苯酚衍生物作用模式的分类及其生物降解过程中氧分子通道的结构与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯酚衍生物是在自然界分布广泛的一类环境污染物,通过不同的作用模式对生物体产生毒害作用。属于某种作用模式的苯酚衍生物虽然含有不同的取代基,但在结构或物理化学性质上具有一定的相似性。定性的分类方法和定量的结构-活性相关性分析都试图寻找这些相似性,然后构建分类器或函数关系对未知作用模式的苯酚衍生物作出预测。上述两种方法都要求用于描述结构特征的分子描述符能够反映深层次的作用机理,数目尽可能的少,并且易于解释。近几年发展的基于统计学习理论的支持向量机分类算法受到广泛关注并已成功用于解决各种分类问题,但能否对少数已知作用模式(即样本数目少)的苯酚衍生物进行分类值得研究,如何验证和解释分类的结果也是值得探索的一个问题。
     苯酚衍生物的生物降解是降低其对环境污染和生物体毒性的一个有效途径。细菌对芳烃的好氧降解途径中,双加氧酶催化两个关键反应:芳环双羟基化和开环。所有的芳香族化合物都是先降解为邻苯二酚,然后邻苯二酚通过邻位或间位双加氧酶的作用裂解为粘康酸半醛或粘康酸,从而使苯环开环断裂。大量的实验和理论研究都将注意力集中在活性位点附近O_2分子如何活化,邻苯二酚如何开环裂解,以及如何捕获反应的中间产物等方面,却很少关注O_2是如何到达反应中心这一问题。研究表明酶催化的反应速率不仅取决于活性位点的反应速率还取决于气体进入活性中心的速率,因此寻找酶结构中的气体分子通道逐渐成为研究酶催化活性的一个热点问题,有希望成为调控酶反应速率进而发现新的反应中间体的一种实验方法。通常酶的活性中心都深埋于蛋白质内部,通过分子动力学模拟寻找酶结构中的气体分子通道不仅能够在原子水平上观察气体进入蛋白质的动态过程,而且能够发现控制气体进入活性位点的关键氨基酸残基,为相关的突变实验提供理论指导。
     本文结合支持向量分类机和分子动力学对第一个问题从宏观和微观两个尺度进行的研究;运用不同的分子动力学模拟方法寻找外二元醇双加氧酶2,3-HPCD中的O_2通道,揭示了O_2通道与酶催化反应速率之间的关系,论文工作包含以下三个部分:
     1.利用支持向量机对含155个极性麻醉剂和19个非偶联剂的数据集用7个分子描述符进行分类测试,结果表明用于描述疏水和氢键作用的分子描述符对上述两类苯酚衍生物的分类正确率达99%以上。以典型的极性麻醉剂水杨酸(SAL)和非偶联剂五氯酚(PCP)为例,利用分子动力学模拟研究了它们在磷脂双层POPC中的平衡特性,结果显示由于疏水作用,平衡时SAL和PCP分子不能分布在空间相对宽松的POPC内部,而是分布在磷脂双层头部,靠近水相的区域。SAL能够和油酰基碳链上的羰基氧形成稳定的氢键,不仅如此,模拟还发现SAL能够形成分子内氢键;PCP则主要和水形成稳定的氢键。分子动力学模拟一方面揭示了分子描述符隐含的作用机理,另一方面也纠正了以前定量结构.活性研究中认为SAL是和带负电荷的磷酸根结合的观点。
     2.外二元醇双加氧酶2,3-HPCD催化降解4.硝基邻苯二酚(或4-羧基邻苯二酚),但其四个同源亚基却具有不同的催化活性。这部分工作利用局部加强取样(LES)分子动力学模拟寻找每个亚基中的O_2通道,发现每个亚基中只含有一条供O_2在蛋白质内部扩散的通道。虽然构成O_2通道周围的氨基酸基本相同,但O_2和这些氨基酸的碰撞频率却不一样,揭示每个通道具有不同的O_2亲和性。通过计算O_2和这些残基的相互作用能进一步说明亚基A最适合O_2的扩散,与实验中在亚基A中发现催化反应的最终产物而在其它亚基中捕获到反应中间体的结论一致,表明O_2通道和亚基的催化速率有一定的相关性。分析残基的运动特征还揭示了空隙的呼吸运动是调控O_2进出蛋白质的主要因素。
     3.不同于LES模拟,本部分的分子动力学模拟不包含O_2,称为隐式配体取样(ILS)。先对包含2,3-HPCD的体系进行10纳秒常规分子动力学模拟,然后对每一帧轨迹文件计算与O_2的相互作用能,得到反映整个体系与O_2相互作用的自由能曲面。连接势能曲面上从水相至活性位点能量最低的区域即为可能的O_2通道。通过比较每个O_2通道的几何和能量特征,发现亚基A中的O_2通道能量最低,与LES结论一致。延长模拟至20纳秒,继续观察空隙的呼吸运动并与LES结果进行比较,发现O_2对蛋白质结构影响很小,O_2在每个亚基中的运动按照特定的通道进行,空隙呼吸运动的频率差异可能是导致O_2在不同亚基中扩散快慢的主要原因。
     本论文的研究工作为研究苯酚衍生物与生物大分子,如生物膜和蛋白质的相互作用提供了启发。运用分子动力学模拟解释分类、定量构效关系的结果为揭示苯酚衍生物的作用模式提供了新的思路。运用LES和ILS两种计算方法首次发现O_2通道对亚基催化性能的影响,为相关实验的研究提供了新的方向。
Phenols and their derivatives are ubiquitous environmental contaminants and toxic to many organisms by interfering energy transduction in cells. With different substitutions, phenols may exert various biological activities. Besides, one kind of toxicity may be caused by the superposition of effects from different mechanisms. Both classification (qualitative) and QSAR (quantitative) approaches have currently been applied to predict the toxicity of chemicals. One of fundamental issues is how to select and interpret the molecular descriptors used in both methods. Extensive applications of support vector machines (SVM) in classification and QSAR analysis have made it one of popular machine-learning methods in recent years. However, the number of phenols with known mode of action is small, whether SVM is applicable to such problem is worth investigating, as well as how to validate and interpret the classification results.
