好的卟啉有P1,P2和P3三种;采用SEMICA-P软件对单种卟啉分别与5种检测物质相互作用的光谱数据做了主成分分析,发现单种卟啉检测检测限虽然较低,但是特异性并不理想。
     其次,利用毛细管在疏水的PVDF膜上进行卟啉和指示剂溶液的点样,制备了4×3卟啉染料阵列,搭建了气体发生和反应系统实验装置,使卟啉染料阵列与单种检测物质的气体分别作用。通过采集卟啉染料阵列与不同浓度的检测物质气体相互作用前后的图像,用matlab软件处理得到其响应特征。发现卟啉染料阵列对单种检测物质气体的响应时间为几分钟,检测限可达ppm以下,且对不同物质的响应特征存在很大的差异,实现了定性分析。而湿度变化对卟啉染料阵列上的卟啉几乎没有造成影响,但是指示剂受到了一定程度的影响。对卟啉染料阵列的RGB特征响应数据进行了主成分分析,发现检测具有较好的重现性,5种检测物质能完全相互区分开,并形成了聚类。鉴于卟啉光学传感器性能稳定,响应时间短,检测限低,灵敏度高,几乎不
     受湿度影响的优势,利用卟啉阵列的光学性质来检测人体呼吸气体中的特征挥发性有机气体成分,为实现对肺癌病人的筛选及对肺癌病人的病情的监控打下了良好的基础。
Breath Diagnosis is a noninvasive diagnostic technique. Through the identification of featured components and the determination of their concentrations, diagnosis and screening of patients can be realized, so it is a prospective diagnostic and tutelary method.
     According to some domestic and abroad research reports which focused on the relationship between certain volatile organic compound(sVOCs) in breath and the lung cancer, this thesis mainly took the lung cancer diagnostic model established by Dr. Phillips as a reference. In his research, 22 diagnostic VOCs were screened out for lung cancer diagnosis, and based on such a start we selected 5 diagnostic VOCs as the experimental target analytes: benzene, n-heptanal, styrene, p-xylene andα-methylstyrene. Porphyrins and metalloporphyrins were used as sensitive materials for the detection of the 5 target analytes, and sensing technique of their interactional responds were studied as a main part.
     Aimed at the five target analytes, the following work was completed:
     Firstly, nine kinds of porphyrins and metalloporphyrins were prepared. Liquid sensitivity screening of these pophyrins to five target analytes was carried out by UV-Vis spectra sensitive experiments. Through comparing the UV-Vis spectra change of single porphyrin exposed to single analytes, detection limit and featured interactional respond were determined and three well sensitive porphyrins were screened: P1, P2 and P3; SEMICA-P software was used for Principle Component Analysis of spectra data resulted from single porphyrin reacted with five analytes, and the result showed that, although the detection limit of single porphyrin was rather low, the specificity was not ideal.
     Secondly, porphyrins and indicators spotting were conducted on hydrophobic PVDF films by capillary. In order to realize the separate reaction between porphyrin-dye array and single analyte, 4×3 porphyrin-dye arrays were prepared, and gas generator and reacting system equipment were constructed. Porphyrin-dye array images before and after exposure to different concentrations of analytes were collected for MATLAB analyzing, and responding characteristic were obtained. The results showed that, respond time of porphyrin array to single analyte was several minutes and the detection limit can be lower than ppm. For different analyte, the responding characteristic was also different, so qualitative analysis was realized. Humidity change had little impact on the porphyrin-dye array, but indicators were influenced by humidity to some extent. Principle Component Analysis for featured responding RGB data of porphyrin-dye array was conducted. The results showed that the detection had good repeatability and the five analytes can be distinguished completely with good clustering.
     As the optical sensor has such advantages of stable performance, rapid respond time, low detection limit, high sensitivity and little humidity influence of the optical sensor, we can use the optical property of porphyrin-dye array to detect the volatile organic compounds in breath so as to realize the lung cancer patient screening and ground for the monitoring of patient with lung cancer.
引文
[1] Imran Saeed, Jon Anderson. Lung cancer: staging, imaging and surgery[J]. SURGERY, 2005, 23(11):401~405.
    [2]李龙芸.肺癌[J] .癌症进展杂志, 2005, 3 (2) :114~115.
    [3]杨瑞森.肺癌流行病学和早期诊断新技术[J].肿瘤防治杂志, 2004, 11 (7): 745~748.
    [4]邢学忠,高燕宁,张德超.肺癌的早期诊断[J].癌症, 2003, 22(2): 221~223.