     The biodegradation of phenols and their derivatives is one of the important ways to reduce their contamination and toxicity. Dioxygenases play an important role in the biodegradation of catechol and its derivatives by catalyzing the cleavage of aromatic rings. Generally, the intradiol dioxygenases require Fe~(3+) to cleave C-C bond between the phenolic hydroxy groups to produce cis, cis-muconic acid, while the extradiol dioxygenases use Fe~(2+) (or Mn~(2+)) as a cofactor to cleave the C-C bond adjacent to the phenolic hydroxy groups to yield 2-hydroxymuconaldehyde. Both experimental and theoretical investigations have been focused on the detection of intermediates in the reaction cycle in order to develop a general chemical mechanism of O_2 activation and insertion. However, little is known about the mechanism of how O_2 reaches the reaction sites of the related enzymes, which raises the question whether the rate of catalysis is limited by O_2 access to the active site. The precise, atomic-resolution pathways for O_2 migration in the protein, along with predicted relative significant parts of the pathways, should help to rationalize the selectivity of specific intermediate at the active site of each subunit and greatly facilitate the selection of specific site mutations for such studies.
     In this paper, the combination of SVM and molecular dynamics simulations enables us to investigate the classification of phenols and their derivatives from different scales. Two approximation methods, locally enhanced sampling and implicit ligand sampling, were applied to find the O_2 pathways in the extrodioxygenase of 2,3-HPCD. These works are outlined as follows.
     1. In this work, we first employed SVM on a dataset containing 155 polar narcotics and 19 uncouplers to filter the predictive hydrophobic and hydrogen bonding descriptors. The overall classifaction rate was above 99%. Molecular dynamics (MD) simulations were then conducted to investigate the behavior of salicylate (SAL) and pentachlorophenol (PCP) molecules in the context of a palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer. The results demonstrated that their equilibrium properties in the lipid bilayer were closely associated with hydrophobic and hydrogen bonding descriptors. The preferred position of SAL in the POPC bilayer lies in the lipid headgroup, while PCP resides in the region between carbonyl groups and water phase (lipid-water interface). SAL could form stable hydrogen bonds with carbonyl oxygen atom of oleoyl chain in POPC, as well as intermolecular hydrogen bonds. PCP acts as hydrogen acceptor and establishes hydrogen bonds mainly with water. The observations from molecular dynamics simulations facilitated to elucidate the mechanism of polar narcotics and uncouplers.
     2. The experimental determination of the structure of Fe~(2+)-containing homoprotocatechuate 2,3-dioxygenase (2,3-HPCD) with X-ray crystallography showed that three different intermediates reside in different subunits of a single homotetrameric enzyme molecule. In this paper, two locally enhanced sampling molecular dynamics simulations were performed to determine the potential O_2 pathways inside a recently solved X-ray structure of homoprotocatechuate 2,3-dioxygenase. It is found that nominally identical subunits of the single homotetrameric structure contain distinct O_2 affinity diffusion pathways, which partly correlates with the observation of the simultaneous presence of three different reaction intermediates in four independent active sites. Residues that are critical for O_2 diffusion are also examined and discussed. In particular, we find that the breathing motion of internal cavity defined by these residues results in O_2 migration process.
     3. Based on the trajectory of a 10-ns molecular dynamics simulation, implicit ligand sampling was applied to calculate the 3D free energy map for O_2 inside the protein. The energetically optimal routes for O_2 diffusing were identified for each subunit of the homotetrameric protein structure. The O_2 tunnels formed due to thermal fluctuations were also characterized by connecting elongated cavities inside the protein. Superimposing the favorable O_2 tunnels onto the free energy map, both energetically and geometrically preferred O_2 pathways were determined, as well as the amino acids that may be critical for O_2 passage along these paths. Our results demonstrate that identical subunits possess quite distinct O_2 tunnels. The order of O_2 affinity of these tunnels is generally consistent with the order of catalytic rate of each subunit. As a consequence, the subunit containing the highest O_2 affinity pathway has the highest probability for finding product of reaction. Compared with results of LES, we find that it is the frequency of the breath motion of the cavity that limits O_2 acess to the actie site of each monomer. In contrast to randomized behavior, O_2 diffusion in the four subunits is clearly limited to specific regions located within the conserved active site domain.
     In summary, the combination of SVM and MD simulations provides a new strategy for elucidating the mechanism of toxic action underlying the corresponding molecular descriptors. The indentifation of O_2 pathways in 2,3-HPCD will be valuable to engineer non-heme iron dioxygenases in order to find intermediates by charactering O_2 diffusion routes.
引文
[1]Schwarzenbach RP,Escher BI,Fenner K,et al.The challenge of micropollutants in quatie systems[J].Science,2006,313(5790):1072-1077.
    [2]Nimrod AC,Benson WH.Environmental estrogenic effects of alkylphenol ethoxylates[J].Crit Rev Toxicol,1996,2(3):335-364.
    [3]孙立伟,曲甍甍,吴笛等.酚类化合物对不同组织细胞DNA损伤的研究[J].环境化学,2003,22(4):390-393.
    [4]刘征涛,徐静波,杨丽等.有机烷酚类化合物致突变性研究[J].环境科学研究,2001,14(3):1-3.
    [5]蒋洁,陈江宁,于红霞等.多氯酚类化合物对离体培养细胞的研究及毒性机理初探[J].科学通报,2004,49(2):125-129.
    [6]张国栋,吴笛,孙立伟等.烷基酚类化合物对人外周血淋巴细胞DNA损伤的研究[J].南京大学学报(自然科学),2002,38(4):539-543.
    [7]Keweloh H,Weyrauch G,Rehm HJ.Phenol-induced membrane changes in free and immobilized Escherichia coli[J].Appl Microbiol Biotechnol,1990,33(1):66-71.
    [8]聂晶磊,刘锋,周春玉等.氯酚类化合物对金鱼的急性和亚急性毒性研究[J].环境科学研究,2001,14(3):6-8.
    [9]Terada H.Uncouplers of oxidative phosphorylation[J].Environ Health Perspect,1990,87:213-218.
    [10]江月玲.水体酚类化合物污染对水稻幼苗生长的影响[J].植物学通报,1997,14(2):41-44.
    [11]阎海,叶常明,雷志芳.酚类化合物抑制斜生栅藻生长的毒性效应[J].环境化学,1998,17(2):127-130.
    [12]闫秀芬.硝基芳烃衍生物结构-毒性定量关系和致毒机理的理论研究[J].2007.
    [13]Nendza M,Muller M.Discriminating toxicant classes by mode of action:2physical-chemical descriptors[J].Quant Struct-Act Relat,2000,19(6):581-598.
    [14]Sch(u|¨)(u|¨)rmann G,Aptula AO,Kuehne R,et al.Stepwise discrimination between four modes of toxic action of phenols in the Teo'ahymena pyriformis assay[J].Chem Res Toxicol,2003,16(8):974-987.
    [15]Ren S.Classifying class I and class II compounds by hydrophobicity and hydrogen bonding descriptors[J].Environ Toxicol,2002,17(5):415-423.
    [16]Aptula AO,Netzeva TI,Valkova IV,et al.Multivariate discrimination between modes of toxic action of phenols[J].Quant Struct-Act Relat,2002,21(1):12-22.
    [17]Verhaar HJM,Ramos EU,Hermens JLM.Classifying enviromnental pollutants 2:separation of class 1(baseline toxicity) and class 2(polar narcosis') type compounds based on chemical descriptors[J].Journal of Chemometrics,1995,10(2):149-162.
    [18]Ren S,Kim H.Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols[J].J Chem Inf Comput Sci,2003,43(6):2106-2110.
    [19]Spycher S,Pellegrini E,Gasteiger J.Use of structure descriptors to discriminate between modes of toxic action of phenols[J].J Chem Inf Model,2005,45(1):200-208.
    [20]Xue Y,Li H,Ung CY,et al.Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods[J].Chem Res Toxicol,2006,19(8):1030-1039.
    [21]Gupta SP.Quantitative structure-activity relationship studies on local anethetic[J].Chem Rev,1991,91(6):1109-1119.
    [22]Weavers S,Gleeson MP.The importance of the domain of applicability in QSAR modeling [J].J Mol Graph Model,2008,26(8):1315-1326.
    [23]王连生主编.定量结构活性相关(QSAR)[M].北京:化学工业出版社,1999.
    [24]Schultz TW,Cronin MTD,Netzeva TI.The present status of QSAR in toxicology[J].J Mol Struct(Theoehem),2003,622(1-2):23-38.
    [25]Roberts DW,Costello JF.Mechasim of action for general and polar narcosis:A difference in dimension[J].QSAR Comb Sci,2003,22(2):226-233.
    [26]Cronin MTD,Aptula AO,Duffy JC,et al.Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis[J].Chemosphere,2002,49(i 0):1201-1221.
    [27]Todeschini R,Consonni V.Handbook of Molecular Descriptors[M].Weinheimy:Wiley-VCH,German,2002.
    [28]郭明,许禄.酚类化合物的QSAR研究[J].环境科学学报,1998,18(2):122-127.
    [29]Papa E,Villa F,Gramatica P.Statistically validated QSARs,based on theoretical descriptors,for modeling aquatic toxicity of organic chemicals in Piraephales promelas (FatheadMinnow)[J].J Chem InfModel,2005,45(5):1256-1266.
    [30]郭明,许禄.酚类化合物的多元回归分析及神经网络法研究[J].物理化学学报,1996,12(11):1027-1030.
    [31]毛明现,余训民,胡立嵩等.氯代苯及酚类化合物对生物毒性的定量研究[J].武汉工程大学学报,2008,30(3):60-68.
    [32]高常安,张爱茜,蔺远等.酚类化合物非单调剂量.效应毒理学机制的QSAR研究[J].科学通报,2009,54(2):161-170.
    [33]K(o|¨)vesdi I,Dominguez-Rodriguez MF,(O|¨) rft L,et al.Application of neural networks in structure-activity relationships[J].Med Res Rev,1999,19(3):249-269.
    [34]Ramos EU,Vaes WHJ,Verhaar HJM,et al.Quantitative structure-activity relationships for the aquatic toxicity of polar and nonpolar narcotic pollutants[J].J Chem Inf Comput Sci,1998,38(5):845-852.
    [35]王丽莉,牛军峰.酚类化合物对Shk1发光细菌毒性的定量结构.活性相关研究[J].计算机与应用化学,2006,23(3):219-221.
    [36]崔秀君,王志欣,袁星等.支持向量机用于酚类化合物毒性的QSAR研究[J].计算机与应用化学,2008,25(3):298-302.
    [37]张文军,张运陶.基于支持向量机的苯酚类化合物毒性的QSAR研究[J].西华师范大学学报,2008,29(2):186-190.
    [38]Yao X,Liu M,Zhang R,et al.QSAR and classification study of 1,4-dihydropyridine calcium channel antagonists based on least squares support vector machines[J].Mol Pharm,2005,2(5):348-356.
    [39]Esther BI,Schwarzenbach RP.Partitioning of substituted phenols in liposome-water,biomembrane-water,and octanol-water systems[J].Environ Sci Technol,1996,30(1):260-270.
    [40]Esther BI,Snozzi M,Schwarzenbach RP.Uptake,speciation,and uncoupling activity of substituted phenols in energy transducing membranes[J].Environ Sci Technol,1996,30(10):3071-3079.
    [41]Escher BI,Hunziker R,Schwarzenbach RP.Kinetic model to describe the intrinsic uncoupling activity of substituted phenols in energy transducing membranes[J].Environ Sci Technol,1999,33(4):560-570.
    [42]Escher BI,Schwarzenbach RP.Evaluation of liposome-water partitioning of organic acids and bases.1.development of a sorption model[J].Environ Sci Technol,2000,34(18):3954-3961.
    [43]Esther BI,Schwarzenbach RP.Evaluation of iiposome-water partitioning of organic acids and bases.2.Comparison of experimental determination methods[J].Environ Sci Technol,2000,34:3962-3968.
    [44]Escher BI,Hunziker R,Schwarzenbach RP.Interaction of phenolic uncouplers in binary mixtures:concentration-additive and synergistic effects[J].Environ Sci Technol,2001,35(19):3905-3914.
    [45]Escher BI,Schwarzenbach RP.Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentrations in aquatic organisms[J].Aquat Sci,2002,64(1):20-35.
    [46]Escher BI,Hermens JLM.Modes of action in ecotoxicology:Their Role in body burdens,species sensitivity,QSARs,and mixture effects[J].Environ Sci Technol,2002,36(20):4201-4217.
    [47]Esther BI,Eggen RIL,Schreiber U,et al.Baseline toxicity(narcosis) of organic chemicals determined by in vitro membrane potential measurements in energy-transducing membranes[J].Environ Sci Technol,2002,36(9):1971-1979.