    [5]杨瑞森,杨文锋.肺癌的早期诊断[J].中华肿瘤防治杂志, 2006, 13(2): 1~4.
    [6]张厚德,马永健.临床呼气试验概论[J].胃肠病学和肝病学杂志, 2000, 9(1): 1~2.
    [7] Wang Ping, et al. A novle method for diabetes diagnosis based on electronic noses[J]. Biosensors & Bioelectronics, 1997, 12(9-10): 1031~1036.
    [8]胡卫军,王平,等.仿生光学人工鼻及其呼吸气检测的实验研究[J].中国生物医学工程学报, 2006, 25(1): 51~57.
    [9]徐良,等. QCM气体传感器的优化设计及应用研究[J].传感技术学报, 2003, 3(1): 77~82.
    [10]Wolfram Miekisch, Jochen K. Schubert, et al. Diagnostic potential of breath analysis—focus on volatile organic compounds[J]. Clinica Chimica Acta, 2004 (347): 25~39.
    [11]Pauling L, Robinson AB, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Nat Acad Sci USA, 1971, 68(10): 2374~2376.
    [12]Gordon SM, Szidon JP, et al. Volatile organ compounds in exhaled air from patients with lung cancer[J]. Clin Chem, 1985, 31(8):1278~1282.
    [13]Preti G, Labows JN, et al. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-massspectrometry[J]. J Chromatogr, 1988, 4 (11):1~11.
    [14]Khyshiktyev BS, Khyshiktueva NA, et al. Diagnostic value of investigating exhaled air condensate in lung cancer (in Russian) [J]. Vopr Onkol, 1994, 40(426):161~164.
    [15]O'Neill HJ, Gordon SM, et al. Acomputerized classification technique for screening for the presence of breath biomarkers in lung cancer[J]. ClinChem, 1988, 34(8):1613~1618.
    [16] Phillips M , Gleeson K, Hughes JM. et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet, 1999, 353 (9168): 1930~1933.
    [17] Phillips M, Cataneo RN, Cummin ARC, et al. Detection of lung cancer with volatile markers in the breath. Chest, 2003, 123(6):2115~2123.
    [18]Diana Poli,Paolo Carbognani, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study[J]. Respiratory Research, 2005, 6: 71~81.
    [19]应可净,黄强.呼吸气检测在肺癌早期诊断中的应用[J].国际呼吸杂志, 2006, 26(2): 143~145.
    [20]王荣民,王云普.高分子卟啉及其金属配合物的研究进展[J].高分子通报, 1994, 1: 18~25.
    [21]王昕.卟啉化合物合成的最新研究进展[J].湘潭师范学院学报(自然科学版), 2001, 23 (3): 52~59.
    [22]Fleisher E B, Miller C K, Webb L E. Crystal and Molecular Structures of Some Metal Tetraphenylporphines[J]. J Am Chem Soc, 1964, 86 (12): 2342.
    [23]Stone A, Fleisher E B. The Molecular and Crystal Structure of Porphyrin Diacids[J]. J Am Chem Soc, 1968, 90 (11): 2735.
    [24]黄丹,田澍.卟啉及金属卟啉化合物的研究进展[J].江苏工业学院学报, 2003, 15(3):19~23.
    [25]余晓敏,吴健.卟啉类光敏药物的研究进展[J].中国药物化学杂志, 2002, 12: 52~56.
    [26]丁新民,徐勤枝,等.光动力治疗肿瘤的简史和现状[J].中国肿瘤, 2003, 12: 151~154.
    [27]金为群,刘玉文,陈禄,等. N-甲基血卟啉化合物的合成及抗癌性质[J].吉林大学自然科学学报,1998 , (4) : 97~100.
    [28]范开华,陈志龙.血卟啉乙二醇醚类化合物的合成及其光动力抑瘤活性[J].中国医药工业杂志,1999 , 30 (6) :258~260.
    [29]钟振起,万维勤,许德余,等.血卟啉醚类光敏剂的合成新方法[J].中国医药工业杂志, 2000, 31(9): 389~390.
    [30]陈文晖.癌光啉对动物移植瘤的光化学诊治作用[J].第二军医大学学报, 1986,7(4): 253.
    [31]MARSHALL P R, RNTHERFORD D. Physical investigations on colloidal irondextran complexes[J]. J Colloid Interface Sci, 1971, 37(2): 390~402.
    [32]侯长军,郝燕,等.卟啉及其衍生物抗癌活性机理研究进展[J].生物医学工程研究, 2007, 26: 97~100.
    [33]Milgrom L, MacRobert S. Light years ahead[J]. ChemBr, 1998, 34: 45~50.
    [34]陈暨跃,陈文,谢荣,等.新光敏剂磺化铝酞菁在小鼠移植瘤中分布的激光荧光研究[J].中国激光, 1992, 19: 633~636.
    [35]Rita Song, Yeong - Sang Kim, Youn Soo Sohn. Synthesis and selective tumor targeting properties of water soluble porphyryin - Pt (Ⅱ) conjugates[J]. Inorganic Biochemistry, 2002, 83: 83~88.
    [36]Yeong - Sang Kim, Rita Song, Chong Ock Leec, et al. Synthesis and biological activity of novel platinum (II) complexes of glutamate tethered to hydrophilic hematoporphyrin derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14: 2889~2892.
    [37]Brunner H, Schellerer K-M. Newporphyrin platinum conjugates for the cytostatic and photodynamic tumor therapy [J]. Inorganica Chimica Acta, 2003, 350: 39~48.
    [38]Rita Song, Yeong - Sang Kim, Chong Ock Leed, et al. Synthesis and antitumor activity of DNA binding cationic porphyrin platinum(II) complexes[J]. Tetrahedron Letters, 2003, 44: 1537 ~1540.
    [39]Can-Cheng Guo, He-Ping Li , Xiao-Bing Zhang. Study on synthesis, characterization and biological activity of some new nitrogen heterocycle porphyrins[J]. Bioorganic & Medicinal Chemistry, 2003, 11: 1745~1751.
    [40]刘彦钦,张惠娟. 5-氟尿嘧啶-卟啉化合物的合成及抗癌活性[J].有机化学, 2002, 4: 279~282.
    [41]Can-Cheng Guo, Rong-Biao, Ke-Lai Li. Chloroalkyl piperazine and nitrogen mustard porphyrins: synthesis and anticancer activity[J]. Bioorganic & Medicinal Chemistry, 2004, 12: 2449~2475.
    [42]石焕文,尚志远.超声声动力学激活血卟啉抗肿瘤效应研究的新进展[J].物理, 2001, 30(10): 602~605.
    [43]Jung Ho Suh, Chol Young Lee, Il Bae Kim. et.al. A Study on the Sensing Characteristics of VOCs for the Development of VOCs Detector[C]. Science and Technology 2005. KORUS 2005. Proceedings. The 9th Russian-Korean International Symposium on Natural Sciences: 172~175.
    [44]Syariena Arshad, Muhammad Mat Salleh, Member, IEEE. et.al. The Effect of Surface Microstructure on The Response of Titanium Dioxide Coated with Cobalt-Porphyrin Thin Films Towards Gases in Quartz Crystal Microbalance Sensor[C]. ICSE2006 Proc. 2006, Kuala Lumpur, Malaysia: 281~285.
    [45]Chunqi Jiang, Abdel-Aleam H. Mohamed. et.al. Removal of Volatile Organic Compounds in Atmospheric Pressure Air by Means of Direct Current Glow Discharges[J]. TRANSACTIONS ON PLASMA SCIENCE. 2005, 33(4): 1416~1425.
    [46]Corrado Di Natale, Danio Salimbeni, Roberto Paolesse. et. al. Porphyrins-based opto-electronic nose for volatile compounds detection[J]. Sensors and Actuators B. 2000, 65: 220~226.
    [47]Suslick K S, Rakow N A. A Colorimetric Nose: Smell-Seeing Artificial Chemical Sensing: Olfaction and t he Electronic Nose[C]. Stetter, J. R.; Pensrose, W. R., eds. Electrochem Soc, Pennington, NJ, 2001: 8~14.
    [48]Roberto Paolesse, Corrado Di Natale, Viviana Campo Dall'Orto. et.al. Porphyrin thin films coated quartz crystal microbalances prepared by electropolymerization technique[J]. Thin Solid Films. 1999, 354: 245~250.
    [49]Corrado Di Natale, Roberto Paolesse, Arnaldo D’Amico. Metalloporphyrins based artificial olfactory receptors[J]. Sensors and Actuators B, 2007, 121: 238~246.
    [50]B. Wang , X. Zuo, Y.Q. Wu.. et. al. Preparation, characterization and gas sensing properties of lead tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin spin-coating films[J]. Sensors and ActuatorsB, 2007, 125: 268~273.