    [48]Weber F J,de Bont JAM.Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes[J].Biochim Biophys Acta,1996,1286(3):225-245.
    [49]吴宇澄,骆永明,腾应等.石油污染土壤中芳烃降解菌及邻苯二酚2,3双加氧酶的克隆[J].土壤,2006,38(5):640-644.
    [50]周鑫淼,陈洁君,耿立召等.邻苯二酚2,3-双加氧酶的结构和功能研究进展[J].生物技术通报,2007,(4):51-54.
    [51]Solomon El,Brunold TC,Davis MI,et al.Geometric and electronic structure/function correlations in non-heme iron enzymes[J].Chem Rev,2000,100(1):235-349.
    [52]Yamahara R,Ogo S,Masuda H,et al.(Catecholato)iron(lll) complexes:structural and functional models for the catechol-bound iron(Ill) form of catechol dioxygenases[J].J Inorg Biochem,2002,88(3-4):284-294.
    [53]李丽,李钦.邻苯二酚-1,2-双加氧酶的催化性质[J].生物化学与生物物理进展,1990,17(2):157-160.
    [54] 章俭,夏春谷.芳香烃双加氧酶的结构与功能研究[J].化学进展, 2004, 16(1):116-122.
    [55] Eltis LD, Bolin JT. Evolutionary relationships among extradiol dioxygenases [J]. J Bacteriol October, 1996,178(20):5930-5937.
    [56] Koehntop KD, Emerson JP, Que JrL. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes [J]. J Biol Inorg Chem, 2005,10(2):87-93.
    [57] Hegg EL, Que LJr. The 2-His-l-carboxylate facial triad~an emerging structural motif in mononuclear non-heme iron(II) enzymes [J]. Eur J Biochem, 1997,250(3):625-629.
    [58] Bruijnincx PCA, van Koten G, Klein Gebbink RJM. Mononuclear non-heme iron enzymes with the 2-His-l-carboxylate facial triad: recent developments in enzymology and modeling studies [J]. Chem Soc Rev, 2008,37:2716 - 2744.
    [59] Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics [J]. J Mol Graph Model, 1996, 14(1):33-38.
    [60] Wallar BJ, Lipscomb JD. Dioxygen activation by enzymes containing binuclear non-heme iron clusters [J]. Chem Rev, 1996, 96(7):2625-2657.
    [61] Lange SJ, Que LJr. Oxygen activating nonheme iron enzymes [J]. Curr Opin Chem Biol, 1998, 2(2): 159-172.
    [62] Costas M, Mehn MP, Jensen MP, et al. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates [J]. Chem Rev, 2004,104(2):939-986.
    [63] Bugg TDH. Dioxygenase enzymes: catalytic mechanisms and chemical models [J]. Tetrahedron, 2003, 59(36):7075-7101.
    [64] Kryatov SV, Rybak-Akimova EV, Schindler S. Kinetics and mechanisms of formation and reactivity of non-heme iron oxygen intermediates [J]. Chem Rev 2005,105(6):2175-2226.
    [65] Kovaleva EG, Neibergall MB, Chakrabarty S, et al. Finding intermediates in the 02 activation pathways of non-heme iron oxygenases [J]. Acc Chem Res, 2007, 40(7):475-483.
    [66] Abu-Omar MM, Loaiza A, Hontzeas N. Reaction mechanisms of mononuclear non-heme iron oxygenases [J]. Chem Rev 2005,105(6):2227-2252.
    [67] Bugg TDH, Lin G. Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements? [J]. Chem Commun 2001:941-952.
    [68] Vaillancourt FH, Bolin JT, Eltis LD. The ins and outs of ring-cleaving dioxygenases [J]. Crit Rev Biochem Mol Biol, 2006,41(4):241-267.
    [69] Solomon EI, Decker A, Lehnert N. Non-heme iron enzymes: Contrasts to heme catalysis [J]. Proc Natl Acad Sci U S A, 2003, 100(7):3589-3594.
    [70] Emerson JP, Farquhar ER, Que L Jr. Structural "snapshots" along reaction pathways of non-heme iron enzymes [J]. Angew Chem Int Ed, 2007,46(45):8553-8556.
    [71] Pau MY, Lipscomb JD, Solomon EI. Substrate activation for O_2 reactions by oxidized metal centers in biology [J]. Proc Natl Acad Sci U S A, 2007 104(47): 18355-18362.
    [72] Deeth RJ, Bugg TDH. A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases [J]. J Biol Inorg Chem, 2003. 8(4):409-418.
    [73]Siegbahn PE,Haeffner F.Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases[J].J Am Chem Soc,2004,126(29):8919-8932.
    [74]Bassan A,Borowski T,Siegbahn PEM.Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-l-carboxylate facial triad[J].Dalton Trans,2004:3153-3162.
    [75]Kovaleva EG,Lipscomb JD.Versatility of biological non-heme Fe(Ⅱ) centers in oxygen-activation reactions[J].Nat Chem Biol,2008,4(3):186-193.
    [76]Kovaleva EG,Lipscomb JD.Crystal structures of Fe2+ dioxygenase superoxo,alkylperoxo,and bound product intermediates[J].Science,2007,316(5823):453-457.
    [77]Cronin MTD,Schultz TW.Pitfalls in QSAR[J].J Mol Struct(THEOCHEM),2003,622(1-2):39-51.
    [78]Maggiora GM.On outliers and activity cliffs--why QSAR often disappoints[J].J Chem Inf Model,2006,46(4):1535.
    [79]Johnson SR.The trouble with QSAR(or How I learned to stop worrying and embrace fallacy)[J].J.Chem.Inf.Model.,2008,48(1):25-26.
    [80]Leroux F,Dementin S,Burlat B,et al.Experimental approaches to kinetics of gas diffusion in hydrogenase[J].Proc Natl Acad Sci U S A,2008,105(32):11188-11193.
    [81]Elber R,Gibson QH.Toward quantitative simulations of carbon monoxide escape pathways in myoglobin[J].J Phys Chem B,2008,112(19):6147-6154.
    [82]Cohen J,Arkhipov A,Braun R,et al.Imaging the migration pathways for O_2,CO,NO,and Xe inside myoglobin[J].Biophys J 2006,91(5):1844-1857.
    [83]Cohen J,Olsen KW,Schulten K.Finding gas migration pathways in proteins using implicit ligand sampling[J].Methods Enzymol,2008,437:439-457.