    [51]Xingfa Ma, Jingzhi Sun, Mang Wang. et. al. Effects of fluorination in the ring of zinc tetraphenylporphyrin on its gas-response to volatiles at room temperature[J]. Sensors and Actuators B, 2006, 114: 1035~1042.
    [52]Roberto Paolesse, Corrado Di Natale, Massimiliano Burgio. et. al. Porphyrin-based array of cross-selective electrodes for analysis of liquid samples[J]. Sensors and Actuators B, 2003, 95: 400~405.
    [53]Larisa Lvova, Roberto Paolesse, Corrado Di Natale. et. al. Detection of alcohols in beverages: An application of porphyrin-based Electronic tongue[J]. Sensors and Actuators B, 2006, 118: 439~447.
    [54]G. Verrelli, L. Francioso, R. Paolesse. et. al. Development of silicon-based potentiometric sensors: Towards a miniaturized electronic tongue[J]. Sensors and Actuators B, 2007, 123: 191~197.
    [55]Hanming Ding, Victor Erokhin, Manoj Kumar Ram. et. al. A physical insight into the gas-sensing properties of copper(II) tetra-tert-butyl-5,10,15,20-tetraazaporphyrin Langmuir-Blodgett Films[J]. Thin Solid Films, 2000, 379: 279~286.
    [56]Corrado Di Natale, Roberto Paolesse, Antonella Macagnano. et. al. Qualitative structure–sensitivity relationship in porphyrins based QMB chemical sensors[J]. Sensors and Actuators B, 2000, 68: 319~323.
    [57]M. Tonezzer, A. Quaranta, G. Maggioni. et. al. Optical sensing responses of tetraphenyl porphyrins toward alcohol vapours: A comparison between vacuum evaporated and spin-coated thin films[J]. Sensors and Actuators B, 2007, 122: 620~626.
    [58]R. Bernini, M. Tonezzer, F. Mottola. et. al. Volatile Organic Compounds detection using Porphyrin based Metal-Cladding Leaky Waveguides[J]. Sensors and Actuators B, 2007, 127: 231~236.
    [59] Neal A. Rakow, Kenneth S. Suslick. A colorimetric sensor array for odour visualization[J]. NATURE. 2000, 406: 710~713
    [60] Avijit Sen, Kenneth S. Suslick. Shape-Selective Discrimination of Small Organic Molecules[J]. J. Am. Chem. Soc., 2000, 122: 11565~11566.
    [61]Kenneth S. Suslick, Neal A. Rakow,Avijit Sen. Colorimetric sensor arrays for molecular recognition[J]. Tetrahedron, 2004, 60: 11133~11138.
    [62]Chen Zhang, Kenneth S. Suslick. A Colorimetric Sensor Array for Organics in Water[J]. J. Am. Chem. Soc., 2005, 127: 11548~11549.
    [63]Michael C. Janzen, Jennifer B. Ponder, Daniel P. Bailey. et.al. Colorimetric Sensor Arrays for Volatile Organic Compounds[J]. Anal. Chem, 2006, 78: 3591~3600.
    [64]Suslick, K. S, Rakow, N. A, Sen, A. et.al. Colorimetric Artificial Nose having an Array of Dyes and Method for Artificial Olfaction[P]. U. S. Patent 7,261,857. 2007-8-28.
    [65]谢腾峰,王德军,等.四甲基-四乙基钯卟啉的表面光伏特性[J].高等学校化学学报, 1999, 20(16): 937~940.
    [66]Gunther Knor, Andreas Strasser.Coexisting intraligand fluorescence and phosphorescence hafnium(IV) and thorium(IV) porphyrin complexes in solution[J]. Inorganic Chemistry Communications, 2002, 5: 993~995.
    [67]K. Eaton, B. Douglas, P.Douglas. Luminescent oxygen sensors: time-resolved studies and modeling of heterogeneous oxygen quenching of luminescence emission from Pt and Pd octaethylporphyrins in thin polymer films[J]. Sensors and Actuators B, 2004, 97: 2~12.
    [68]Ruth Shinar, Zhaoqun Zhouc, Bhaskar Choudhury, et al. Structurally integrated organic light emittiing device-basedsensors for gas phase and dissolved oxygen[J]. Analytica Chimica Acta, 2006, 568: 190~199.
    [69]赵莉,鲁勖琳,等.四对溴苯基铂卟啉聚氯乙烯敏感膜溶解氧传感器的研究[J].分析化学研究报告, 2004, 32(6): 715~718.
    [70]杨荣华,王柯敏,等.基于环糊精/卟啉包络物荧光猝灭的二氧化碳光学敏感膜的研究[J].高等学校化学学报, 2001, 22(1): 38~42.