    [84]Cohen J,Schulten,K.O_2 migration pathways are not conserved across proteins of a similar fold[J].Biophys J,2007,93(10):3591-3600.
    [85]Elber R,Karplus M.Enhanced sampling in molecular dynamics:Use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myogiobint [J].J Am Chem Soc,1990,112(25):9161-9175.
    [86]Vapnik,V.Statistical Learning Theory[M].New York:Wiley,1998.
    [87]Cristianini N,Shawe-Talor J.An introduction to support vectot machines and other kernel-based learning methods[M].Cambridge:Cambridge University Press,2000.
    [88]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学技术出版社,2004.
    [89]李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.
    [90]Vapnik,V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
    [91]Sch(o|¨)lkopf B,Burges CJC,Smola A J,(Eds).Advances in Kernel Methods-Support Vector Learning[M].Cambridge,Massachusetts:MIT Press,1999.
    [92]Ivanciuc O.Applications of support vector machines in chemistry[J].Rev Comput Chem,2007,23:291-400.
    [93]Smola A J,Sch(o|¨)lkopf B.A tutorial on support vector regression[J].Stat Comput 2004,14(3):199-222.
    [94]Guyon I,Elisseeff A.An introduction to variable and feature selection[J].J Mach Learn Res,2003,3:1157-1182.
    [95]Burges CJC.A tutorial on support vector machines for pattern recognition[J].Data Min Knowl Disc,1998,2(2):121-167.
    [96]正隆,徐为人,汤立达.分子模拟的理论和实践[M].北京:化学工业出版社,2007.
    [97]徐筱杰,侯廷军,乔学斌等.计算机辅助药物分子设计[M].北京:化学工业出版社,2004.
    [98]MacKerell Jr.AD,Bashford D,Beliott M et al.All-atom empirical potential for molecular modeling and dynamics studies of proteins[J].J Phys Chem B,1998,102(18):3586-3616.
    [99]Darden T,York D,Pede.rsen L.Particle mesh Ewald:an N.Log(N) method for Ewald sums in large systems[J].J Chem Phys,1993,98(12):10089-10092.
    [100]Cornell WD,Cieplak P,Bayly CI et al.A second generation force field for the simulation of proteins,nucleic acids,and organic molecules[J].J Am Chem Soc,1995,117(19):5179-5197.
    [101]Case DA,Cheatham TE 3rd,Darden T,et al.The Amber biomolecular simulation programs[J].J Comput Chem,2005,26(16):1668-1688.
    [102]Brooks BR,Bruceoleri RE,Olafson BD,et al.CHARMM:a program for macromolecular energy,minimization,and dynamics calculations[J].J Comput Chem,1983,4(2):187-217.
    [103]Schuler LD,Daura X,van Gunsteren WF.An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase[J].J Comput Chem,2001,22(11):1205-1218.
    [104]Oostenbrink C,Villa A,Mark AE,et al.A biomolecular force field based on the free enthalpy of hydration and solvation:the GROMOS force-field parameter sets 53A5 and 53A6[J].J Comput Chem,2004,25(13):1656-1676.
    [105]Kony D,Damm W,Stoll S,et al.An improved OPLS-AA force field for carbohydrates[J].J Comput Chem,2002,23(15):1416-14129.
    [106]Jorgensen WL,Tirado-Rives J.The OPLS potential functions for proteins,energy minimizations for crystals of cyclic peptides and crambin[J].J Am Chem Soc,1988,110(6):1657-1666.
    [107]Kaminski GA,Friesner RA,Tirado-Rives J,et al.Evaluation and reparametdzation of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides[J].J Phys Chem B,2001,105(28):6474-6487.
    [108]Berendsen HJC,Grigera JR.,Straatsma TP.The missing term in effective pair potentials [J].J Phys Chem B,1987,91(24):6269-6271.
    [109]Jorgensen WL,Chandrasekhar J,Madura JD,et al.Comparison of simple potential functions for simulating liquid water[J].J Chem Phys,1983,79(2):926-935
    [110]Jorgensen WL,Madura JD.Temperature and size dependence for Monte Carlo simulations of TIP4P water[J].Mol Phys,1985,56(6):1381-1392.
    [111]Mahoney MW,Jorgensen WL.A five-site model for liquid water and the reproduction of the density anomaly by rigid,nonpolarizable potential functions[J].J Chem Phys,2000,112(20):8910-8922.
    [112]Phillips JC,Braun R,Wang W,et al.Scalable molecular dynamics with NAMD[J].J Comput Chem,2005,26(16):1781-1802.
    [113]Christen M,H(u|¨)nenberger PH,Bakowies D,et al.The GROMOS software for biomolecular simulation:GROMOS05[J].J Comput Chem,2005,26(16):1719-1751.
    [114] Cheatham TE 3rd, Young MA. Molecular dynamics simulation of nucleic acids: Successes, limitations and promise [J]. Biopolymers, 2001, 56(4):232-256.
    [115] Foloppe N, MacKerell Jr AD All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data [J]. J Comput Chem, 2000, 21(2):86-104.
    [116] MacKerell Jr AD, Banavali NK. All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution [J]. J Comput Chem, 2000, 21(2): 105-120.
    [117] Payelites JJ, Gao J, Bash PA, Mackerell Jr AD. A molecular mechanics force field for NAD~+ NADH, and the pyrophosphate groups of nucleotides [J]. J Comput Chem, 1997, 18(2):221-239.
    [118] Yin D, MacKerell Jr AD. Combined ab initio/empirical approach for optimization of Lennard-Jones parameters [J]. J Comput Chem, 1998, 19(3):334 - 348.
    [119] Klauda JB, Brooks BR. CHARMM force field parameters for nitroalkanes and nitroarenes [J]. J Chem Theory Comput, 2008,4(1):107-115.
    [120] Price DJ, Brooks CL 3rd. Modern protein force fields behave comparably in molecular dynamics simulations [J]. J Comput Chem, 2002, 23(11): 1045-10457.
    [121] Guvench O, MacKerell AD Jr. Comparison of protein force fields for molecular dynamics simulations [J]. Methods Mol Biol, 2008,443:63-88.
    [122] Alexander D, Mackerell Jr. Empirical force fields for biological macromolecules: Overview and issues [J]. J Comput Chem 2004, 25(13):1584-1604.
    [123] Ponder JW, Case DA. Force fields for protein simulations [J]. Adv Protein Chem, 2003, 66:27-85.
    [124] Banks JL, Kaminski GA, Zhou RH, et al. Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model [J]. J Chem Phys, 1999,110(2):741-754.
    [125] van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free [J]. J Comput Chem, 2005, 26(16): 1701-1718.
    [126] Adcock SA, McCammon JA. Molecular dynamics: Survey of methods for simulating the activity of proteins [J]. Chem Rev, 2006,106(5):1589-1615.
    [127] Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules [J]. Phys Rev, 1967, 159(1):98-103.
    [128] Hockney RW. The potential calculation and some applications [J]. Methods Comput Phys, 1970,9:136-211.
    [129] Swope WC, Andersen HC, Berens PH, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters [J]. J Chem Phys, 1982, 76(l):637-649.
    [130] Beeman D. Some multistep methods for use in molecular dynamics calculations [J]. J Comput Phys, 1976, 20(2): 130-139
    [131] Gear CW. Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs [M]. New York:Prentice Hall, 1971.
    [132] Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes [J]. J Comput Phys, 1977, 23(3):327-341.
    [133] Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations [J]. J Comput Chem, 1997,18(12): 1463-1472.
    [134] Andersen HC. Rattle: a "velocity" version of the shake algorithm for molecular dynamics calculations [J]. J Comput Phys, 1983, 52(1):24-34.
    [135] Streett WB, Tildesley DJ, Saville G. Multiple time-step methods in molecular dynamics [J]. Mol Phys, 1978, 35(3):639-648.
    [136] Moraitakis G, Purkiss AG, Goodfellow JM. Simulated dynamics and biological macromolecules [J]. Rep Prog Phys, 2003,66(3):383-406.
    [137] Berendsen, HJC, Postma, JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath [J]. J Chem Phys, 1984, 81 (8):3684-3690.
    [138] Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms [J]. J Chem Phys, 1994, 101(5):4177-4189.
    [139] Feller SE, Zhang Y, Pastor RW, et al. Constant pressure molecular dynamics simulation: The Langevin piston method [J]. J Chem Phys, 1995,103(11):4613-4621.
    [140] Nose S. A unified formulation of the constant temperature molecular dynamics methods [J]. J Chem Phys, 1984, 81(1):511-519.
    [141] Nose S. A molecular dynamics method for simulations in the canonical ensemble [J]. Mol Phys, 1984, 52(2):255-268
    [142] Hoover WG. Canonical dynamics: equilibrium phase-space distributions [J]. Phys Rev A, 1985, 31(3): 1695-1697.
    [143] van Gunsteren WF, Bakowies D, Baron R, et al. Biomolecular modeling: goals, problems, perspectives [J]. Angew Chem Int Ed, 2006,45(25):4064-4092.
    [144] Alder BJ, Wainwright TE. Phase transition for a hard-sphere system [J]. J Chem Phys, 1957, 27(5): 1208-1209.
    [145] Alder BJ, Wainwright TE. Studies in molecular dynamics. I. General method [J]. J Chem Phys, 1959, 31 (2):459-466.
    [146] Duan Y, Kollman PA. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution [J]. Science, 1998, 282(5389):740-744.
    [147] Benson NC, Daggett V. Dynameomics: Large-scale assessment of native protein flexibility [J]. Protein Sci, 2008,17(12):2038-2050.
    [148] Leach AR. Molecular Modelling: Principles and Applications [M]. New Jersey:Prentice Hall, 2001.
    [149] Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules [J]. Nat Struct Biol, 2002, 9(9):646-652.
    [150] Karplus M. Molecular dynamics of biological macromolecules: a brief history and perspective [J]. Biopolymers, 2003, 68(3):350-358.
    [151] Tiana G, Simona F, De Mori GM, et al. Understanding the determinants of stability and folding of small globular proteins from their energetics [J]. Protein Sci, 2004, 13(1):113-124.
    [152] Simonson T, Archontis G, Karplus M. Free energy simulations come of age: protein-ligand recognition [J]. Acc Chem Res, 2002, 35(6):430-437.
    [153] Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design [J]. Med Res Rev, 2006,26(5):531-568.
    [154]Fan H,Mark AE.Refinement of homology-based protein structures by molecular dynamics simulation techniques[J].Protein Sci,,2004,13(1):211-220.
    [155]Karplus M,Kuriyan J..Molecular dynamics and protein function[J].Proc Natl Acad Sci U S A,2005,102(19):6679-6685.
    [156]Brunger AT,Adams PD.Molecular dynamics applied to X-ray structure refinement[J].Acc Chem Res,,2002,35(6):404-412.
    [157]Linge JP,Williams MA,Spronk CA,et al.Refinement of protein structures in explicit solvent[J].Proteins,2003,50(3):496-506.
    [158]Unwin N.Acetylcholine receptor channel imaged in the open state[J].Nature,1995,373(6509):37-43.
    [159]Liu X,Xu Y,Wang X et al.Unbinding of nicotine from the acetylcholine binding protein:steered molecular dynamics simulations[J].J Phys Chem B,2008,112(13):4087-4093.
    [160]Liu X,Yu Y,Li H et al.Mechanics of channel gating of the nicotinic acetylcholine receptor.,,(l):e19.[J].PLoS Comput Biol,2008,4(1):e19.
    [161]Liu X,Wang X,Jiang H.A steered molecular dynamics method with direction optimization and its applications on ligand molecule dissociation[J].J Biochem Biophys Methods,2008,70(6):857-864.
    [162]Park S,Khalili-Araghi F,Tajkhorshid E,et al.Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality[J].J Chem Phys,2003,119(6):3559-3566.
    [163]Park S,Schulten K.Calculating potentials of mean force from steered molecular dynamics simulations[J].J Chem Phys,2004,120(13):5946-5961.
    [164]Zhang D,Gullingsrud J,McCammon JA.Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain[J].J Am Chem Soc,2006,128(9):3019-3026.
    [165]许叶春,沈建华,罗小民等.拉伸分子动力学模拟配体.受体相互作用[J].中国科学B辑:化学,2004,34(3):177-187.
    [166]Miyazawa A,Fujiyoshi Y,Unwin N.Structure and gating mechanism of the acetylcholine receptor pore[J].Nature,2003,423(6943):949-955.
    [167]Amadei A,Linssen AB,Berendsen HJ.Essential dynamics of proteins[J].Proteins,1993,17(4):412-425.