    [71]T.H. Richardson , R.A. Brook , F. Davisb, C.A. Hunter.The NO2 gas sensing properties of calixarene/porphyrin mixed LB films[J].Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, (284~285): 320~325.
    [72]A. Dunbar, T.H. Richardson, A.J. McNaughon, et al. Hutchinson and C.A. Understanding the interacttions of porphryin LB films with NO2[J]. Hunter Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284~285: 339~344.
    [73]M. Rei Vilar, J. El-Beghdadi, F. Debontridder, et al. Development of nitric oxide sensor for asthma attack prevention[J]. Materials Science and Engineering C, 2006, 26: 253~259.
    [74]Wang J, Lin Y, Eremenko A. Affinity biosensors based on preconcentration/voltammetric analysis. Detection of phenothiazine drugs at Langmuir-Blodgett films of tyrosine hydroxylase[J]. Anal Chem, 1993, 65: 513~516.
    [75]Fu-Chun Gong, et al. A fluorescence enhancement-based sensor using glycosylated metalloporphyrin as a recognition element for levamisole assay[J]. Biosensors and Bioelectronics, 2006, 22(3): 423~428.
    [76]Lucio Angnes, et al. electrochemical detection of NADH and dopamine in flow analysis based on tetraruthenated porphyrin modified electrodes[J]. Analytica Chimica Acta, 1996,(329): 91~96.
    [77]Maria do Socorro Maia Quintino, et al. Amperometric sensor for glucose based onelectrochemically polymerized tetraruthenated nickel-porphyrin[J]. Analytica Chimica Acta, 2005 (539): 215~222
    [78]Amitage B. Photocleavage of nucleic acids[J] . ChcmRev, 1998, 98: 1171~1200.
    [79]Meunier B.Metall oporphrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage[J] . Chem.Rev. , 1992 , 92 :1411~1456.
    [80]WORD B , SKOROBOGATY A , DABROWIAKJ C. DNA cleavage specificity of a group of cationic Blrretallo porphyrins[J]. Biochemistry, 1986, 25 : 68~75.
    [81]RISMAYANI S , FUKUSHIMA M, SAWADA A , et al. Effects of peat humic acids on the catalytic oxidation of pentachlorophenol using metalloporphyrins and metallophthalocyanines[J]. J. Mol. Catal. A: Chem, 2004, 217: 13.
    [82]SERRA A C, DOCAL C, GONSALVES A R. Efficient azodye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts[J]. J. Mol. Catal. A: Chem, 2005, 238: 192.
    [83]Rothemund P. Formation of porphyrins from pyrrols and aldehydes[J]. J. Am. Chem. Soc., 1935, 57: 2010.
    [84]Adler A D, Longo F R, Finarelli J D, et al. A simplified synthesis for meso- tetraphenylporphyrin[J]. J. Org. Chem., 1967, 32:476~482.
    [85]Lindesy J S, et al. Reactions revisited synthesis of tetraphenylporphrins under equilibrium conditions [J]. J Am.Chem Soc, 1987, 52: 827~836.
    [86]A.D.Alder,F.R.Longo, et al. On the Preparation of Metalloporphyrins[J]. J. Inorg. Nucl. Chem, 1970, 33: 2443~2445.
    [87]M.Gouterman,in The Porphyrin(D.Dolphin ed.),Academic press,Inc.,New York,San Francisco,London,1978,Ⅲ,Part A,Chap 1,pp1.
    [88]R.H.Felton,N.T.Yu,in The Porphyrin(D.Dolphin ed.),Academic press,Inc.,New York,San Francisco,London,1978,Ⅲ,Part A,Chap 8,pp347.
    [89]陈念贻,钦佩,等.模式识别方法在化学化工中的应用[M].北京:科学出版社. 2000: 56~59.
    [90]郭冬敏,杨建华,李秉玺.可视嗅觉传感器阵列研究及图像分析[J].传感技术学报, 2005, 18(4): 794~797.
    [91]J.A.迪安.兰氏化学手册[M].第十三版中文版, 1991: 10-35~10-55.
    [92]陈念贻,钦佩,等.模式识别方法在化学化工中的应用[M].北京:科学出版社. 2000:23~31.
    [93]张覃轶.电子鼻:传感器阵列、系统及应用研究[学位论文].武汉.华中科技大学, 2005.
    [94]吴川.基于神经网络的目标识别及定位方法的研究[学位论文].长春:中国科学院, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700