    [168]Grubm(u|¨)ller H.Predicting slow structural transitions in macromolecular systems:conformational flooding[J].Phys Rev E,1995,52(3):2893-2906.
    [169]Grayson P,Tajkhorshid E,Schulten K.Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics[J].Biophys J,2003,85(1 ):36-48.
    [170]Rapaport DC.An introduction to interactive molecular-dynamics simulations[J].Computers in Physics,1997,11(4):337-347.
    [171]Rapaport DC.Interactive molecular dynamics[J].Physica A,1997,240(1-2):246-254.
    [172]Senn HM,Thiel W.QM/MM studies of enzymes[J].Curr Opin Chem Biol,2007,11(2):182-187.
    [173]Klein MK,Shinoda W.Large-scale molecular dynamics simulations of self-assembling systems[J].Science,2008,321(5890):798-800.
    [174] Tozzini V. Coarse-grained models for proteins [J]. Curr Opin Struct Biol, 2005, 15(2):144-150.
    [175] Bahar I, Rader AJ. Coarse-grained normal mode analysis in structural biology [J]. Curr Opin Struct Biol, 2005,15(5):586-592.
    [176] Bond PJ, Holyoake J, Ivetac A, et al. Coarse-grained molecular dynamics simulations of membrane proteins and peptides [J]. J Struct Biol, 2007,157(3):593-605.
    [177] Lindahl E, Sansom MSP. Membrane proteins: molecular dynamics simulations [J]. Curr Opin Struct Biol, 2008,18(4):425-431.
    [178] Baron R, Trzesniak D, de Vries AH, et al. Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models [J]. Chem Phys Chem, 2007, 8(3):452-461.
    [179] Chang CC, Lin CJ. LIBSVM: a library for support vector machines [OL]. 2001. http://www.csie.ntu.edu.rw/(?) cjlin/libsvm.
    [180] Kahn I, Sild S, Maran U. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks [J]. J Chem Inf Model, 2007,47(6):2271-2279.
    [181] Ramos EU, Vaes WHJ, Verhaar HJM, et al. Quantitative structure-activity relationships for the aquatic toxicity of polar and nonpolar narcotic pollutants [J]. J Chem Inf Comput Sci, 1998, 38(5):845-852.
    [182] Bemporad D, Essex JW. Permeation of small molecules through a lipid bilayer: a computer simulation study [J]. J Phys Chem B, 2004, 108(15):4875-4884.
    [183] Bemporad D, Luttmann C, Essex JW. Computer simulation of small molecule permeation across a lipid bilayer: Dependence on bilayer properties and solute volume, size, and cross-sectional area [J]. Biophys J, 2004, 87(1): 1-13.
    [184] Vemparala S, Saiz L, Eckenhoff RG, et al. Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles [J]. Biophys J, 2006, 91:2815-2825.
    [185] Tang P, Xu Y. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: The implication of molecular mechanisms of general anesthesia [Jj. Proc Natl Acad Sci USA, 2002, 99(25): 16035-16040.
    [186] MacCallum JL, Bennett WFD, Tieleman DP. Partitioning of amino acid side chains into lipid bilayers: Results from compter simulations and comparison to experiment [J]. J Gen Physiol, 2007, 129(5):371-377.
    [187] Patra M, Salonen E, Terama E, et al. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers [J]. Biophys J, 2006, 90(4): 1121-1135.
    [188] Villarreal MA, Diaz SB, Disalvo EA, et al. Molecular dynamics simulation study of the interaction of trehalose with lipid membranes [J]. Langmuir, 2004, 20(18):7844-7851.
    [189] Grossfield A, Woolf TB. Interaction of tryptophan analogs with POPC lipid bilayers investigated by molecular dynamics calculations [J]. Langmuir, 2002,18(1):198-210.
    [190] Tieleman DP, Marrink SJ, Berendsen HJC. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems [J]. Biochim Biophys Acta, 1997, 1331(3):235-270.
    [191] Nagle JF, Tristram-Nagle S. Structure of lipid bilayers [J]. Biochim Biophys Acta, 2000, 1469(3): 159-195.
    [192] Chiu SW, Jakobsson E, Mashil RJ, et al. Cholesterol-induced modifications in lipid bilayers: A simulation study [J]. Biophys J, 2002, 83(4):1842-1853.
    [193] Ohvo-Rekila H, Ramstedt B, Leppimaki P, et al. Cholesterol interactions with phospholipids in membranes [J]. Prog Lipid Res, 2002, 41(1):66-97.
    [194] Song Y, Guallar V, Baker NA. Molecular dynamics simulations of salicylate effects on the micro- and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer [J]. Biochemistry, 2005,44(41):13425-13438.
    [195] Mukhopadhyay P, Vogel HJ, Tieleman DP. Distribution of pentachlorophenol in phospholipid bilayers: A molecular dynamics study [J]. Biophys J, 2004 86(1):337-345.
    [196] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision C.02 [J]. 2004.
    [197] SchUttelkopf AW, van Aalten DM. PRODRG: a tool for highthroughput crystallography of protein-ligand complexes [J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 8):1355-1363.
    [198] Nagle JF, Zhang R, Tristram-Nagle S, et al. X-ray structure determination of fully hydrated La phase dipalmitoylphosphatidylcholine bilayers [J]. Biophys J 1996, 70(3):1419-1431.
    [199] Berger O, Edholm O, JShnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J]. Biophys J, 1997, 72(5):2002-2013.
    [200] Anezo C, Devries AH, Holtje HD, et al. Methodological issues in lipid bilayer simulations [J]. J Phys Chem B, 2003, 107(35):9424-9433.
    [201] Patra M, Karttunen M, Hyvonen MT, et al. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions [J]. Biophys J, 2003, 84(6):3636-3645.
    [202] Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis [J]. J Mol Model, 2001, 7(8):306-317.
    [203] Aittoniemi J, Niemela PS, Hyvonen MT, et al. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine. [J]. Biophys J, 2007, 92(4): 1125-1137.
    [204] Elmore DE. Molecular dynamics simulation of a phosphatidylglycerol membrane [J]. FEBS Lett, 2006, 580(1): 144-148.
    [205] Xu L, Wang X, Zhao W. Bridging the gap between molecular descriptors and mechanism: Cases studies by molecular dynamics simulations [J]. J Mol Graph Model, 2009. 27(7):829-835.
    [206] Tomita A, Sato T, Ichijanagi K, et al. Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin [J]. Proc Natl Acad Sci USA, 2009, 106(8):2612-2616.
    [207] Cohen J, Kim K, Posewitz M, et al. Molecular dynamics and experimental investigation of H_2 and O_2 diffusion in [Fe]-hydrogenase [J]. Biochem Soc T, 2005,33(1):80-82.
    [208] Volbeda A, Montet Y, Vernede X, et al. High-resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase [J]. Int J Hyd Energ, 2002, 27(11-12):1449-1461.
    [209] Buhrke T, Lenz O, Krauss N, et al. Oxygen tolerance of the H_2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site [J]. J Biol Chem, 2005,280(25):23791-23796.
    [210] Duche O, Elsen S, Cournac L, et al. Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O_2 sensitive without affecting its transductory activity [J]. FEBS J, 2005,272(15):3899-3908.
    [211] Gibson QH, Regan R, Elber R. Distal pocket residues affect picosecond ligand recombinationin myoglobin [J]. J Biol Chem, 1992, 367(31):22022-22034.
    [212] Li H, Elber R, Straub JE. Molecular dynamics simulation of NO recombination to myoglobin mutants [J]. J Biol Chem, 1993,268(24):17908-17916.
    [213] Quillin ML, Li T, Olson JS, et al. Structural and functional effects of apolar mutations of the distal valine in myoglobin [J]. J Mol Biol, 1995,245(4):416-436.
    [214] Hofacker I, Schulten K. Oxygen and proton pathways in cytochrome c oxidase [J]. Proteins, 1998,30(1):100-107.
    [215] Teeter MM. Myoglobin cavities provide interior ligand pathway [J]. Protein Sci, 2004, 13(2):313-318.
    [216] van den Bosch M, Swart M, van Gunsteren WF, et al. Simulation of the substrate cavity dynamics of quercetinase [J]. J Mol Biol, 2004, 344(3):725-738.
    [217] Ciacchi LC, Payne MC. The entry pathway of O_2 into human ferritin [J]. Chem Phys Lett, 2004, 390(4-6):491-495.
    [218] Bossa C, Amadei A, Daidone I, et al. Molecular dynamics simulation of sperm whale myoglobin: Effects of mutations and trapped CO on the structure and dynamics of cavities [J]. Biophys J, 2005,89(1):465-474.
    [219] Cohen J, Kim K, King P, et al. Finding gas diffusion pathways in proteins: Application to O_2 and H_2 transport in Cpl [FeFe]-hydrogenase and the role of packing defects [J]. Structure, 2005, 13(9): 1321-1329.
    [220] Fiorucci S, Golebiowski J, Cabrol-Bass D, et al. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen? [J]. Proteins, 2006,64(4):845-850.
    [221] Cohen J, Arkhipov A, Braun R, et al. Imaging the Migration Pathways for O_2, CO, NO, and Xe Inside Myoglobin [J]. Biophys J, 2006,91(5): 1844-1857.
    [222] Teixeira VH, Baptista AM, Soares CM. Pathways of H_2 toward the active site of [NiFe]-hydrogenase [J]. Biophys J, 2006, 91(6):2035-2045.
    [223] Wang Y, Cohen J, Boron WF, et al. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics [J]. J Struct Biol, 2006,157(3):534-544.
    [224] Cohen J, Schulten, K. O_2 migration pathways are not conserved across proteins of a similar fold [J]. Biophys J, 2007, 93(10):3591-3600.
    [225] Johnson BJ, Cohen J, Welford RW, et al. Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase [J]. J Biol Chem, 2007, 282(24): 17767-17776.
    [226] Orlowski S, Nowak W. Oxygen diffusion in minihemoglobin from Cerebratulus lacteus: a locally enhanced sampling study [J]. Theor Chem Acc, 2007, 117(2):253-258.
    [227] Orlowski S, Nowak W. Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin [J]. J Mol Model, 2007, 13(6-7):715-723.
    [228] Saam J, Ivanov I, Walther M, et al. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels [J]. Proc Natl Acad Sci USA, 2007, 104(33):13319-13324.
    [229] Kubiak K, Nowak W. Molecular dynamics simulations of the photoactive protein nitrile hydratase [J]. Biophys J, 2008, 94(10):3824-3838.
    [230] Ruscio JZ, Kumar D, Shukla M, et al. Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin [J]. Proc Natl Acad Sci U S A, 2008, 105(27):9204-9209.
    [231] Boechi L, Marti MA, Milani M, et al. Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O [J]. Proteins, 2008, 73(2):372-379.
    [232] Daigle R, Guertin M, Laglle P. Structural characterization of the tunnels of Mycobacterium tuberculosis truncated hemoglobin N from molecular dynamics simulations [J]. Proteins, 2009, 75(3):735-747.
    [233] Schmidt M, Nienhaus K, Pahl R, et al. Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic study on L29W MbCO [J]. Proc Natl Acad Sci U S A, 2005, 102(33): 11704-11709.
    
    [234] Cojocaru V, Klement R, Jovin TM. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif [J]. Nucleic Acids Res, 2005, 33(10):3435-3446.
    [235] Cojocaru V, Nottrott S, Klement R, Jovin TM. The snRNP 15.5K protein folds its cognate K-turn RNA: a combined theoretical and biochemical study [J]. RNA, 2005, 11 (2): 197-209.
    [236] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallogr A, 1976, 32(5):751-767.
    [237] Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function [J]. J Comput Chem, 1998, 19(14): 1639-1662.
    [238] Kovaleva EG, Lipscomb JD. Intermediate in the O-O bond cleavage reaction of an extradiol dioxygenase [J]. Biochemistry, 2008, 47(43): 11168-11170.
    [239] Cheng X, Hornak V, Simmerling C. Improved conformational sampling through an efficient combination of mean-field simulation approaches [J]. J Phys Chem B, 2004, 108(1):426-437.
    [240] Petrek M, Otyepka M, Banas P, et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities [J]. BMC Bioinformatics 2006, 7:316.
    [241] Damborsky J, Petfek M, Banas P, Otyepka M. Identification of Tunnels in Proteins, Nucleic Acids, Inorganic Materials and Molecular Ensembles [J]. Biotechnol J, 2007, 2:62-67.
    [242] Holm L, Park J. DaliLite workbench for protein structure comparison [J]. Bioinformatics, 2000, 16(6):566-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700